
Constructing a Hybrid Taint Analysis Framework 
for Diagnosing Attacks on Binary Programs 

 
Erzhou Zhu, Xuejun Li, Feng Liu, Xuejian Li 

School of Computer Science and Technology, Anhui University, Hefei, China 
Email: {ezzhu, xjli, fengliu, xjl}@ahu.edu.cn 

 
Zhujuan Ma* 

School of Economic and Technical, Anhui Agricultural University, Hefei, China 
Email: ezzhusjtu@gmail.com 

 
 
 

Abstract—For the purpose of discovering security flaws in 
software, many dynamic and static taint analyzing 
techniques have been proposed. By analyzing information 
flow at runtime, dynamic taint analysis can precisely find 
security flaws of software. However, on one hand, it suffers 
from substantial runtime overhead and is incapable of 
discovering the potential threats. On the other hand, static 
taint analysis analyzes program’s code without actually 
executing it which incurs no runtime overhead, and can 
cover all the code, but it is often not accurate enough. In 
addition, since the source code of most software is hard to 
acquire and intruders simply do not attach target program’s 
source code in practice, software flaw tracking becomes 
rather complicated. In order to cope with these issues, this 
paper proposes HYBit, a novel hybrid framework which 
integrates dynamic and static taint analysis to diagnose the 
flaws or vulnerabilities for binary programs. In the 
framework, the source binary is first analyzed by the 
dynamic taint analyzer. Then, with the runtime information 
provided by its dynamic counterpart, the static taint 
analyzer can process the unexecuted part of the target 
program easily. Furthermore, a taint behavior filtration 
mechanism is proposed to optimize the performance of the 
framework. We evaluate our framework from three 
perspectives: efficiency, coverage, and effectiveness. The 
results are encouraging. 
 
Index Terms—Binary Taint Analysis, Dynamic Analysis, 
Static Analysis, Software Vulnerability, Security 
 

I. INTRODUCTION 

Malware is a collective term for malicious software 
which enters a system without authorization of the user. 
With increasing popularity of the Internet, increasing 
amount of vulnerable software, and rising sophistication 
of malicious code itself, malware is a big threat to today’s 
computing world. Malicious attackers are able to gain 
access to confidential information inside the target 
platform, even to take control of it by taking advantage of 
design flaws. 

In recent years, many techniques have been developed 
for detecting malicious software. Taint analysis is a form 

of information-flow analysis which establishes whether 
values from unauthenticated methods and parameters 
may flow into security-sensitive operations [1]. As taint 
analysis can detect many common vulnerabilities in 
applications, it has attracted much attention from both 
research and industry communities. Based on the concept 
that some data (such as input from a user) is not 
trustworthy, taint analysis tracks where the data may be 
used to harm the software, and monitors suspicious 
actions. 

Generally speaking, there are two taint analyzing 
techniques: dynamic analysis and static analysis [2]. 
Static analysis is a process of analyzing program’s code 
without actually executing it. It relies only on the 
information available at compile time. In this process 
(taking binary executable as an example), the binary code 
is usually disassembled into a form of assembly 
instructions first, then both control flow and data flow 
analyzing techniques can be employed to draw 
conclusions about the functionalities of the program. It is 
useful in providing a view of the overall behavior of a 
program without focusing on any particular execution. 
The technique has low overhead with respect to the 
utilization of system resources. However, it has the 
limitation of imprecision when it handles the dynamic 
structures (pointers, aliases and conditional statements) of 
the target program. Meanwhile, many interesting 
questions that can be asked about a program are 
undecidable in general cases [3]. 

Dynamic analysis analyzes the program at runtime. It 
is more precise than its static counterpart since it takes 
the runtime information into consideration. Since the 
dynamic technique only focuses on a particular execution 
of the target program, the amount of analysis is sharply 
decreased. However, it suffers from large runtime 
overhead, and can only detect software vulnerabilities 
when the attacks have been launched. So, it is impossible 
to locate the latent weak spots, which is very desirable in 
many cases. In the field of dynamic taint tracking, many 
testing-based techniques, attempting to detect the 
potential security threats by improving the code coverage 
[4], have been developed. However, high code coverage * Corresponding Author 

566 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.3.566-575



is difficult to achieve, and the testing incurs too much 
runtime overhead. 

In order to take advantage of the merits of both 
dynamic and static analysis and avoid the defects of both, 
it is necessary to combine the two approaches. In this 
paper, we propose HYBit, a hybrid framework which 
integrates dynamic and static taint analysis to discover 
software flaws or vulnerabilities. Since the source code of 
most software is hard to acquire and intruders simply 
would not attach target program’s source code with their 
attacks [5], our framework is designed to handle the 
binary code. In order to achieve this goal, we employ 
CrossBit [6, 7], a dynamic binary translator, as the basic 
tool. In the framework, the target program is first 
analyzed by the dynamic analyzer. Meanwhile, runtime 
information is collected for further analysis. Then, with 
the help of the runtime information, the static analyzer 
can work on the unexecuted part of the program. Finally, 
the information about both executed and unexecuted parts 
are reported to the end users. In order to address the low 
efficiency problem, we also propose a taint behavior 
filtration mechanism to optimize our framework. In 
summary, our research has the following contributions: 
we 1) propose HYBit, a novel hybrid framework which 
integrates the dynamic and static taint analysis to track 
the flaws or vulnerabilities for binary programs; 2) design 
a dynamic technique to track the tainted data and their 
propagation behaviors; 3) present a static analysis 
technique to complete the target program by adding the 
unexecuted part of the target program; and 4) design a 
novel taint behavior filtration mechanism to further 
optimize our framework. 

This paper is a continuation of the work in [8]. On the 
basis of the paper, we have made tremendous 
improvements. The remainder of this paper is organized 
as follows. Section 2 discusses related work. Section 3 
introduces CrossBit, a dynamic binary translator that our 
framework (HYBit) is based on. In Section 4, we present 
an overview of our framework. Then, in Section 5, we 
discuss the implementation. Section 6 provides the 
experimental evaluation. Finally, Section 7 briefly 
concludes the paper and outlines our future work. 

II. RELATED WORK 

Software security has drawn much attention for many 
years. As an effective way to detect software 
vulnerabilities and improve software security, taint 
analysis has been an important approach. Since the source 
code (written in a high-level language) is often hard to 
acquire in practice, binary taint analysis is widely used in 
software vulnerability detection. In this field, many static 
and dynamic binary analyzing techniques have been 
proposed. 

A.  Static Binary Analysis 
Static binary analysis is the process of analyzing a 

binary executable without actually executing it. IntScope 
[4], with the goal of statically eliminating vulnerabilities 
in x86 binaries, first translates the source binary code into 
its own designed intermediate representation (IR), and 

then performs a path-sensitive data flow analysis on the 
IR by leveraging symbolic execution and taint analysis. 
UQBTng [9] is a tool capable of automatically finding 
integer overflows in win32 binaries. As a project for 
automatically analyzing vulnerabilities on SPARC binary, 
Chevarista [10] employs an interval analysis technique to 
detect buffer overflows and integer overflows. Its target is 
achieved during the process of statically translating the 
binary code into the SSA (Static Single Assignment) 
form. When the symbol table and debugging information 
are either entirely absent, or cannot be relied upon, value-
set analysis, a static analysis algorithm proposed in [11], 
first recovers the contents of the memory locations and 
how they are manipulated from the x86 executables. Then, 
it translates the x86 binary codes onto an IR which can 
facilitate the work of vulnerability detection and 
prevention. M. Christodorescu [12] presents a static 
analysis mechanism to detect malicious patterns from 
binary executables. It presents a unique viewpoint on 
malware detection, i.e. malicious code detection as an 
obfuscation-deobfuscation game between malicious code 
writers and researchers working on malicious code 
detection. 

Static analysis has the advantage that it can cover 
entire program code and it is usually faster than its 
dynamic counterpart. However, it has the limitation of 
imprecision when it handles the dynamic structures 
(pointers, aliases and conditional statements) of the target 
program. Meanwhile, many interesting questions that can 
be asked about a program are indeterminate in the general 
case [3]. 

B.  Dynamic Binary Analysis 
Much attention has been drawn to suspicious data 

tracking with dynamic taint analysis. As an intuitive way, 
dynamic binary instrumentation has been employed to 
facilitate taint tracking. Valgrind [13] is a dynamic binary 
instrumentation framework. It uses a dynamic binary re-
compilation technique to build heavyweight dynamic 
binary analysis tools, such as Cachegrind, Callgrind, etc. 
Tools of Valgrind are created as a plug-ins, written in C, 
added to the Valgrind core. The basic view is “Valgrind 
core + tool plug-in = Valgrind tool”. When the named 
tool starts up, the core disassembles the binary code into 
an intermediate representation which is instrumented with 
analysis code by the tool plug-in, and then converted 
back into machine code. Valgrind’s core spends most of 
its time making, finding, and running translations. None 
of the client’s original code is run. Pin [14] uses dynamic 
compilation to instrument executables while they are 
running. It is designed to provide an easy-to-use, portable, 
transparent, and efficient instrumentation platform for 
building Pintools. Pintools are written in C/C++ using 
Pin’s rich API; and the API is designed to be architecture 
independent whenever possible, making Pintools source 
compatible across different architectures. DynamoRIO 
[15] is a runtime code manipulation system that supports 
code transformations on any part of a program. 
DynamoRIO provides unmodified manipulation 
mechanisms for applications running on stock operating 
systems (Windows or Linux) and commodity IA-32 and 

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 567

© 2014 ACADEMY PUBLISHER



AMD64 hardware. Like Pin, DynamoRIO also provides 
powerful APIs. These APIs abstract away the detail of the 
underlying infrastructure and allow the tool builder to 
concentrate on analyzing or modifying application’s 
runtime code stream. DIOTA [16] is a method for 
instrumenting binaries on the fly; it uses a number of 
backends to check programs for faulty memory accesses, 
data races, deadlocks, etc. DIOTA performs basic tracing 
operations to deploy coverage analysis, such as tracing all 
memory accesses or all executed codes. 

Besides dynamic instrumentation, another approach to 
protect software is to monitor the input from the user as 
tainted data [2, 18]. Taintcheck [19] describes a dynamic-
taint based approach to prevent overwrite attacks. Their 
approach taints any data read from a network socket 
which receives data from users. During execution, the 
approach monitors the binary program and guarantees 
that tainted data is not used as the destination of a control 
transfer instruction (such as jmp), a format string, or a 
system-call argument. Dytan [17] is a generic dynamic 
taint analysis framework which can handle the data flow 
and control flow in its taint analysis. Dytan is also 
flexible and does not require any specific support from 
the runtime system. LIFT [20], with a similar goal, 
provides a way to facilitate monitoring the tainted data 
during software execution. DYBS [21] is a Lightweight 
Dynamic Slicing Framework for Diagnosing Attacks on 
x86 Binary Programs. 

Ding [22] proposes a behavior-based dynamic heuristic 
analysis approach for proactive detection of unknown 
malicious code. The behavior of malicious code is 
identified by the system calling through virtual emulation 
and the changes in the system. In their research, a 
statistical detection model and a mixture of export (MoE) 
model are designed to analyze the behavior of malicious 
code. 

In contrast to the static binary analysis technique, 
dynamic technique analyzes the source executable at 
runtime. However, vulnerabilities cannot be detected by 
the technique until the target program is under attack. 

C.  Dynamic-Static Combined Analysis 
Dynamic-static combined analysis is a methodology 

which integrates the two approaches in a complementary 
manner. It adopts the strengths of the two and eliminates 
their weaknesses. Rawat [23] presents a hybrid approach 
for buffer over-flow detection in C code. The approach 
makes use of static and dynamic analysis of the 
application under investigation. The static part consists of 
calculating taint dependency sequences (TDS) between 
user controlled inputs and vulnerable statements. The 
dynamic part consists of executing the program along 
TDSs to trigger the vulnerability by generating suitable 
inputs. Halfond [24] proposes a new approach of 
penetration testing. The approach incorporates two 
recently developed analysis techniques (static and 
dynamic analysis) to improve input vector identification 
and detect when attacks have been successful against a 
Web application. To apply their analysis work in industry 
security applications, Wu [25] investigates semantic 
metadata and structural syntax analysis. The paper 

explains how their approaches achieve the goal in terms 
of static and dynamic analysis by using industry scenarios. 

However, these methods are designed to analyze the 
programs written in high-level languages. 

Zhang [5] describes a novel approach to overcome the 
limitation of traditional dynamic taint analysis by 
integrating static analysis into the system and presents 
framework SDCF to detect software vulnerabilities with 
high code coverage. SDCF works on DynamoRIO, a 
runtime code manipulation system that supports code 
transformations on any part of a target program. However, 
DynamoRIO only supports the x86 binary programs. This 
feature limits the usage of SDCF. 

III. INTRODUCTION TO CROSSBIT 

CrossBit is designed and implemented as a dynamic 
binary translator, which aims at quickly migrating 
existing executable code from one platform to another at 
low cost. It supports multiple source architectures and 
multiple target architectures. It fully or partially supports 
source platforms including SimpleScalar, IA32, MIPS, 
SPARC and target platforms such as IA-32, PowerPC and 
SPARC. The operating system that CrossBit supports is 
Linux. In order to support code translation among 
multiple sources and targets, a new intermediate 
instruction set—VInst [6], which is independent of any 
specific machine instructions, has been introduced. 
CrossBit first converts source binary code to VInst 
instructions and then transforms them into target platform 
code, using a granularity of basic block (BB) as the basic 
unit of translation.  

Fig.1 shows a high-level overview of CrossBit. In the 
figure, the rectangular boxes are related to front_end and 
back_end, the dotted boxes belong to the intermediate 
_layer. Generally speaking, the framework can be divided 
into three parts: the Front_end, the Intermediate_layer, 
and the Back_end. The Front_end is responsible for 
loading the binary executable code into memory and 
transforming the source binary code into VInst 
instructions. The Intermediate_layer is responsible for 
forming the VInst instructions into basic blocks and 
performing optimizations. The back_end transforms 

Memory Image
 Loader 

Target Machine 
Encoder 

Target Machine 
Block Generator

VInst

BB Builder

Optimizer

Execution 
Engine 

Translated Code 
Cache

Source Machine
 Decoder 

Figure 1. High-level Overview of CrossBit. 

568 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER



intermediate instructions (in intermediate blocks) to 
target instructions, and executes them immediately. 

IV. FRAMEWORK OVERVIEW 

As Fig.2 shows, the hybrid taint analyzing framework, 
HYBit that we implemented contains the following main 
components: Binary Code Execution Monitor, Taint 
Source Recognizer, Dynamic Taint Analyzer, Static Taint 
Analyzer, and Filter. 

The Binary Code Execution Monitor (based on the 
dynamic binary translator---CrossBit) is built to monitor 
the target program during its execution. As mentioned 
previously, CrossBit manipulates the target program at 
the intermediate instruction level. By inserting user-
defined analyzing code to any part of the target program, 
we can observe and potentially manipulate the target 
program prior to its execution. The Taint Source 
Recognizer is responsible for defining suspicious taint 
sources. In the framework, we allow two means to define 
taint sources: user-defined or system default. By default, 
all data which is introduced to the target program from 
the outside is marked as untrusted. Actually, all clients 
that built on the framework can also define the points 
(memory space or registers) they may be interested in as 
taint sources, and track their propagation behaviors. The 
Dynamic Taint Analyzer is used to analyze the target 
program dynamically. It marks the input data from unsafe 
channels as tainted, and tracks their information flow and 
dynamic taint propagation during execution. In our 
framework, another important work for the Dynamic 
Taint Analyzer is to collect and deliver the required 
information to the Static Taint Analyzer. Given the 
runtime information provided by its dynamic counterpart, 
and with the help of the CrossBit, the Static Taint 
Analyzer can analyze the unexecuted part of the target 
program easily. Finally, the information about both 
executed and unexecuted parts of the target program is 
provided to the end users. The Filter is a component to 
optimize our framework. Through the Filter, many 
“safety instructions” and APIs in the system library can 
be ignored. This will substantially reduce the overhead of 
the framework. Meanwhile, the taint features of filtered 
API functions and “safety instructions” will be stored in a 
Taint Behavior Database for further use during the 
process of taint analysis. 

The workflow of the entire framework can be 
described as follows: 1) the Binary Code Execution 

Monitor first inserts the user-defined analysis code into 
the target program with the help of CrossBit. Then it 
switches back to continue the execution of the 
instrumented target program and meanwhile gets the 
profile information of this execution. 2) With the taint 
sources provided by the Taint Source Recognizer, the 
Dynamic Taint Analyzer tracks the taint propagation in 
the target program and gets the runtime analysis result. 3) 
According to the definition of the basic block, the CFG 
(control flow graph) Builder merges the current 
instruction into a single basic block, and organizes basic 
blocks that belong to the same function as a CFG. With 
the function call hierarchy information, the CG (call 
graph) Builder generates the CG of the target program. 4) 
With the result provided by its dynamic counterpart, the 
Static Taint Analyzer performs the static analysis on the 
unexecuted part of the target program. Besides, it is also 
responsible for synthesizing the result provided by its 
dynamic counterpart and providing a complete result to 
the end users. 

V. IMPLEMENTATION 

This section presents the key techniques for 
implementing our framework, including dynamic taint 
analysis, static taint analysis, and optimization 
mechanisms of the framework. 

A.  Dynamic Taint Analysis 
Dynamic taint analysis is an effective method for 

detecting software vulnerabilities. This approach is based 
on the concept that any variable that can be influenced by 
the outside is a potential threat to the target program and 
should be monitored. Like the workflow of traditional 
mechanisms, dynamic taint analysis is completed by 
tracking the propagation behaviors of tainted data and 
then mining the vulnerabilities of the target program. By 
monitoring some system APIs (such as NtCreateFile()), 
we can mark the data from dangerous sources (such as 
opening files and network packages) as tainted. During 
the execution of the target program, the Dynamic Taint 
Analyzer traces the taint propagation by marking every 
memory byte or register which was influenced by the 
tainted sources. The framework will closely monitor all 

End Users 

Binary Code 
Execution Monitor 

Filter 

Taint Behavior DB 

Figure 2. Overall Architecture of HYBit. 

Taint Source 
Recognizer 

Dynamic Taint 
Analyzer 

Static Taint 
Analyzer 

Runtime 
Information

CFG Builder

Structured Analyzed 
Result Set 

Target Program 
(Binary Code) 

CG Builder

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 569

© 2014 ACADEMY PUBLISHER



the marked data, record their dangerous behaviors (such 
as changing the normal execution path or changing the 

system stack content which should be retained), and 
finally, report them as potential vulnerabilities. 

A) Taint Source Locating 
At the beginning of the dynamic taint analysis, it 

should locate the taint source in the memory space and 
registers, which are most likely contaminated by the input 
data from unsafe channels. In the framework, there are 
two means to identify taint sources, user-defined or 
system default. In the user-defined model, end users can 
specify some execution points (memory area or register) 
they may be interested in as taint sources, and then track 
their taint propagation behaviors. In the system default 
model, the framework will automatically identify the 
input from the outside users, and take it as suspicious. 
Actually, in a general Windows program, we can use 
three system calls (CreateFile(), CreateFileMappping(), 
and MapViewOfFile()) to load external files. By tracking 
the loading processes and the target addresses of these 
files, we can locate the taint sources easily. 

B) Taint Propagation Tracking 
After the tainted data is identified, the Dynamic Taint 

Analyzer monitors each binary instruction which refers to 
the tainted data to track the taint propagation. The 
Dynamic Taint Analyzer works with the underlying 
Binary Code Execution Monitor. Given taint sources, 
dynamic analyzing roles, and the instrumented target 
program, the Dynamic Taint Analyzer performs taint 
analysis during the run, and, returns the results to the 
following component of the framework. Since the 
underlying DBT system CrossBit of our framework is 
built as a process virtual machine, we cannot track 
instructions that reside in the kernel space.  

Actually, this type of information flow tracking is 
implemented on the intermediate instruction level, and 
we mark any data that is derived from tainted data as 
tainted. Meanwhile, we just need to take care of tainted or 
untainted states of operands instead of their concrete 
values. Take the mov instruction (mov r32, 
r32/m32/imm32) as an example; the source operand (on 
the right side of the instruction) is classified as general-
purpose registers, memory spaces, or immediate values. 
Any tainted general-purpose registers, memory locations, 
or immediate values in the source operand will make the 

destination operand (on the left side of the instruction) 
tainted. Otherwise, the destination operand is marked as 

untainted. 
During the process of dynamic taint analysis, the 

system has to build memory and register models to record 
the taint states of each memory byte and register. 

 Memory Model 
Since not all the memory locations are tainted during 

the analysis process, we only need to record the memory 
addresses that are affected by the tainted sources. In the 
framework, a chaining hash table is used to record the 
tainted memory bytes. Fig.3 shows the data structure of 
this table. 

In the figure, an item corresponds to one page of the 
target program’s virtual space, and the number of 
memory pages determines the number of items. Each 
page (the size of a page is multiple of 32 bytes) that 
corresponds to an item is split into several 32-byte sub-
pages, and a sub-page is accommodated by a MemNode. 
Consequently, a page is saved by several MemNodes that 
belong to a single chain. There are two fields in the 
MemNode data structure, a pointer field (next) that 
identifies the next item, and a data field (unsigned int 
mtstate) that is used to record the taint states of 32 
memory bytes. In the mtstate data field, one bit 
corresponds to a memory byte. The value of this bit is 1 if 
and only if the corresponding memory unit is tainted. 
Since the mtstate is a 32-bit variable, a MemNode can 
record the taint states of 32 memory bytes. In the model, 
a MemNode is added to the hash table if and only if at 
least one of the 32 memory bytes is tainted. 

If a byte of the memory space is tainted, our tainting 
propagation mechanism works as follows: 1) finds which 
item it belongs to by its memory address; 2) creates a 
node in the item, and record its memory state in the node; 
3) if all the taint states in a MemNode are cleaned, the 
corresponding nodes in the table will also be deleted. 

 Register Model 
In register taint propagation management, normally 

one bit is used to represent the state of a register. 
However, there is a special relationship among registers: 
some registers are part of others. That means, when the 
state of a register is changed, the state of other registers 
may be affected. For accuracy, this relationship must be 
taken into consideration. In the register model, as shows 

mtstate ∧ 

Type:MemNode** Type:MemNode* Type:MemNode

MemoryList 
mtstate mtstate

item (Page) 

MemNode MemNode MemNode 

Malloc(sizeof(MemNode*)*amountofPage)

Figure 3. Data Structure of Memory Model. 

570 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER



in Fig.4, we use two arrays to record the taint states of 
registers: regState and flagState.  

In regState, as shows in Fig.4 (a), each element 
(RegData) incorporates two fields: a pointer field (next) 
that is used to track the changes of the registers except 
EFLAGS, and a data field (unsigned int rtstate) that is 
used to record the taint states of the corresponding 
register. For the data registers (DATA_REG), the last 
three bits of rtstate are used to record their taint states. 
Take the eax register for example, the last and 
penultimate bits denote the states of al and ah 
respectively, the last two bits record the states of ax, and 
the whole three bits specify the state of eax. For the 
segment registers (SEG_REG), only one bit (the last bit 
of rtstate) is used to record their taint states. For the 
pointer registers, the last two bits of rtstate are used to 
record their states. Take the esp register for example, the 
last bit denotes the state of sp, and the last two bits record 
the state of esp.  

In flagState, as shows in Fig.4 (b), we use the ftstate 
(Boolean variable) data field to record the taint states of 
the flag bits (1 denotes the register is tainted and 0 means 
untainted). Meanwhile, a pointer field (next) is used to 
track the changes of each flag. 

C) Runtime Information Collection 
Besides the task of taint propagation tracking, another 

important work of the Dynamic Taint Analyzer is to 
collect the runtime information of this execution. 
Meanwhile, it also records and structures the function 
calling relationships of the target program. All this work 
is convenient for the Static Taint Analyzer. Fig.5 shows a 
call graph that was generated by the framework. In the 
figure, every node stands for a function and the number in 
each node represents the entry address of the 
corresponding function. The arrow line is the calling 
relationship between each caller-callee function pair and 
the red ones represent the functions that are contaminated 
by the tainted data. 

B.  Static Taint Analysis 
Dynamic analysis is accurate. But it can only analyze 

part of the target program that is actually executed. Static 
analysis is just the opposite. In our framework, the static 
analyzer is used to analyze part of target program that has 
not been executed or analyzed by its dynamic counterpart.  

In order to analyze the unexecuted part of the target 
program, we have to acquire the “whole picture” of it. As 
mentioned in Section 4, the dynamic analyzer also saves 
the runtime information that is required for analysis by 
the static analyzer. Actually, during the dynamic analysis, 
the CG (Call Graph) of the target program has been built 
and for each function in the CG, the CFG (Control Flow 
Graph) of the executed code has also been constructed. 

ah al   
ax 

eax 

cs 

sp  
esp 

CF 

DATA_REG

SEG_REG

POINT_REG

Type: RegData 
    .rtstate     .next 

regState 
array 

PF 
AF 

OF 

flagREG
array

Type: FlagData 
      .ftstate   .next 

(a) regState array. (b) flagReg array. 
Figure 4. Data Structure of Register Model. 

Figure 5. Call Graph of a Target Program. 

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 571

© 2014 ACADEMY PUBLISHER



Meanwhile, branch points like conditional jumps will be 
added to the branch list of the function for use in static 
completion analysis. This runtime information makes the 
task of static taint analysis easier. 

For each function call of the target program, the static 
analyzing module uses the following steps to traverse the 
branch point list (a kind of runtime information, which 
initially stores the branch points of the executed part of 
the function), and meanwhile supplement the unexecuted 
part of the function: 1) collects the branch points of the 
executed part of the function, and stores them in a branch 
point list P; 2) for each branch point p in P, utilizes 
b=GetNextBB(p) to get the next unexecuted basic blocks; 
3) if the newly derived basic block b is not in B (the basic 
block set used to accommodate the unexecuted basic 
blocks), goes to step 4), else goes to step 2); 4) if b’s last 
instruction is a conditional branch p’, adds p’ into P, else 
goes to step 5); 5) adds b into B; 6) sets a new edge e, 
which starts from p and ends with b, and stores it into E 
(the edge set used to accommodate the unexecuted edges); 
7) goes to step 2). 

After executing the above steps, information (branch 
points, edges, and basic blocks) about the structure of the 
unexecuted code is available, and subsequently, the 
visualized CFG can be generated for the user for manual 
analysis. By integrating the information about individual 
functions, we can get the whole structure of the target 
program. Given such information, the static analyzer is 
able to apply taint analysis on the unexecuted part of the 
target program which cannot be reached by the dynamic 
analyzer. The static analyzing module analyzes the whole 
target program by traversing each unexecuted path. As 
the experimental results shown in Section 5, this part of 
the code is usually not very large. Moreover, with the 
help from dynamic analysis, much of the code can be 
skipped because it is irrelevant to the tainted data. 

It is notable that, given the runtime information, the 
static taint analysis in our framework is more accurate 
than most other static approaches. However, this type of 
information also limits the scope of the static analysis, 
because it may be dissimilar in different instances. 

C.  Framework Optimization 
In this subsection two approaches, instruction-level 

filtering and function-level filtering, are employed to 
optimize the performance of the proposed framework. 
The two approaches first summarize and determine the 
taint propagation behaviors of certain parts of the target 
program. Then, given this information, they can optimize 
the analyzing processes by avoiding dealing with every 
instruction of the target program. 

A) Instruction-Level Filtering 
Actually, in the process of taint propagation tracking, 

we divided the instructions into two categories. 1) 
Instructions which can propagate tainted data, such as 
LOAD, PUSH, MOV, etc. When dealing with this type of 
instructions, we mark any data that is derived from 
tainted data as tainted. 2) Instructions which cannot 
propagate tainted data, such as NOP, JMP, CMP, etc. 

This type of instruction does not affect taint propagation, 
and we can skip them to reduce the analysis work load.  

There are also some special instructions whose results 
do not depend on the input. The behaviors of these 
instructions should be summarized and determined before 
the task of code analyzing takes place. Take the XOR 
instruction (xor eax, eax) for example, the value of the 
destination operand eax (on the left side of this 
instruction) is always set to zero regardless the original 
value in the register. In this case, eax is set clean 
(untainted) after execution of the instruction. Another 
example is the binary instructions which are used to 
initialize the stack of function calls. The functionalities of 
these instructions are quite similar and their behaviors are 
predictable. 

B) Function-Level Filtering 
Since the behaviors of the most APIs in the system 

library can be determined and need not be analyzed in 
every instance, we first examine the code of these APIs 
and gather their taint propagation information. Then, 
when the APIs are called, the framework does not have to 
analyze every instruction of them. 

According to a common observation, a large part of the 
binary code in software is loaded from system libraries 
such as Kernel32.dll, MSVCRT.dll and USER32.dll. 
Since the behaviors of these modules are predictable, the 
filtration mechanism summarizes the taint effects of these 
API functions and skips them. In the first place, it has to 
examine the source code and documents of these APIs, 
gather their taint propagation information and store all 
these kinds of information into the Taint Behavior DB.  

After the taint effects of API functions, some 
principles are designed to provide the decision of the 
code filter: 1) if a function does not do anything in the 
taint propagation, the taint status of the program does not 
change; 2) if a function can propagate the tainted data, the 
taint status of the program will remove the source 
parameter from the set of tainted data; and 3) if a function 
can propagate the tainted data, the destination of the 
tainting should be marked as tainted and brought into the 
monitoring of the system. With these principles, 
irrelevant API functions can be free from instrumentation 
of information tracking. However, some API functions 
cannot be simply skipped, such as strcpy, which has a 
tight relationship with some software vulnerabilities. 
Therefore, this kind of API function must still be 
analyzed in the process of information flow tracking. 

VI. EXPERIMENTAL EVALUATION 

Our experimental evaluation has three main goals:  

1) Assessing the efficiency of HYBit by comparing 
the performance with the native platform;  

2) Studying the coverage of HYBit by counting how 
much code of the target program can be analyzed 
by the framework;  

3) Evaluating the effectiveness of HYBit by 
applying it to software vulnerability detection. 

572 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER



A.  Efficiency
This subse

HYBit. The 
benchmarks 
execution tim
time, as desc
the figure, 
HYBit_NO r
running on 
running with
without the t

Pe

Because 
translation pl
of HYBit, w
average to th
taint behavi
behavior fil
system, the 
average runt
execution.  

It can be o
HYBit differ
the structura
time is spen
summarized 
of the frame
the target 
performance 

Panorama

Dytan

LIFT

TaintCheck

HYBit

Figure 7. Sy

1 1

6.45

3.94
3.7

3.2

0
1
2
3
4
5
6
7
8
9

10

Figur

y 
ection provid
experiment is

on Window
me (the ratio 
cribed in Equ

the results 
refer to the ex
the underlyin

h analysis by 
aint behavior 

HYrformane =

of facilitatio
latform Cross
we achieve t
he native platf
ior filtration
ltration optim

time cost 
time overhead

observed from
rs among the 
al distinction 
t on analyzin
and filtered b

ework so the s
program is 
of our system

3.6

3.45

0 10

Sy

ystem Overhead C
Attack 

1 1 1

4
4.32

6.77

4.8

26 3.22 3.54
3.13

Native

re 6. The Perform

es a performa
s based on the
ws. Fig.6 sh
of our time to
uation (1) bel

of NATIV
xecution time 
ng platform 

HYBit, and 
filtration opti

Native
_HYBitor(YBit

on of the u
Bit as well as
the overhead 
form without t
n. However, 
mization is i

reduces rem
d is 3.45 time

m Fig.6 that th
target progra
among these

ng library fun
by the optimi
structure of th
an importan

m. It is also wo

20

20

20 30

ysetm Overhead

Comparison Betw
Diagnosis Tools.

1 1 1 1

4.98

3.9

2.37

4

3 3.4
2.7

2.06

HYBit_NO

mance Evaluation 

ance evaluatio
e SPEC CINT
hows norma
o native execu
low) of HYB
VE, HYBit, 
of the binary 
CrossBit dire
with analysis
mization. 

)No_             

underlying bi
s the static ana

of 5.4 time
the optimizatio

when the 
ntroduced to

markably, and
s to that of n

he performan
ms. One reas

e programs. L
ctions that ca
ization compo
he .exe modu
nt factor in 
orth noting tha

50

40 50

d

ween HYBit and O

1 1 1

.66

7.9

5.91

8.81

3.54

4.74

3.64

4

HYBit

of the HYBit.

on of 
T2006 
alized 
ution 
it. In 

and 
code 

ectly, 
s but 

    (1) 

inary 
alysis 
es on 
on of 
taint 

o the 
d the 
native 

nce of 
son is 
Little 
an be 
onent 
ule of 
n the 
at we 

have
whe
inclu
incre

F
betw
attac
Tain
as P
aver
HYB

B.  C
In

by c
cove
we a
show
resu
targe
bloc
Com
anal
num
fram
Com
the t

      

T
BB 

      
T

F
Cov
are 
HYB
depe
for t

60

Other 

0

5

10

15

20

25

30

1

1

5.4

4.49

3.45

e not summa
en the program
uded in our ta
ease. 
ig.7 shows 

ween HYBit 
ck diagnosing
ntCheck [19], 
anorama (slow

rage), Dytan (
Bit incurs muc

Coverage 
n this subsecti
counting how 
ered by the fr
also introduce
wn in Fig.8,
ults: Total BB 
et program), 

cks which are 
mplemented B
lyzed by the 

mber of basic b
mework). The
mplemented B
target program

             

RatCoverage

otal BB is th
and Missed B

           
ExecuBBTotal =

rom Fig.8 an
verage Rate of

two reasons 
Bit cannot ha
ends on the c
the algorithm 

24.7

16.8

27.3

12.7

10.6

12

8.5

6.1

9

3.5

0.1

Total BB E

Figure

arized the sy
ms call functi
aint behavior d

the average
and other po
g tools: Dyt
and LIFT [20

wed down the
50x), LIFT (3
ch lower runti

ion, we evalu
much code of

ramework. In 
e the SPEC C
we are conc
(the number 
Executed B

analyzed by th
BB (the numb

static taint a
blocks which 
e Coverage 
B as a percen

m) can be calcu

BBExecutede =

he sum of exe
B, as shown i

CompBButed +

nd Equation (2
f HYBit reach
why these in

andle an indir
context; (2) th
of static comp

22.6
20.7

16.

2.9
11.4

10.8
9.4

8.8

6.5
5

2.4 3.4

Executed BB C

e 8. Coverage Eva

ystem library 
tions which h
database, the 

e overhead 
opularly used
tan [17], Pan
0]. Compared
e target progra
3.6x) and Tain
ime overhead 

uate the cover
f the target pr
order to achi

CINT2006 ben
cerned with f
of total basic 

BB (the num
the dynamic ta
ber of basic bl
analyzer), Mis

are not recog
Rate (Execu

ntage of all ba
culated as Equ

BBTotal
ComplemenB+

ecuted BB, C
in Equation (3

BBedplement +

2), we can d
hes 90% on av
ndices are no
rect control tr
he information
pletion is acqu

.7

26.2

21.3 2

8.2

13.8
12.3

5.2

8.3 9

3.3
4.1

0

Complemented B

aluation of HYBi

entirely. So,
have not been
overhead will

comparisons
d binary-level
norama [18],

d to tools such
ams by 20x on
ntCheck (20x)
(3.45x). 

age of HYBit
rogram can be
ieve this goal,
nchmarks. As
four kinds of
blocks in the

mber of basic
aint analyzer),
locks that are
ssed BB (the
gnized by our
uted BB and
asic blocks in

uation (2).  

BBednt       (2

Complemented
3). 

BBMissed+  (3

erive that the
verage. There
ot 100%: (1)
ransfer which
n that is used
uired from the

22.1

17.6

21.6

13.7

10.8 11.7

8.4
6.2

7.6

0 0.6
2.2

B Missed BB

it.

, 
n 
l 

s 
l 
, 

h 
n 
), 

t 
e 
, 
s 
f 
e 
c 
, 
e 
e 
r 
d 
n 

2) 

d 

3) 

e 
e 
) 
h 
d 
e 

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 573

© 2014 ACADEMY PUBLISHER



dynamic analyzer, however, this kind of information only 
holds for a specific instance. 

C.  Effectiveness 
In this part of the evaluation, we test the effectiveness 

of HYBit. As mentioned previously, through dynamic 
and static analysis of our framework, information on both 
executed and unexecuted parts of the target program is 
reported to the end users for further analysis. By making 
full use of this information, we can discover not only the 
possible weak points in the executed part of the target 
program, but also the latent software vulnerabilities 
which has not been executed.  

Table 1 provides the results of running Kingsoft WPS 
(a word processing software for Chinese), JustSystems 
Ichitaro (a word processing software for Japanese), 
Hangul HWP (a word processing software for Korean), 
MS Word 2003 (a widely used word processor), Foxit 
Reader (another widely used document processor for 
Chinese), and IrfanView (a free graphic viewer for 
Windows) on HYBit. 

In the table, the column “Attacks” contains the number 
of attacks incorporated in the tested target programs. The 
“Discovered Attacks” and “Potential Vulnerabilities” 
columns show the numbers of attacks and potential 
vulnerabilities been discovered by HYBit. From the data 
that shown in the table, we see that all the predefined (by 
CVE library) attacks are discovered by HYBit, so the 
recognition ratio is 100%.  Furthermore, HYBit can also 
detect 77 potential vulnerabilities that may pose potential 
threat to the target programs. 

VII. CONCLUSIONS AND FUTURE WORK 

This paper proposes HYBit, a novel hybrid framework 
which integrates dynamic and static taint analysis to track 
the flaws or vulnerabilities for binary programs. Dynamic 
analysis and static analysis techniques offer two 
complementary approaches for checking vulnerabilities. 
HYBit exploits the strengths of both, and eliminates the 
drawbacks. Based on the dynamic binary translator 
CrossBit, HYBit first employs a dynamic analyzer to 
check the binary code of the target program; tainted data 
and its propagation are thereby tracked in one part (the 
executed part) of the target program. Then, with the 
runtime information provided by the dynamic part, static 
analysis of the unexecuted part of the target program 
becomes easier. The static analyzer employs a static 

completion algorithm to construct the “whole picture” of 
the target program. Then the unexecuted part of the target 
program is analyzed. In order to further improve the 
performance, a taint behavior filtration optimization 
mechanism is proposed. With this mechanism, many 
APIs functions from the library and “safety instructions” 
are skipped which greatly reduces the overhead of the 
framework. The results of the experiments on 
benchmarks show that the system is efficient and 
effective and covers most part of the target program.  

In the future, more optimization methods, such as 
program slicing, both in the dynamic analysis and static 
analysis will be proposed to further improve the 
performance of the framework. We are grateful for 
Professor Yun Yang from Swinburne University of 
Technology in Australia for English proofreading. 

ACKNOWLEDGMENT 

This work was supported by the academic and 
technical leader recruiting Foundation of Anhui 
University, the National Natural Science Foundation of 
China (Grant No. 61300169, 61003131), the National 
High Technology Research and Development Program 
(863Program) of China (Grant No. 2012AA010905), the 
National Basic Research Program (973 Program) of 
China (Grant No. 2012CB723401). 

REFERENCES 
[1] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu 

Sridharan, Omri Weisman. TAJ: Effective Taint Analysis 
of Web Applications. In: Proceedings of the 2009 ACM 
SIGPLAN conference on Programming language design 
and implementation (PLDI '09), June 2009, pp.87-97. 

[2] Christoph Csallner, Yannis Smaragdakis, Tao Xie. Dsd-
crasher: A hybrid analysis tool for bug finding. ACM 
Transactions on Software Engineering and Methodology, 
17(2):1-37, 2008. 

[3] Paolo Zuliani, André Platzer, Edmund M. Clarke. Bayesian 
statistical model checking with application to 
simulink/stateflow verification. In: Proceedings of the 13th 
ACM International Conference on Hybrid Systems: 
Computation and Control (HSCC '10), April 2010, pp.243-
252. 

[4] Tielei Wang, Tao Wei, Zhiqiang Lin, Wei Zou. Intscope: 
Automatically detecting integer overflow vulnerability in 
x86 binary using symbolic execution. In: Proceedings of 
Network and Distributed System Security Symposium 
(NDSS '09), February 2009. 

[5] Ruoyu Zhang, Shiqiu Huang, Zhengwei Qi, Haibing Guan: 
Static program analysis assisted dynamic taint tracking for 
software vulnerability discovery. Computers & 
Mathematics with Applications, 63(2): 469-480, 2012. 

[6] Erzhou Zhu, Haibing Guan, Guoxing Dong, Yindong Yang, 
Hongbo Yang. A Translation Framework for Executing the 
Sequential Binary Code on CPU/GPU Based Architectures. 
Journal of Software, 6(12):2331-2340, 2011. 

[7] Haibing Guan, Erzhou Zhu, Kai Chen, Ruhui Ma, Yunchao 
He, Haipeng Deng, Hongbo Yang. A Dynamic-Static 
Combined Code Layout Reorganization Approach for 
Dynamic Binary Translation. Journal of Software, 
6(12):2341-2349, 2011. 

[8] Erzhou Zhu, Haibing Guan, Rongbin Xu, Feng Liu. HYBit: 
A Hybrid Taint Analyzing Framework for Binary Programs. 

TABLE I.   
EFFECTIVENESS VERIFICATION ON GENERAL SOFTWARE 

Target 
Program Attacks Discovered 

Attacks 
Potential 

Vulnerabilities 
Kingsoft WPS 2 2 14 

Justsystem 
Ichitaro 

3 3 2 

Hangul HWP 3 3 42 
MS Word 2003 0 0 3 

Foxit Reader 22 22 12 
IrfanView 32 32 4 

Total 62 62 77 

574 JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

© 2014 ACADEMY PUBLISHER



Lecture Notes in Computer Science, 2013(7929):232-239, 
2013. 

[9] R.Wojtczuk. UQBTng: a tool capable of automatically 
finding integer overflows in win32 binaries. In 22nd Chaos 
Communication Congress, November 2005. 

[10] Tyler Durden. Automated Vulnerability Auditing in 
Machine Code. http://www.phrack.com/issues.html?issue= 
64&id=8. Version of May 22, 2007. 

[11] Gogul Balakrishnan,Thomas Reps. Analyzing Memory 
Accesses in x86 Executables. Lecture Notes in Computer 
Science, 2004(2985): 5-23, 2004. 

[12] Mihai Christodorescu, Somesh Jha. Static Analysis of 
Executables to Detect Malicious Patterns. Technical Report 
# 1467 at the Computer Sciences Department of the 
University of Wisconsin, Madison, US.2003. 

[13] Nicholas Nethercote, Julian Seward. Valgrind: A program 
supervision framework. Electronic Notes in Theoretical 
Computer Science, 89 (2):89-100, 2003. 

[14] Chi-Keung Luk, Robert Cohn, Robert Muth, et al. Pin: 
building customized program analysis tools with dynamic 
instrumentation. In: Proceedings of the 2005 ACM 
SIGPLAN Conference on Programming Language Design 
and Implementation (PLDI '05), June 2005, pp.190-200. 

[15] Derek Bruening, Qin Zhao, Saman Amarasinghe. 
Transparent Dynamic Instrumentation. In: Proceedings of 
the 8th ACM SIGPLAN/SIGOPS conference on Virtual 
Execution Environments (VEE '12), March 2012, pp.133-
144. 

[16] Jonas Maebe, Michiel Ronsse, Koen De Bosschere. 
DIOTA: Dynamic Instrumentation, Optimization and 
Transformation of Applications. In: Proceedings of 
International Conference on Parallel Architectures and 
Compilation Techniques (PACT '02), September 2002. 

[17] James Clause, Wanchun Li, and Alessandro Orso. Dytan: a 
generic dynamic taint analysis framework. In: Proceedings 
of the 2007 international symposium on Software testing 
and analysis (ISSTA '07), July 2007, pp.196-206. 

[18] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, 
Engin Kirda. Panorama: capturing system-wide 
information flow for malware detection and analysis. In: 
Proceedings of the 14th ACM Conference on Computer 
and Communications Security (CCS '07), October 2007, 
pp.116-127. 

[19] James Newsome, Dawn Song. Dynamic taint analysis for 
automatic detection, analysis, and signature generation of 
exploits on commodity software. In: Proceedings of 2005 
Network and Distributed System Security Symposium 
(NDSS '05), 2005. 

[20] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, 
Yuanyuan Zhou, Youfeng Wu. Lift: A lowoverhead 
practical information flow tracking system for detecting 
security attacks. In: Proceedings of the 39th Annual 
IEEE/ACM International Symposium on Microarchitecture 
(MICRO '06), December 2006, pp.135-148. 

[21] Erzhou Zhu, Feng Liu, Xianyong Fang, Xuejun Li, 
Yindong Yang, Alei Liang. DYBS: a Lightweight Dynamic 
Slicing Framework for Diagnosing Attacks on x86 Binary 
Programs. Journal of Software, Accepted in August 2013. 

[22] Jianguo Ding, Jian Jin, Pascal Bouvry, Yongtao Hu, 
Haibing Guan. Behavior-Based Proactive Detection of 
Unknown Malicious Codes. In: Proceedings of the 2009 
Fourth International Conference on Internet Monitoring 
and Protection (ICIMP '09), May 2009, pp.72-77. 

[23] Sanjay Rawat, Dumitru Ceara, Laurent Mounier, Marie-
Laure Potet. Combining Static and Dynamic Analysis for 
Vulnerability Detection. CoRR abs/1305.3883 (2013). 

[24] William G. J. Halfond, Shauvik Roy Choudhary, 
Alessandro Orso. Improving penetration testing through 
static and dynamic analysis. In Proceedings of Software 
Testing, Verification and Reliability, 2011, pp.195-214. 

[25] Raymond Wu, Masayuki Hisada. Static and dynamic 
analysis for web security in industry applications. 
International Journal of Electronic Security and Digital 
Forensics, 3(2):138-150, 2010. 

 
 
 
 
Erzhou Zhu is currently a lecturer with School of Computer 
Science and Technology, Anhui University (Hefei, China). He 
received his Ph.D. degree in computer science from Shanghai 
Jiao Tong University (Shanghai, China) in 2012. His current 
research interests include, but are not limited to, program 
analysis, computer architecture, compiling technology, 
virtualization and cloud computing. 

 
 
 
Xuejun Li is an associate professor with School of Computer 
Science and Technology, Anhui University (Hefei, China). He 
received his Ph.D. degree from Anhui University in 2005. His 
research interests are program analysis and embedded systems. 
 
 
 
Feng Liu is currently a professor with School of Computer 
Science and Technology, Anhui University (Hefei, China). He 
received his Ph.D. degree in computer science from University 
of Science and Technology of China (Hefei, China) in 2003. His 
current research interests include computer architecture, parallel 
computing, and cloud computing. 

 
 
 

Xuejian Li received his Master degree in computer science 
from Anhui (Hefei, China) in 2008. His current research 
interests include program analysis, software security, and 
compiling. 
 

 
 

Zhujuan Ma received his Master degree in computer science 
from Anhui Agricultural University (Hefei, China) in 2011. 
His current research interests include virtual machines, 
computer architecture, and compiling. 

 

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 575

© 2014 ACADEMY PUBLISHER




