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Abstract—In this paper, we develop a spectrum allocation 
algorithm for hierarchical cognitive ad hoc networks based 
on the secondary user (SU) priority. The algorithm assures 
that the SUs with higher priority can get more spectrum 
bandwidths, and thus the revenue of the whole spectrum 
band can be maximized. The proposed algorithm is a two-
stage spectrum allocation scheme, in which the licensed 
spectrum allocation between the primary users (PUs) and 
SUs acting as CH (CH-SU) is implemented in the first stage, 
and in the second stage, the spectrum purchased from 
spectrum owner is traded between the CH-SUs and cluster 
member (CM)-SUs. Performance analysis shows that the 
convergence speed of the proposed algorithm can be 
improved by adjusting the value of learning factors. 
Meanwhile, it allocates different size of spectrum bandwidth 
for SUs according to the different priority levels, which 
reflect the rationality and difference in spectrum allocation. 
Also, the simulation results reveals if  the number of priority 
level of CM-SUs is less than 4, our algorithm has the lower 
time overhead than other spectrum allocation algorithm 
without taking the SU’s priority level into consideration.  
 
Index Terms—Cognitive ad hoc networks, spectrum 
allocation, priority 
 

I.  INTRODUCTION 

Radio spectrum is one of the most scarce and valuable 
resources for wireless communications [1]. Some surveys 
performing actual measurements have shown that most of 
the allocated spectrum is largely under-utilized [2,3]. 
Similar views on the under-utilization of allocated 
spectrum were reported by the Spectrum-Policy Task 
Force appointed by Federal Communications 

Commissions (FCC) [4]. Cognitive radio (CR) has been 
proposed as a way to improve spectrum efficiency by 
exploiting the unused spectrum in dynamically changing 
environments [5]. 

Cognitive radio networks (CRNs), are envisioned to 
deliver high bandwidth to mobile users via heterogeneous 
wireless architectures and dynamic spectrum access 
techniques [6,7]. Such networks provide the capability to 
share the wireless channel with primary users in an 
opportunistic manner. In CRNs, the spectrum can be 
utilized by two kinds of users: primary users (PUs) and 
secondary users (SUs). The PUs are those users having 
exclusive licenses to use certain spectrum bands for 
specific wireless application. On the other hand, the SUs 
can exploit any under utilized band. The CRNs can be 
centralized or ad hoc networks. Due to the ease of rapidly 
deployable, frequency-agile, the cognitive ad hoc 
networks are expected to attract more future applications 
of the secondary spectrum usage. The concept of the 
CRNs leads to support the increasing demands of 
advanced wireless applications and to efficiently utilize 
the precious radio resource. However, there are many 
challenges that must be tackled in order to realize this 
concept. In addition to identify and exploit the spectrum 
opportunities in CRNs, providing QoS in the spectrum 
allocation for SUs is very critical. 

Nowadays, various techniques have been used to 
model the spectrum allocation problem for CRNs. Graph 
theory was used to analyze spectrum allocation among 
SUs [8,9]. Game theory has been identified as one of the 
key techniques to characterize the competition and 
cooperation among SUs [10-12]. Market-based 
mechanisms have been explored as a promising approach 
for spectrum allocation, where PUs can dynamically trade 
unused spectrum with SUs. In particular, compared to 
auction-based spectrum allocation, pricing-based 
spectrum allocation has been extensively studied [13-16]. 

For the efficient dynamic spectrum allocation, an 
economic model would be required for the spectrum 
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owners and the spectrum users so that the revenue can be 
maximized. When the allocated spectrum is not fully 
utilized, the spectrum owner (or PU) has an opportunity 
to sell (lease) the spectrum opportunities to SUs, and 
thereby, generate revenue. For the spectrum trading, one 
of the challenging issues is pricing, for example, how to 
set the spectrum price in competitive cognitive ad hoc 
environments. 

Spectrum trading is successfully formulated by 
economic models and competitive and cooperative 
pricing schemes are developed in [16]. In [17], 
hierarchical spectrum sharing is formulated as a unified 
market and a novel interrelated market model is proposed 
for hierarchical spectrum/bandwidth sharing among 
primary, secondary, tertiary, and quaternary services. 
Specifically, the pricing mechanism for the bandwidth 
allocations equates the supply to the demand. In [18], the 
economic interactions between SUs and primary 
operators (POs) in a CRN scenario are studied, assuming 
that the transmission rate of each SU is a function of 
network congestion (such as TCP traffic) and the price 
per unit of bandwidth. SUs are charged a fixed price per 
unit of bandwidth. Also, the issue of spectrum trading 
between single PO and multiple SUs is considered in [19], 
which focuses on the attribute of spectrum trading 
through the notion of “quality”, that is, each spectrum 
resource can be traded in different qualities with different 
price. Furthermore, it classifies the SUs into multiple 
categories (types) according to their preference for a 
given spectrum quality. However, the spectrum 
management in the paper considers only one level of QoS 
for SUs. In [20] and [21], the authors propose a spectrum 
management model with multiple levels of QoS for 
different SUs. In [21], a two-phase spectrum allocation 
scheme is executed. In the first phase, the SU selects the 
spectrum by observing the changes in the price and the 
level of QoS offered by different PUs. In the second 
phase, the PU controls its strategy in renting the spectrum 
to SUs to achieve the highest utility. 

With an explosion in the diversity of real-time services, 
the more reliable communication and the better QoS 
guarantee are required. In the above literatures, most of 
them consider the QoS problem assuming that: 1) allow 
SUs opportunistic access spectrum holes with the 
constraint of guaranteeing the PU’s QoS; 2) PUs control 
the price and the demand for spectrum access based on 
SU’s QoS requirement. However, in practical wireless 
communication scenarios, such as dispatch 
communications and emergency communications, the 
mobile SUs usually have a fixed level of function priority 
and QoS requirement. Due to the scarcity of available 
spectrum holes, the SUs need to compete to use these 
radio resources. However, it is notified that the QoS and 
priority levels of the SUs are different, and the SUs with 
higher QoS and priority levels should be served first in 
such communication scenarios.  Meanwhile, the 
implementation complexity of the spectrum allocation 
among the SUs must be taken into consideration for a 
cognitive radio to be operable. 

To solve the problems, we develop a priority-oriented 

spectrum allocation algorithm for hierarchical cognitive 
ad hoc networks. The algorithm is implemented to assure 
the SUs with higher priority might occupy more available 
spectrum resources to maximize the spectrum revenue. A 
two-stage spectrum allocation algorithm is proposed in 
the paper, which consist of inner-cluster and inter-cluster 
spectrum allocations. In a hierarchical cognitive ad hoc 
network, spectrum trading between the PUs and multiple 
SUs acting as cluster-head (CH) is executed firstly, then 
each CH allocate the available spectrum bands in a 
cluster according to the priority levels. Simulation results 
show that the proposed algorithm can better meets the 
different spectrum requirements for multiple-priority 
levels of SUs, with a little loss of total revenue of the 
whole spectrum bands. Also, the performances of 
convergence and time overhead of the algorithm are 
evaluated. 

The remainder of this paper is organized as follows. In 
Section II, the system model and framework is introduced 
for a priority-oriented two-stage spectrum allocation 
(PTSA) algorithm. In Section III, we present the PTSA in 
detail and the spectrum revenue is conducted. The 
performances of the convergence and time overhead of 
the algorithm are investigated in Section IV. Section V 
presents the simulation results and Section VI provides 
conclusions.  

II.  SYSTEM MODEL 

The problem of hierarchical bandwidth sharing is 
formulated as an interrelated market model [17] in which 
a multiple-level market is established among the primary, 
secondary, tertiary, and quaternary services. Based on the 
model, the paper presents a PTSA algorithm in cognitive 
ad hoc networks scenario. Different from the model in 
[17], the priority of SUs and the time overhead for the 
spectrum allocation are discussed in the 
paper.

 
 

Figure1. The model of PTSA algorithm 
 

The PTSA algorithm consists of two stages (see Fig. 1). 
In the first stage (stage-I), the spectrum allocation 
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between the PUs and SUs acting as CH is implemented. 
Assume the spectrum owner provides spectrum units of 
size W for N1 PUs, and N1 PUs share the spectrum of size 
Q1 with N2 SUs acting as CH who has m priority levels. 
The price per unit of bandwidth in this stage is P1. In the 
second stage (stage-II), the spectrum purchased from 
spectrum owner is traded between the CH-SUs and 
cluster member (CM)-SUs. In the stage, each CH sells a 
proportion of purchased spectrum to N3 CM-SUs who has 
k priority levels, and the price per unit of bandwidth is 
denoted by P2. The remainder of the purchased spectrum 
is used for the CH-SUs’ self communication activities. 

III.  PTSA ALGORITHM 

According to the equilibrium price theory [22], the 
time-variation price of the market will reach equilibrium 
when the demand is equal to the supply. Based on this, 
the price and the time occupying the spectrum holes 
could be negotiated between PUs and SUs for efficient 
spectrum allocation.  

In a market-driven economic environment, the 
equilibrium of quantity and the price changes with the 
varying relationship of supply and demand. And the 
changing relationship will affect the equilibrium rate. 
Once the market price per unit of bandwidth reaches 
the equilibrium price, i.e., the optimal price, the 
maximal spectrum utility (revenue) for the SUs can be 
obtained. The spectrum utility function, U(B), is given 
in [23], which is a function of the data transmission 
rate B: U(B)=cln(dB)+s, where c, d, s are constants.  In 
most cases, we set c=d=1, s=0, then U(B)=lnB.  

A.  Stage-I Spectrum Allocation 
In the stage-I spectrum allocation, the total spectrum 

bandwidth that owned by the spectrum supplier is W. The 
revenue of spectrum supplier includes two parts. The first 
part of revenue is obtained from N1 PUs who are 
transmitting data by W-Q1 spectrum bandwidth, and the 
second part comes from the Q1 spectrum bandwidth 
bought by N2 CH-SUs at the price P1 for per unit of 
bandwidth.   

The revenue of the spectrum supplier is expressed by 
 

1

1 1 1 1

1

1 1 1 1( ) ln ( )
N

p

i

i

U B PQ N W Q N PQπ
=

= + = +−∑    (1) 

 
To maximize the revenue, the partial derivative of 
equation (1) is calculated, that is 1 1 0p Qπ∂ ∂ = . Then, the 
spectrum supply function is obtained as  

 

1 1 1=Q W N P−
S

                       
(2) 

 
Assume that there are m priority levels for CH-SUs, in 

the priority order of 1, 2, ···, m. Let ni be the number of 
CH-SUs at level-i (i=1, 2, ···, m), and the spectrum 
bandwidth bought is denoted by Mi. Then ni and Mi 
subject to 

 

1 2 2

1 2 1

m

m

n n n N

M M M Q

+ + + =

+ + + =

⎧
⎨
⎩                 

(3)
  

 
Usually, the number of CH-SUs in low priority level is 

larger than that of CH-SUs in high priority level. Then, 
let n1=n，n2=2n,···, nm=mn, where n is a positive integer. 
Besides, the CRN is suggested to adopt the Soft-QoS 
strategy [24]. For the strategy, the CH-SUs define the 
QoS-based priority level, and which priority level a CH-
SU belongs to depends on the demanded spectrum 
bandwidth. The more demanded spectrum bandwidth, the 
higher priority level a CH-SU belongs to, in order to 
satisfy the low delay and high reliability requirements. In 
general, the CH-SUs with higher priority will need more 
spectrum bandwidth compared to the CH-SUs with lower 
priority. Therefore, let M1=x，M2=x/2， ···，Mm=x/m, 
where x is a positive integer. Equation (3) can be 
rewritten as 

 

2

1

2

(1 1/ 2 1/ )

n n mn N

m x Q
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⎨
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(4)

                      Then,  
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+
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⎧
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(5)

                      
 
where r is Euler constant. 

Next, let us consider the revenue of the CH-SUs, 
which can be expressed as 

 
2

1 1 1 2 1 1
1 2

= ( ) ln( ) 2 ln
N m

i
i i

U B PQ N x n n i i PQπ
= =

− = − −∑ ∑  (6)                       

 
To meet the optimal spectrum demand, the partial 
derivative of equation (6) is calculated, that 
is 11 0Qπ∂ ∂ = . Then, the spectrum demand function is 
obtained as 

 

1 1 2 1
( 1) 2 =Q nm m P N P= +

D

                 
(7)

                       
As mentioned, the optimal price is the price when the 

supply and demand reaches equilibrium. Therefore, the 
optimal market price in the stage-I spectrum allocation is 
calculated as  

 
*

1 1 2( )P N N W= +
                          

(8)
 

                      B. Stage-II Spectrum Allocation 
In the stage-II spectrum allocation, each CH-SU at 

level-i (i=1, 2, ···, m) sells spectrum bandwidth Q2 to N3 
CM-SUs, and the remainder of the purchased 
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spectrum, 2Q  is used for the CH-SUs’ self 
communication activities.  Assume that there are k 
priority levels for CM-SUs, in the priority order of 1, 2, ···, 
k. Let aj be the number of CM-SUs at level-j (j=1, 2, ···, 
k), and the spectrum bandwidth bought denoted by bj. 
Then aj and bj subject to 

 

1 2 3

1 2 2

k

k

a a a N

b b b Q

+ + + =

+ + + =

⎧
⎨
⎩                       

(9)

                                                              

 

 
The same explanation as the previous one for 

equations (4) and (5) in stage-I spectrum allocation, we 
assume a1=a, a 2=2a,···, ak=ka；b1=y, b2= y/2, ···, bk= y/k, 
where a and y are positive integers. Then, equation (9) 
can be rewritten as 

 

3
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2
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Then, we get 
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Let Z be the number of communication activity of CH-

SUs. The revenue of the CH-SUs can be obtained as 
 

2 2 2 1
1
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Z
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M
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To maximize the revenue, the partial derivative of 
equation (12) is calculated. Then, the spectrum supply 
function is obtained as 
 

1
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The revenue of the CM-SUs can be expressed by  
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i
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To meet the optimal spectrum demand, the partial 
derivative of equation (14) is calculated. Then, the 
spectrum demand function is obtained as  
 

3
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When the supply and demand reaches the equilibrium, the 
optimal market price in the stage- II spectrum allocation 

is calculated by 
 

2
*
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where 'a , 'b , and 'c  subject to 
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The equation (16) reveals that the optimal spectrum 

price in the stage-II is related to the number of spectrum 
bandwidth Q1 in the stage-I, the number of CH-SUs (N2), 
the number of priority level for CH-SUs (m), the priority 
level-i the CH-SUs belong to, the number of CM-SUs 
(N3), the number of communication activity of CH-SUs 
(Z), the number of priority level for CM-SUs (k), and the 
price per unit of bandwidth P1 in the stage-I. 

Also, it can be seen that the equation (18) is a 
quadratic equation with one unknown. There exit two 
solutions for it. The actual optimal solution must satisfy 
the following condition 

 
* *

2 1 0P P> >                              (18)                      
 
Which means the optimal price in the stage-II spectrum 
allocation must be not negative, and it should be higher 
than the optimal price in the stage-I. 

IV.  PERFORMANCE MEASURE 

In theory, the equations (8) and (16) give the optimal 
market price in the stage-I and the stage-II spectrum 
allocation respectively. However, in practical market 
environments, the price per unit of bandwidth for two- 
stage spectrum allocation is time-varying, the equilibrium 
price, i.e., the optimal price is not easy to obtain. It 
should be negotiated iteratively between the supplier and 
the demander to achieve the equilibrium.  

To evaluate the rapidity of time-dependent market 
price convergence to the theoretically optimal price, two 
iterative algorithms, excess demand-based price 
adjustment (EDB) and successive over-relaxation 
algorithm (SOR) [25]-[28], are used to analyze the 
convergence of PTSA. The supplier and the demander in 
PTSA are defined in Table 1.  

TABLE 1  
DEFINITION OF SPECTRUM SUPPLIER AND DEMANDER 

Spectrum supplier 
and demander 

Participants in 
spectrum allocation 

stage-I supplier spectrum owner 
stage-I demander CH-SUs 

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 589

© 2014 ACADEMY PUBLISHER



stage-II supplier CH-SUs 
stage-II demander CM-SUs 

 

A.  PTSA Convergence with EDB 
The philosophy of PTSA with EDB is, for each 

spectrum allocation stage, the supplier adjusts the price 
gradually in the iteration by observing the demander’s 
bandwidth demanding to obtain the optimal price. 

In the stage-I spectrum allocation, stage-I supplier 
chooses the initial price, P1[0], randomly, and sends it to 
stage-I demander. According to the demand function, the 
demander determines the bandwidth required and 
feedback the information. The supplier computes the 
excess demand by subtracting the bandwidth supply from 
the bandwidth demand from the demander. If the 
bandwidth demand is larger than the bandwidth supply, 
the supplier would put up the price to obtain the higher 
revenue. On the contrary, the supplier has to lower the 
price. 

To obtain the next iteration price, the price difference 
between the spectrum supply and demand in the current 
need to be computed. The relationship of iterative prices 
is expressed by 
 

1 1 1 1 1D[ 1] [ ] ( [ ]- [ ])P t P t Q t Q tα+ = +
S

            (19)
                                               

where P1[t+1] is the price at time t+1, P1[t] is the price at 
time t, α1 is the learning factor, and Q1D[t], Q1S[t] are the 
spectrum demand function and the supply function at 
time t respectively in the stage-I. The iterative process 
repeats until |P1[t+1]- P1[t]|≤ε1 (ε1 is a given threshold) is 
satisfied. 

In the stage-II spectrum allocation, stage-II supplier 
adjusts the price P2 based on the excess demand and the 
stage-I supplier’s charge. The relationship of iterative 
prices can be obtained by 

 

2 2 2[ 1] [ ] ( [ ]- [ ])P t P t Q t Q tα+ = +
2D 2S

            (20) 
                                                    
where P2[t+1] is the price at time t+1, P2[t] is the price at 
time t, α2 is the learning factor, and Q2D[t], Q2S[t] are the 
spectrum demand function and the supply function at 
time t respectively in the stage-II. The iterative process 
repeats until |P2[t+1]- P2[t]|≤ε2 (ε2 is a given threshold) is 
satisfied. 

It is noted that the equilibrium (steady state) will be 
significantly affected by the learning factors. In particular, 
if the value of learning factors is large enough that the 
supplier will rely mainly on the excess demand 
information, and this would result in the price fluctuation. 
On the other hand, the supplier will rely less on the 
excess demand information with smaller learning factors, 
the equilibrium might be reached quickly. Consequently, 
the stability condition should be investigated by setting 
the range of the learning factors to reach the steady state 
(equilibrium). At the steady state, we will 
have ( )[ 1] [ ]j jP t P t+ = F , where ( )⋅F is a self-mapping 

function of the market price which reflects the 
relationship of the spectrum prices at the various times. 

According to the analysis of a matrix’s local 
asymptotic stability, a system is stable if the eigenvalues 
of the Jacobian matrix are all inside the unit circle in the 
complex plane. The Jacobian matrix for the price per unit 
of bandwidth is given by 
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Then, the Jacobian matrix for EDB iterative algorithm is 
expressed by 
 

1 2
1 * 2
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Furthermore, the eigenvalues of EDB satisfies 
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Therefore, the stable range of the learning factors in 
PTSA with EDB can be achieved as 
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                      B. PTSA Convergence with SOR 
As an accelerating algorithm for Gauss-Seidel iteration, 

The SOR has fast convergence speed. In the SOR, the 
relationship of iterative prices for two stage spectrum 
allocation can be expressed respectively by  

 

1
1 1 1 1

1
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[ ]

N
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W Q t
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And 
 

2 2 2[ +1]=(1- ) [ ]P t P tω
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where ω1 and ω2 are the learning factors of stage-I and 
stage-II respectively. In particular, if ω1=ω2=1, then SOR 
turns into Gauss-Seidel iterative algorithm. Generally, the 
value of 1 is not suggested for ω1 or ω2, and SOR is the 
Gauss-Seidel’s expansion. 

Similar, the stability condition should be investigated 
by setting the range of the learning factors to reach the 
steady state (equilibrium). The elements of Jacobian 
matrix for SOR iterative algorithm can be derived by 
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The eigenvalues of Jacobian matrix for SOR iterative 
algorithm satisfies 
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Then, the stable range of the learning factors in PTSA 
with SOR can be achieved as 
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C. Time Overhead 
We suppose that the period of cyclic spectrum 

allocation is τ, then the total time overhead of spectrum 

allocation is the number of cyclic spectrum allocation 
multiplied by τ. Therefore, the time overhead of PTSA 
can be calculated as 
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Where n and a are positive integer, the expressions for 
them refer to equation (5) and equation (11) respectively. 

V.  PERFORMANCE EVALUATIONS 

The performance evaluations are presented in this 
section to demonstrate the performances of PTSA in 
terms of convergence, spectrum utility, and time 
overhead. The results of the hierarchical bandwidth 
sharing allocation (denoted as HBSA) scheme proposed 
in [17] are also shown for a comparison. We consider a 
dynamic spectrum allocation environment with one 
spectrum supplier, N1 PUs and multiple SUs in a 
hierarchical cognitive ad hoc network. The main 
parameters are listed in Table.2.  

TABLE 2   
PARAMETER SETTINGS 

Parameters Values 
Number of  PUs 10 

Number of CH-SUs  3 
Number of CM-SUs  6 

Total spectrum bandwidth provided by the 
spectrum supplier 20MHz

stage-I: initial price per unit of bandwidth 0.2 
stage-II: initial price per unit of bandwidth 2 

Number of priority levels for CH-SUs 2 
Number of priority levels for CM-SUs 3 

Number of communication activities for level-1 
CH-SU 3 

 
Fig.2 and Fig.3 illustrate the convergence 

performances of PTSA for the price per unit of bandwidth 
based on EDB and SOR iterative algorithm in stage-I and 
stage-II respectively. It can be seen that the price per unit 
of bandwidth will converges to the equilibrium price (the 
optimal price) quickly for both the EDB iteration and 
SOR iteration, if the learning factors are in the range of 
stable condition. Also, we can see that the effects of EDB 
iteration and SOR iteration on the price per unit of 
bandwidth are different when the spectrum market is in 
unstable condition. The price per unit of bandwidth 
fluctuates between the several fixed values for the EDB 
iteration, whereas, the price fluctuation appears the more 
uncertainty for the SOR iteration. 

Fig.4 and Fig.5 show the influences of learning factors 
on the convergence speed of PTSA in stage-I and stage-II 
respectively. It is obvious that the faster convergence 
speed can be achieved with the smaller values of learning 
factors for both EDB iteration and SOR iteration. It is 
because that the market price will rely less on the excess 
demand information with smaller learning factors, then 
the equilibrium price might be reached quickly. 
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Figure2. Stage-I: The convergence performance of PTSA 
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Figure 3. Stage-II: The convergence performance of PTSA 
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Figure 4. Stage-I: The effect of learning factors on the convergence 

speed of PTSA 
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Figure 5. Stage- II: The effect of learning factors on the convergence 

speed of PTSA 
 

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

8

10

12

Number of iteration

S
ta

ge
-2

: p
ric

e 
of

 u
ni

t b
an

dw
id

th

EDB：m=2
EDB：m=5
EDB：m=6
EDB：m=10
SOR：m=2
SOR：m=5
SOR：m=6
SOR：m=10

 
Figure 6. The effect of the number of CH-SUs’ priority levels on the 

equilibrium price of PTSA 
Fig.6 shows the influence of the number of CH-SUs’ 

priority levels, m, on the equilibrium price of PTSA. It 
can be seen that with m increasing (o<m≤5), the price per 
unit of bandwidth in stage-II increases with EDB iteration 
and SOR iteration. It is the reason that with larger m, the 
spectrum bandwidth allocated to each CH-SU decreases 
accordingly, so the CH-SU will sell the unit bandwidth at 
a higher price to maximize its revenue. Furthermore, we 
can see that with smaller m (o<m≤5), the price per unit of 
bandwidth in stage-II could converges to a rational 
equilibrium price both in EDB iteration and SOR 
iteration. However, if the value of m is larger than 5, there 
is great difference on the price per unit of bandwidth 
between the EDB iteration and SOR iteration. Especially, 
the price per unit of bandwidth with SOR iteration drops 
even below the initial price. 

Next, we examine the spectrum revenue of PTSA in 
contrast with that of HBSA [17]. Both of them adopt the 
same spectrum utility function, whereas, the philosophy 
is different:   in PTSA, spectrum allocation is carried out 
considering the priority levels of CH-SUs and CM-SUs, 
while the spectrum bandwidth is allocated equally among 
the SUs in HBSA. 

The spectrum revenues of each CH-SU and each CM-
SU at different priority level are illustrated in Fig.7 and 
Fig.8 respectively. It is observed from Fig.7 that, in 
PTSA, the spectrum revenue of each CH-SU at priority 
level-1 is 14.9395 and 13.5531 at priority level-2. And in 
HBSA, the spectrum revenue of each SU is a fixed value 
of 14.2460, regardless of priority levels. 

We can see from Fig.8, in PTSA, the spectrum revenue 
of each CM-SU is 13.8464 at priority level-1, 12.4603 at 
priority level-2, and 11.6492 at priority level-3. And in 
HBSA, the spectrum revenue of each SU appears to be a 
fixed value of 12.4541, regardless of priority levels. 

The results from Fig.7 and Fig.8 reveal that our 
proposed PTSA algorithm reflects the rationality in 
spectrum allocation that the spectrum revenue of SUs 
should be different for different priority level. 

Fig.9 and Fig.10 show the time overhead performances. 
It can be seen that the time overhead of PTSA increases 
slowly with the increment of number of CM-SUs for 
given N2=3, m=2, and k=2. In contrast, the time overhead 
of HBSA increase linearly with the increment of number 
of SUs. That is, PTSA has less time overhead than HBSA. 
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Figure 7. Spectrum revenue of each CH-SU for different priority level 
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Figure 8. Spectrum revenue of each CM-SU for different priority level 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Number of CM-SUs

Ti
m

e 
ov

er
he

ad

PTSA
HBSA

 
Figure 9. The time overhead under different number of CM-SUs 
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Figure 10. The time overhead under different number of priority levels 

for CM-SUs 

We can see from Fig.10 that the time overhead of 
PTSA increases linearly with the number of priority 
levels increasing for given N2=3, N3=3, and m=2. In 
contrast, the time overhead of HBSA maintains  constant. 
Furthermore, it can be seen that the time overhead of 
PTSA  is superior to that of HBSA for k≤4, whereas, 
HBSA has the lower time overhead than PTSA for k>4. 

VI. CONCLUSIONS 

In this paper, we proposed a priority-oriented two-
stage spectrum allocation (PTSA) algorithm for 
hierarchical cognitive ad hoc networks, the convergence, 
spectrum revenue and time overhead of PTSA are 
analyzed and evaluated. The results show that: 1) When 
learning factors are set within the range of the stable 
condition, the number of priority levels of CH-SUs is not 
larger than 5, the price per unit of bandwidth in PTSA 
will converge to the unique optimal value, no matter EDB 
or SOR iterative method is adopted. And, in the progress 
towards convergence, the smaller the learning factors, the 
faster convergence speed can be obtained. 2) Compared 
with the spectrum allocation algorithm without taking the 
SU’s priority level into consideration, PTSA algorithm 
allocates different size of spectrum bandwidth for SUs 
according to the different priority levels, which reflect the 
rationality and difference in spectrum allocation. 3) When 
the number of priority level of CM-SUs is less than 4, 
PTSA has the lower time overhead than other similar 
algorithm. 
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