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Abstract—A new link prediction method using active 
learning technique, named HALLP, is proposed in this 
paper. The method provides the user with most useful 
examples from the large number of unlabeled examples (i.e. 
unlinked node pairs in the network) for query. Once labeled 
by users, these examples will be fed to the learner for the 
improvement of the link predictor in next round. The utility 
of an example is decided by its uncertainty measure 
calculated simultaneously by its local structure and its 
hierarchical structure in networks. Experiments indicate 
link prediction method can be improved with the use of 
active learning techniques and both the local structure and 
global structure are beneficial for selecting examples with 
high utility. 
 
Index Terms—link prediction, active learning, link mining, 
social network analysis 
 

I.  INTRODUCTION 

The network (for example, online social networks, 
email networks, communication networks, and biological 
networks, etc.) and its applications have penetrated into 
every aspect of human life. The needs to develop new 
applications based on potential information from the 
massive network data are also increased. For example, in 
bioinformatics area, the prediction of relation and 
regulation of proteins can guide the experiment designers 
to discover new biological factors [1]. As a critical 
research sub-field of link mining, link prediction is 
concerned with the problem of predicting unknown 
portion (or the future structure) of the network from the 
known portion of the network. Different from traditional 
data mining tasks, link prediction investigates not only 
the attributes of individual nodes, but also the 
relationships among nodes. Link prediction has a wide 
range of application scenarios, such as bibliographic 
domains, recommendation systems and criminal 
investigations. In citation networks, for example, scholars 
can find the papers potentially useful to cite and 
managers can identify future core papers with the help of 
link prediction [2].  

The classic link prediction framework is under the 
(semi-)supervised learning setup where a model is trained 

with an existing dataset composed of examples (i.e. node 
pairs) annotated with certain attributes. However, link 
prediction in sparse networks presents a significant 
challenge due to the inherent disproportion of links that 
can form to links that do form [3]. Further exploration on 
a large number of unlinked node pairs, most of which are 
unlabeled examples, may improve the performance of 
link prediction.  

The paper proposes to use active learning technique to 
select the most possible useful unlabeled examples from 
all unlabeled examples. These examples will first be 
labeled with the assistance of the users. The predictor will 
then be retrained with the updated set of examples and 
could be further improved. One of the advantages of 
active learning is that it can minimize the amount of 
labeled data without sacrificing much quality of the 
learned models [4]. Thus the users in the networks will 
not be bothered too much in the labeling process. The 
link prediction method proposed in this paper is named 
HALLP - Hybrid Active Learning approach for Link 
Prediction. HALLP identifies the examples with higher 
utility from unlabeled examples in networks to query. 
The utility of the example in networks is decided by both 
local structure and global structure of the example in 
networks, which will be described in details later. 

The remainder of the paper is organized as follows. 
Section II introduces background and notation of our 
work. The proposed method is described in Section III. 
Section IV reports an empirical evaluation within two 
datasets. The paper is concluded in Section V.  

II.  BACKGROUND AND NOTATION 

A.  Link Prediction 
Generally, the network data can be visualized and 

represented as a graph ,G V E=< > . Each node v V∈  
corresponds to an object (a person, a paper, a product, 
etc.) in a group and each edge , te v v Eα β=< > ∈  
represents an interaction between node vα  and node vβ  
at a particular time t. Take the co-authorship network as 
an example, the nodes represent authors, and two authors 
are connected by an edge if they wrote one or more 
papers together.  

Link prediction is usually described as the task to 
predict the likelihood of a link existence between an 
arbitrary pair of nodes. Therefore, it can be viewed as the 
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problem of refreshing an adjacency matrix representing 
the structure of a network. However, the graph or matrix 
representing the real-world network is sparse, that is, the 
number of edges known to be present is often 
significantly less than the number of edges known to be 
absent. The extremely imbalanced distribution presents a 
challenge for link prediction methods based on 
supervised learning. Moreover, the data in real-world 
networks has a large scale. Developing efficient link 
prediction methods applicable to large-scale data is 
another challenge.  

A variety of works on link prediction have been 
developed. The early works include probabilistic 
relational models [5], structural logistic regression 
models [6], and stochastic relational models [7]. Recently, 
machine learning techniques have been used in link 
prediction. Al Hasan et al. [8] used several supervised 
learning models for link prediction and concluded that 
SVM outperformed other models in all performance 
measures. Clauset et al. [9] investigated the hierarchical 
structure of social networks to predict missing 
connections in partially known networks with high 
accuracy. Kashima et al. [10] proposed a method named 
Link Propagation (inspired from label propagation 
algorithm) as a new semi-supervised learning method for 
link prediction problems. Parimi and Caragea [11] used a 
clustering approach in a social network service to predict 
potential friendships. Brouard and Szafranski [12] 
addressed link prediction as an output kernel learning 
task through semi-supervised output kernel regression.  

In the paper, link prediction is regarded as a binary 
classification problem for the node pairs in the network. 
The linked node pairs are marked as positive examples 
and part of the unlinked node pairs are marked as 
negative examples. A binary classifier is trained to 
determine the likelihood of the link existence between 
each two unlinked nodes, based on the predetermined 
features. Let ,

1 2ˆ : { , ,..., }nx x x xα β< > =  describe an arbitrary 
pair of nodes ,v vα β< > . Each ix  represents the attribute 
regarding an interrelationship between node vα  and node 
vβ  in the given network. The domain of 

ix  can be either 
discrete or continuous. Let : { }L l=  denotes the label set 
of node pairs. The label represents the existence of a link. 

            , 1,  ,
0,  ,

if v v E
l

if v v E

α β
α β

α β
< > ⎧ < >∈

= ⎨
< >∉⎩

                               (1) 

In a prediction model, the hypothesis h is established 
by ', ' ', 'ˆ: ( )score h xα β α β< > < >= , where ', 'score α β< >  denotes a 
connection weight or possibility to a new pair of 
nodes ' ',v vα β< > . Several classification models (decision 
tree, k-NN, SVM, RBF network, etc.) have been 
developed and been compared in supervised learning 
framework to solve the link prediction problem [8]. In 
this paper, SVM is employed as the prediction model as it 
shows the best performance among these models. 

B.  Active Learning 
In many real-world applications, some pairs of existing 

nodes that are not connected may connect in the future. 
Therefore, these examples are treated as unlabeled 
instead of negative in this paper. The paper aims to 
employ active learning techniques to better use the 
abundant unlabeled examples in networks. Active 
learning attempts to achieve better accuracy by posing 
queries in the form of unlabeled examples to be labeled 
by users. Actually, queries can be obtained in a natural 
way with the activity of users in networks. For example, 
in online social network, a user can be recommended 
with some possible friends, and a feedback can be given 
to the system once the user gives the confirmation. It is a 
reasonable way to predict links in an active learning 
process. 

In the pool-based active learning cycle, the learner is 
initially provided with a training set L composed of 
labeled examples and a pool of unlabeled examples U. At 
each step, a batch of k examples in U are selected and 
labeled, and then added to the labeled corpus L and 
removed from U. One of the general techniques in active 
learning is uncertainty sampling, which is to select 
examples that are most uncertain for the current model 
[4]. In this paper, uncertain sampling is used in the pool-
based active learning cycle.  

To date, most of the active learning methods focused 
on data assumed to be independent and identically 
distributed (IID) [13]. Recently, some researchers [13][14] 
began to use active learning in network data by exploiting 
the relationships of objects. Their methods are used to 
solve node classification problem. So far, active learning 
had not been introduced into link prediction task. In this 
paper, we propose a new active learning approach for link 
prediction using the utility of links instead of nodes. 

III.  THE PROPOSED METHOD - HALLP 

The section describes HALLP, which is a novel hybrid 
active learning approach for link prediction problem. The 
method exploits the information of unlabeled examples 
based on both the local structure and the global structure 
of the network. The pseudo code for HALLP is described 
in Algorithm 1. 

In HALLP, the linked node pairs in the observed social 
network are seen as labeled positive examples. Unlike the 
usual way, the unlinked node pairs here are treated as 
unlabeled examples instead of negative examples since 
some of them may be linked in future. Let U denote the 
unlabeled data set, and L denotes the labeled data set,  
L P N= ∪ . P and N denote the set of positive examples 
and negative examples, respectively. Negative examples 
can be sampled from U because the majority of examples 
in U are labeled negative. In this paper, training examples 
are sampled from L and U in a simple random manner 
considering the large scale of network data. But certainly, 
other sampling methods can be tried to select more 
possible negative examples. 
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Algorithm 1. The pseudo code of HALLP 
Input: 

,G V E=< > : a network; 
L: a set of labeled examples; 
U: a set of unlabeled examples; 
T: the training set; 
M: the prediction model; 
Output: 

' , 'G V E=< > : the updated network; 
Process: 
1      Choose n/2 positive examples from L and n/2 negative 
examples from U respectively, and add them into T 
2      Train M on T 
3      While stopping criterion not met do 
4          for each ,v v Uα β< >∈ do 

5              UtilityLocal( )1Form < v ,v >α β← ; 

6             2 UtilityGlobal( )Form < v ,v >α β← ; 

7              2 2Utility( ) +1 1< v ,v > c Form c Formα β ← i i ; 
8          end 
9          for 1..i k∈  do 
10         arg max Utility( , )u v vα β← < > ; 
11         Label u by the user 
12            { }U U u← − ; 
13            { }T T u← ∪ ; 
14        end 
15        retrain  on M M T← ; 
16     end 
17     Predict E'  in the network G'  based on M; 
18     Return G' . 

 
The pool-based active learning cycle is used, as the 

queries can be naturally obtained in most of applications. 
Each time, the selected examples will be labeled by the 
user. In experimentation, they are labeled according to 
whether they are linked or not in a later period of time. 
The newly labeled examples will be added to T as 
additional examples either positive or negative to retrain 
the learner in the next round. Fed with more training 
examples, the learner could be more accurate than before. 
The above process can be repeated several times. The 
updated M will finally be used to predict links. As a result, 
new links can be predicted and E is updated to E’. 

Uncertainty sampling [15] strategy is employed to 
measure the utility of the examples, where the learner 
will query the examples with the least certainty to label. 
Adding these examples is expected to contribute more for 
training a model. In HALLP, the utility of an individual 
example is calculated based on both its local structure and 
its global structure in the network. The local structure is 
described by local features (for example, the number of 
the common neighbors of a pair of nodes or the shortest 
distance between a pair of nodes), while the global 
structure is described by the hierarchical random graph of 
the network [9].  

The definition of the local utility is shown in Eq. (2), 
where the score is decided by a learner. The value is 
normalized to interval [-1, +1]. 

    ,UtilityLocal( , ) Norm(1/ Abs ))v v scoreα β α β< >< > = （    (2) 

The learner M used by HALLP may be implemented in 
different ways. The paper employs SVM as the predictive 
model. An uncertainty sampling strategy for SVM 
involves querying the unlabeled examples which are 
close to the linear decision boundary. Therefore, the score 
of an example denotes the distance of the example to the 
hyperplane. The score of an example is defined by Eq.(3), 
where 

1 2ˆ ( , ,..., )nw w w w=  is the parameter vector that 
specifies the model.  

                      
, ,

1 1 2 2

ˆ ˆ  
     :::   

T

n n

score w x
w x w x w x

α β α β< > < >=
= + + +

                           (3) 

Given the training data, the optimal parameter w is 
found by minimizing the objective function in Eq.(4). 

                       2,
2

ˆ{1 ,0}Max y c wα β< >− +∑                     (4) 

The definition of the global utility is shown in Eq. (5) 
inspired by the work of Clauset et al [9].  

   ,UtilityGlobal( , ) Norm(1/ Abs -0 5))v v Pα β α β< >< > = （ .   (5) 

The idea is based on the fact that in the same 
community nodes are more possible to be connected, 
while in the communities with high distance, the 
possibility to be connected could be low. Hierarchical 
structure includes organizations (communities) at all 
scales in a network. The more closely related pairs of 
nodes, the lower their lowest common ancestors. The 
probability of a connection between two nodes can be 
calculated according to their degree of relatedness in a 
hierarchical random graph. The node pairs with 
connection probability close to 0.5 are considered to have 
more utility to the system. One of the advantages to use 
global features is to avoid the outliers in the network, 
which could have high uncertainty but might be not 
useful to query. 

IV. EXPERIMENTS 

A.  Data and Features 
In experimentation, two data sets 1  were used to 

validate the proposed approach: Enron email corpus and 
DBLP database. 

Enron dataset contains 252,759 emails from 151 Enron 
employees, mainly its senior managers. In experiments, 
we focused on emails sent from and to these 151 people. 
The link in Enron is defined as an email communication 
from node vα  to node vβ . The data in DBLP dataset were 
derived from a snapshot of the Computer Science 
bibliography from 1995 to 2002, including 29,459 
authors and 419,751 publications. The link in DBLP is 
defined as a co-authorship between node vα  and node vβ . 
Comparing to Enron, the adjacency matrix is much 
sparser and the data scale is much larger in DBLP dataset. 

                                                           
1Enron email corpus is available at  
http://www.cs.cmu.edu/~enron/; 
DBLP database is available at  
http://dblp.uni-trier.de/xml/. 
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The paper aims to verify the effectiveness of the proposed 
method both in a small-scale network and in a large-scale 
network. 

Each dataset is partitioned into two non-overlapping 
sub-ranges according to the range of time (i.e. the time-
stamp of emails or papers). The former is selected as the 
training dataset and the latter as the testing dataset. The 
linked node pairs appear in the testing dataset but not in 
the training dataset should be predicted as positive 
examples, and the unlinked node pairs in the whole 
dataset should be predicted as negative examples. 

Six local topological features are extracted from the 
directed graph of Enron and five from the undirected 
graph of DBLP (TABLE I), where “√” denotes the 
feature is used in the dataset while “×” denotes the 
feature is not used in the dataset. 

TABLE I.   

TOPOLOGICAL FEATURES IN TWO NETWORKS 

Features Enron DBLP 

Number of common neighbors √ √ 

Shortest distance √ √ 

Jaccard coefficient √ √ 

Difference in betweenness centrality √ √ 

Difference in the number of in-links √ × 

Clustering coefficient √ √ 

 
All the topological features are described as follows: 
• Number of common neighbors. Newman [16] 

verified a correlation between the number of 
common neighbors of node vα  and node vβ  and 
the possibility they will collaborate in the future. 
In Enron, the number of common neighbors is 
defined as the number of nodes that is connected 
to both the node From and the node To. 

• Shortest distance. The shortest distance is chosen 
as an important feature because Kleinberg [17] 
discovered that in social network most of the 
nodes are connected with a very short distance. 

• Jaccard coefficient. The Jaccard coefficient 
represents the relative value of the number of 
common neighbors. Let ( )vΓ  denote the set of 
immediate neighbors of node v in G. The Jaccard 
coefficient is defined in Eq.(6): 

                             
( ) ( )

( , )
( ) ( )

v v
J v v

v v

α β
α β

α β

Γ Γ
Γ Γ

=
∩

∪
                 (6) 

• Difference in betweenness centrality. Betweenness 
centrality [18] represents the extent to which a 
node lies on the paths between other nodes and it 
can also be interpreted as measuring the influence 
a node has over the spread of information through 
the network. 

• Difference in the number of in-links. The feature is 
defined as the difference in the number of in-links 

of node vα  and node vβ . The feature is extracted 
in Enron but not extracted in DBLP. 

• Clustering coefficient. A node located in dense is 
likely to grow more edges than the one that is 
located in a sparser neighborhood. The clustering 
coefficient [16] of a node pair measures the 
localized density and is defined as follows:  

    3 number of triangles with  and ( , ) =
number of connected triples with  and 

v vC v v
v v

α β
α β

α β
×   (7) 

B.  Methodology and Configurations 
In the experiments, HALLP is benchmarked with two 

baseline methods (referred to Random-SVM and ALLP-
SVM) and two graph-based methods named LP-HS 
(referring to the link prediction method based on 
hierarchical structure) [9] and LinkPro (referring to Link 
Propagation) [10], respectively. In Random-SVM 
method, the k examples to be labeled are randomly 
selected from the unlabeled dataset and the utility is 
calculated with Eq.(2). In ALLP-SVM method, active 
learning is used and the utility measure is calculated with 
Eq.(2).  

For SVM, the tool LIBSVM Version 3.11 [19] is used, 
and the C-SVC algorithm and the RBF kernel are selected. 
The ratio of coefficients c1 and c2 in Algorithm 1 is set 
according to the AUC values for the initial results of 
Random-SVM and LP-HS. 

Two sets of experiments are conducted. In the first set, 
the accuracy of ALLP-SVM and Random-SVM in Enron 
are compared in two settings. In the first setting, the 
number of initial training examples n changes in the 
range from 20 to 2000 with the step size of 20 while the 
number of examples selected to be queried is fixed (k=50, 
100, and 500). In the second setting, the k value changes 
in the range from 10 to 500 with the step size of 20 while 
the n value is fixed (n=100, 500 and 1000). In the training 
set, the number of positive examples and negative 
examples is the same. For both ALLP-SVM and 
Random-SVM, the whole process is repeated five times 
with different training sets. The average result is recorded. 
Only one round active learning process is performed to 
observe the results. More rounds can certainly be 
performed if required. 

Another set of experiments compares the ROC curves 
of the methods. In Enron dataset, HALLP, Random-SVM, 
ALLP-SVM, LP-HS and LinkPro were compared. For 
HALLP, Random-SVM and ALLP-SVM, the value 
k=500 and the value n=2,000. In DBLP dataset, HALLP, 
Random-SVM, ALLP-SVM and LP-HS were compared. 
LinkPro is not verified in DBLP dataset due to the 
extremely high complexity of time and space. For 
HALLP, Random-SVM and ALLP-SVM, the value 
k=2,000 and the value n=20,000. 

C.   Results 
The geometrical accuracy graphs for Enron dataset 

with the increase of the value n when k=50, 100, and 500 
are shown in Figure 1. The geometrical accuracy graphs 
for Enron dataset with the increase of the value k when 
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n=100, 500, and 1000 are shown in Figure 2. The 
geometrical ROC graphs of five methods for Enron 
dataset are shown in Figure 3 (a) and the geometrical 
ROC graphs of four methods for DBLP dataset are shown 
in Figure 3 (b). 

Figure 1 shows that for Enron dataset the accuracy of 
ALLP-SVM is better than Random-SVM in all settings of 
k. It is noticed that the accuracy values of both ALLP-
SVM and Random-SVM are quite small when n is small 
in the setting of k=50 and 100. It is because the overall 
number of training data is too small to get an efficient 
predictor. But when k is 500, the number of training data 
is big enough to get a predictor with a better accuracy.  

Figure 2 shows that for Enron dataset the accuracy of 
ALLP-SVM is evidently better than Random-SVM when 
n=500 and 1000. When n is 100, the accuracy of ALLP-
SVM has no significant improvement compared with 
Random-SVM. From the shape of the curves, the 
performance of ALLP-SVM is more stable than Random-
SVM. With increasing of k, the accuracy of both methods 
did not significantly increase. It is inconsistent with our 
expect that the more examples to query the users the 
higher the accuracy of the learner. 

Figure 3 shows that for Enron dataset the ROC curve 
of HALLP is overall higher than Random-SVM, ALLP-
SVM, LP-HS and LinkPro. ALLP-SVM is slightly worse 
than HALLP but much better than LP-HS and LinkPro. 
Notice that LP-HS does not perform as well as we 
expected. One possible reason is that the link prediction 
method based on hierarchical clustering is not applicable 
for all types of networks and especially for small-scale 
networks. For DBLP dataset, the ROC curve of HALLP 
is lightly better than the curve of ALLP-SVM, but much 
better than the curve of Random-SVM and LP-HS. The 
AUC values were also calculated for Figure 3, which also 
show that HALLP performs better than other methods in 
most situations. For example, in Enron, the AUC value of 
HALLP is 0.09 higher than Random-SVM. 

Overall, the results verify that ALLP-SVM performs 
better than Random-SVM in the small-scale network as 
well as in the large-scale network. Using active learning 
does help to improve the performance of link prediction. 
Using the hierarchical structure, HALLP performs better 
than ALLP-SVM, but the degree of superiority depends 
on the performance of LP-HS in corresponding networks. 
The performance of HALLP is better than LP-HS since 
the former uses local structures in addition to global 
structures.  

V. CONCLUSION 

In this paper, the link prediction problem is converted 
to binary classification problem under machine learning 
framework.  

The main contributions of the paper are:  
• Active learning process is introduced into link 

prediction task and a link prediction method based 
on active learning is proposed. 

• Both the local structure and the global structure of 
networks are considered for the selection of useful 
examples. 

Experiments show the proposed method HALLP is 
superior to the baseline methods. Employing active 
learning is beneficial to link prediction task.  Moreover, 
the active learning based link prediction method using 
both local and global structures is beneficial to the one 
using only local structures.  

It is noticed that the links in the practical social 
network are very sparse, and the numbers of positive and 
negative examples can be greatly imbalanced. In this 
paper, the negative examples in the training set are only 
sampled randomly from the whole unlabeled dataset, 
which might produce some false negative examples and 
deteriorate the accuracy of the learner. In future work, the 
method can be improved by selectively sampling the 
unlabeled examples according to some semi-supervised 
methods. Besides, the real world networks are dynamic 
and the data in networks is better viewed as a sequence of 
snapshots of an evolving graph or as a continuous time 
process [20]. Whether or not the active learning process 
can be effectively merged into the link prediction in 
dynamic networks is another problem to be considered. 
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Figure 1. Geometrical accuracy graphs of ALLP-SVM and Random-SVM for Enron dataset when the k value is fixed 
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Figure 2. Geometrical accuracy graphs of ALLP-SVM and Random-SVM for Enron dataset when the n value is fixed 

        
     a. Enron dataset                                                           b. DBLP dataset 

Figure 3. Geometrical ROC graphs of HALLP, Random-SVM, ALLP-SVM, LP-HS and LinkPro
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