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Abstract— k-Exclusion is a generalization of Mutual Exclu-
sion that allows up to k processes to be in the critical section
concurrently. Starvation Freedom and First-In-First-Enabled
(FIFE) are two desirable progress and fairness properties
of k-Exclusion algorithms. We present the first known
bounded-space k-Exclusion algorithm that uses only atomic
reads and writes, satisfies Starvation Freedom, and has a
bounded Remote Memory Reference (RMR) complexity. Our
algorithm also satisfies FIFE, and has an RMR complexity
of O(n) in both the cache-coherent and distributed shared
memory models.

Index Terms— k-exclusion, shared memory, remote memory
reference

I. INTRODUCTION

We consider an interleaving model of concurrency,
where executions are modeled as sequences of steps. Each
step, performed by a single process, is a read or write to
a shared variable, or a local computation. The code of
each process is divided into four sections: (1) Remainder,
(2) Entry, (3) Critical, and (4) Exit, that are executed
cyclically in this order. k-Exclusion [1] allows up to k
processes to be in the critical section (CS) concurrently;
and Bounded Exit states that any process in the exit
section finishes this section in a bounded number of its
steps. A k-Exclusion algorithm is an algorithm defined by
the entry and exit sections that satisfies these properties.
k-Exclusion is used to solve conflicts between multiple

processes trying to access a shared resource in a multi-
processor system. It generalizes the well-studied Mutual
Exclusion problem [2], which allows up to one process
to be in the CS concurrently. Afek et al. [3] illustrate
k-Exclusion by using the following example. Suppose
each process controls some device which from time to
time needs to enter a mode of high electrical power
consumption. The main circuit breaker can withstand at
most k devices at high electrical power consumption. By
allowing each process to switch its device on only when
it is in the CS, a k-Exclusion algorithm will protect the
circuit breaker from burning out.

A doorway is a bounded piece of the entry code; and a
process is enabled in t steps if it enters the CS in at most
t of its steps. We next present two desirable progress and
fairness properties of k-Exclusion algorithms [4].
• Starvation Freedom: If a non-faulty process p is in

the entry section and at most k − 1 other processes
crash, then p eventually enters the CS. Thus, the
algorithm can tolerate up to k − 1 process crashes.

• First-In-First-Enabled (FIFE) (resp. FIFE in t
steps): If a process p finishes the doorway before a

process q starts the doorway, and q enters the CS be-
fore p, then p is enabled in O(1) (resp. t) steps. FIFE
is an adaptation of First-Come-First-Served (FCFS)
(of Mutual Exclusion) to k-Exclusion (see [4]).

We consider two models for shared memory archi-
tectures: Distributed Shared Memory (DSM) and Cache-
Coherent (CC). In the DSM model, each process has a
memory module that it accesses locally and the other
processes access remotely. A Remote Memory Reference
(RMR) occurs when a process accesses a shared variable
that is located in the memory module of another process.

As in [4], we describe the write-through/write-
invalidate CC model, although our results apply equally
to the similar write-back/write-invalidate model. In this
model, each process has a local cache, and there is
a global memory store that all the processes access
remotely. When a process reads a shared variable v that
is not located in its local cache, it makes an RMR and
caches a local copy of v. When a process writes to a
shared variable v, it makes an RMR, writing to the global
memory store, and invalidates the copies of v that are
cached by other processes.

A passage is the time between when a process starts the
entry section to when it next finishes the exit section.1 The
RMR complexity of an algorithm is the maximum number
of RMRs a process makes in a passage. An algorithm is
local-spin if its RMR complexity is bounded.

II. PRIOR WORK AND OUR CONTRIBUTION

Table I presents a summary of known local-spin k-
Exclusion algorithms. The RMR Complexity column
refers to the CC and DSM models, where c denotes the
maximum number of processes simultaneously outside the
remainder section. R denotes Read, W denotes Write,
T&S denotes Test&Set, F&I denotes Fetch&Increment,
and C&S denotes Compare&Swap. Note that an algorithm
uses bounded space if it uses a bounded number of bits.

Peterson [5] gave an O(n3) RMR complexity bounded-
space k-Exclusion algorithm for the CC model, using only
Read and Write, which satisfies neither Starvation Free-
dom nor FIFE. Anderson et al. [6] gave O(k log(n/k))
and O(c) RMR complexity bounded-space k-Exclusion
algorithms for both the CC and DSM models. These
algorithms satisfy Starvation Freedom, using Read, Write,
T&S and F&I. Danek et al. [7] gave an O(k log(n))
RMR complexity bounded-space k-Exclusion algorithm
for both the CC and DSM models, using only Read

1Time refers to positions of steps in an execution.
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Ref. RMR Instruct. Starv. FIFE Bounded
Complexity Free. Space

[5] CC: O(n3) R, W No No Yes
DSM: ∞

[6] O(k log n
k
) R, W, Yes No Yes

T&S, F&I
[6] O(c) R, W, Yes No Yes

T&S, F&I
[7] O(k logn) R, W No No Yes
[4] O(n) R, W Yes Yes No
[8] CC: O(log k) R, W, Yes Yes No

DSM: ∞ F&I, C&S
This O(n) R, W Yes Yes Yes
paper

TABLE I.
KNOWN LOCAL-SPIN k-EXCLUSION ALGORITHMS.

and Write, which satisfies neither Starvation Freedom nor
FIFE.

Danek [4] gave an O(n) RMR complexity k-Exclusion
algorithm for both the CC and DSM models, using only
Read and Write that are not necessarily atomic. Finally,
Choi [8] gave an O(log k) RMR complexity k-Exclusion
algorithm for the CC model, using Read, Write, F&I
and C&S. These two algorithms satisfy both Starvation
Freedom and FIFE, but use unbounded space.

There are several other known k-Exclusion algorithms
[1], [3], [9]–[12], which are not local-spin in either the
CC or DSM models.

Danek et al. [13] gave an O(log n) RMR complexity
bounded-space Mutual Exclusion algorithm, using only
Read and Write, which satisfies Starvation Freedom and
FCFS.2 Any Mutual Exclusion algorithm, using only
Read, Write and stronger primitives such as C&S, which
satisfies Starvation Freedom, has an RMR complexity
of Ω(log n) [15], [16]. Thus, the O(log n) upper bound
is tight. For the amortized RMR complexity of such
algorithms, this is not true (see [17], [18]).

We present the first known bounded-space k-Exclusion
algorithm that uses only Read and Write, satisfies Starva-
tion Freedom, and has a bounded RMR complexity. Our
algorithm also satisfies FIFE, and has an RMR complexity
of O(n) in both the CC and DSM models. It is based on
a Concurrent Timestamp System (CTS) [19], the Bakery
algorithm [20], and a mechanism that allows waiting
processes to rely on other processes to update them about
their waiting statuses.

The paper is organized as follows. We first provide a
brief overview of the Bakery algorithm and CTSs. We
then present our k-Exclusion algorithm, and prove its cor-
rectness. Finally, we state directions for further research.

III. PRELIMINARIES

Our algorithm is based on the Bakery algorithm—a
Mutual Exclusion algorithm that satisfies Starvation Free-
dom and FCFS, but is not local-spin (see the pseudocode
below). When a process p is in the doorway, it obtains

2A more space-efficient algorithm was recently given in [14].

a ticket bigger than those of all the other processes that
have already finished the doorway, but not the CS. Then,
p waits until all the processes having smaller nonzero
tickets finish the exit section.

The Bakery algorithm: (for p)
Shared Variables:
1) Num[0 . . . n− 1] - init all 0
2) Choosing[0 . . . n− 1] - init all False

Entry: (doorway: lines 1–3)
1) Choosing[p]← True
2) Num[p]← 1 + max{Num[0], . . . , Num[n− 1]}
3) Choosing[p]← False
4) Foreach i ∈ {0, . . . , n− 1} \ {p}:

a) wait until Choosing[i] = False
b) wait until (Num[i], i) > (Num[p], p) ∨

Num[i] = 0
Exit:
5) Num[p]← 0

The Bakery algorithm does not bound the values of the
tickets. Taubenfeld [21] gave a bounded-space version of
this algorithm, relying on the fact that there is at most
one process in the CS at a time, which is not true for
k-Exclusion. We use a CTS to order the processes like
the Bakery algorithm, while using bounded space.

For each process p, a CTS provides two procedures:
Labelp and Scanp. The CTS stores an array of times-
tamps, ordered according to a serialization of the Label
procedures. Each Scan returns the current permutation of
the n identifiers of the processes.

Let P be a set of processes outside any Label procedure
during some time interval. Then, the permutations re-
turned by all the Scans performed entirely in this interval
are consistent with one another with regards to the order
they impose on P . Now, let p be a process outside Labelp
during an interval [T p

1 , T
p
2 ], let q be a process performing

Scanq during an interval [T q
1 , T

q
2 ], such that T p

1 ≤ T q
1 ,

and, for any process i, let T i
2 be a time when any Labeli

starting before T q
2 is finished. If the Scanq that started

at T q
1 returned a permutation satisfying p < i, then any

Scan performed entirely in [T i
2, T

p
2 ], returns a permutation

satisfying p < i.
Consider the following two properties of a CTS [3].
1) If a process p begins Labelp after a process q fin-

ishes Labelq , then any Scan performed entirely after
both labeling procedures and before any subsequent
labeling procedures by q, returns a permutation in
which q < p.

2) Let P be a set of processes, such that in some
interval each p ∈ P executes Labelp, and then
Scanp which is not followed by Labelp. Then, there
is p ∈ P whose last Scanp in this interval returns
a permutation that orders all the other processes in
P before it, and no Labelq , for any q ∈ P , starts
after the last Labelp in this interval finishes.

There is a bounded-space CTS that satisfies these
properties, using O(n) reads and writes per Label or Scan
execution [19]. In our algorithm, we use such a CTS.
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IV. THE ALGORITHM

Recall that we use a CTS to order processes like
the Bakery algorithm, while using bounded space. Each
process invokes Label (in the doorway) to obtain a place
among the waiting processes. Afek et al. [3], who also
gave a k-Exclusion algorithm that is based on a CTS and
the Bakery algorithm, then handle each waiting process
by simply allowing it to repeatedly invoke Scan until it
discovers that there are less than k processes ahead of
it. Thus, in a single passage, a process can invoke Scan
an unbounded number of times. Since Scan makes RMRs,
this approach results in an algorithm that is not local-spin.

We use a different approach. Our waiting processes do
not invoke Scan, but rely on other processes to update
them about their waiting statuses. We next describe the
mechanism we have developed in applying this approach.

After a process p invokes Labelp, it invokes Scanp
(in the doorway). Then, using an array called Order<,
p informs each process i what it read about the order
between them. Using arrays called Reveal and Discover,
i relies on this information only if it is newer than the
information i has from its last Scani.

When a process is in the doorway, it uses Reveal to
reveal itself to the other processes; and when it is in the
exit section, it uses Reveal to disguise itself from them.
The processes in the doorway check which processes
are revealed, and use Discover to inform them about
their discoveries. If a process reads information from a
process that has discovered it, it considers this information
relevant. When a process is in the exit section, it deletes
its traces from Discover.

Consider the following scenario. A process p discovers
a process q, q disguises itself and deletes its traces from
Discover, and only then p writes to Discover. Thus, q can
next rely on irrelevant information. To avoid this problem,
Discover has two cells for each possible discovery, and a
discovery is relevant only if it is written in both cells.

Another problem arises when a process p executes only
a part of the doorway, and then a process q uses new
information written by p to deduce that old information
(which p updates when it next executes the rest of the
doorway) is relevant. Using an array called Ignore, we
avoid this problem. A process turns on some flags in
Ignore shortly after entering the doorway, and turns them
off before finishing the doorway. A process does not rely
on information in Order< which is written by a process
that has announced it should currently be ignored.

Using an array called Compete, processes do not wait
on processes ordered before them that are not competing
with them on the CS. A process simply turns on some
flags in Compete when it enters the doorway, and turns
them off before finishing the exit section.

Finally, using an array called Allow, we achieve FIFE.
Once a process is enabled, it informs the processes
preceding it that they can enter the CS.3 The necessity
of Allow follows from the fact that in our algorithm, a

3Several Mutual Exclusion algorithms use an array similar to Allow
(e.g., the promote array of Hendler et al. [17]).

process does not make its announcements to all the other
processes at once (otherwise the algorithm will not be
local-spin in the DSM model). Thus, a process p ordered
after a process q can discover that it is enabled, while,
without using Allow, q never discovers that it is enabled.

We next present a high-level description of our algo-
rithm (see the pseudocode below).

When a process p enters the doorway, it first informs
the other processes that it is competing on the CS (line
1), and that they should currently ignore its information
(line 2). Then, p obtains a place among the waiting
processes (line 3). Afterwards, p checks which new
processes are revealed, cancels the permission it might
have given them to enter the CS, and informs them about
its discoveries (line 4). The process p then reveals itself
(line 5). Then, p invokes Scanp, and informs the other
processes what it read about the order between them (lines
6–7). Afterwards, p informs them that they should not
ignore its information (line 8). It initializes a set called
precede to hold all the processes preceding it (lines 9-
10). Then, p waits until less than k competing processes
in its precede set do not have relevant information that
the order between them has changed (line 11(a)), or until
some process has relevant information that p can enter the
CS (line 11(b)). Finally, p allows each process preceding
it to enter the CS (line 12).

In the exit section, p first disguises itself (line 13).
Then, p deletes its traces from the discoveries of the
other processes (line 14), and informs them that it is not
competing on the CS (line 15).

Algorithm 1: (for p)
Shared Variables:
1) Compete[0 . . . n− 1][0 . . . n− 1] - init all False.
2) Ignore[0 . . . n− 1][0 . . . n− 1] - init all False.
3) Order< [0 . . . n− 1][0 . . . n− 1] - init immaterial.
4) Reveal[0 . . . n− 1] - init all False.
5) Allow[0 . . . n− 1][0 . . . n− 1] - init immaterial.
6) Discover[0 . . . n−1][0 . . . n−1][0, 1] - init all False.
DSM model: Compete[i][p], Ignore[i][p], Order< [i][p],

Allow[i][p], Reveal[p], Discover[i][p][0], and
Discover[i][p][1] are local to process p for all i.

Entry: (doorway: lines 1–10)
1) Foreach i ∈ {0, . . . , n− 1}: Compete[p][i]← True
2) Foreach i ∈ {0, . . . , n− 1}: Ignore[p][i]← True
3) Labelp
4) Foreach i ∈ {0, . . . , n− 1} s.t. !Discover[p][i][0] ∨

!Discover[p][i][1]:
a) Discover[p][i][0]← False
b) Discover[p][i][1]← False
c) Allow[p][i]← False
d) If Reveal[i]: Discover[p][i][0]← True
e) If Reveal[i]: Discover[p][i][1]← True
f) If (!Discover[p][i][0] ∨ !Discover[p][i][1]):

i) Discover[p][i][0]← False
ii) Discover[p][i][1]← False

5) Reveal[p]← True
6) order ← Scanp
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7) Foreach i ∈ {0, . . . , n − 1}: Order< [p][i] ←
(order.p < order.i)

8) Foreach i ∈ {0, . . . , n− 1}: Ignore[p][i]← False
9) precede ← ∅

10) Foreach i ∈ {0, . . . , n− 1} s.t. (order.i < order.p):
precede.add(i)

11) While |precede| ≥ k:
a) Foreach i ∈ precede:

i) If !Compete[i][p]: precede.delete(i)
ii) If (Discover[i][p][0] ∧ Discover[i][p][1] ∧

!Ignore[i][p] ∧ !Order< [i][p]):
precede.delete(i)

b) Foreach i ∈ {0, . . . , n − 1} s.t.
Discover[i][p][0] ∧ Discover[i][p][1]:
i) If Allow[i][p]: precede ← ∅

12) Foreach i ∈ {0, . . . , n− 1} s.t. (order.i < order.p):
Allow[p][i]← True

Exit:
13) Reveal[p]← False
14) Foreach i ∈ {0, . . . , n− 1}:

a) Discover[i][p][0]← False
b) Discover[i][p][1]← False

15) Foreach i ∈ {0, . . . , n− 1}: Compete[p][i]← False

V. CORRECTNESS

We first state three simple observations which are used
throughout this section.

1) For all p and i, Compete[p][i] is True iff p is in a
passage in which it is after the execution of line 1
for i and before the execution of line 15 for i.

2) For all p and i, Ignore[p][i] is True iff p is in a
passage in which it is after the execution of line 2
for i and before the execution of line 8 for i.

3) For all p, Reveal[p] is True iff p is in a passage in
which it is after the execution of line 5 and before
the execution of line 13.

Algorithm 1 uses a bounded-space CTS, O(n2) boolean
variables, and O(n) variables that require O(n log n)
space. We thus have the following result.

Lemma 1: Algorithm 1 is bounded-space.
By the code, each process executes O(n) steps in the

exit section. We thus have the following result.
Lemma 2: Algorithm 1 satisfies Bounded Exit.
We next claim that if a waiting process p reads True

from Discover[q][p][0, 1], then it had revealed itself before
q discovered it (thus, updates which q wrote for p, such
as Order< [q][p], are relevant in the current passage of
p). Moreover, Discover[q][p][1] remains True as long as p
is still waiting. This lemma will be used in the proofs of
the k-Exclusion and Starvation Freedom properties.

Lemma 3: Let p and q be two processes, such that p
executes the following instructions of line 11(a)ii or 11b
in this order in a single passage.

1) p reads True from Discover[q][p][0].
2) p reads True from Discover[q][p][1].

Let T be the time when p executed the second instruction.
Then, the last time before T when p executed line 5, had
been before the last time before T when q checked the
condition of line 4e for p. Also, after T and while p does
not enter the exit section, Discover[q][p][1] stays True.

Proof: Denote the time mentioned in the lemma
when p reads Discover[q][p][0] (resp. Discover[q][p][1]) by
CD0 (resp. CD1). Next, consider the execution until and
not including the point after CD1 when p enters the exit
section (if no such point exists, consider all the execution).
Note that CD0 < CD1.

The only processes writing to Discover[q][p][0] and
Discover[q][p][1], which are initially False, are q and
p. Only q writes True to Discover[q][p][0] (resp.
Discover[q][p][1]), and only in line 4d (resp. 4e).
The process q writes False to Discover[q][p][0] (resp.
Discover[q][p][1]) only in lines 4a and 4(f)i (resp. 4b and
4(f)ii). The process p writes False to Discover[q][p][0]
(resp. Discover[q][p][1]) only in line 14a (resp. 14b).

Since p reads True from Discover[q][p][0] at CD0, there
is a point AD0 < CD0 when q executes the assignment
of line 4d for p, and Discover[q][p][0] stays True in
[AD0, CD0]. Similarly, there is a point AD1 < CD1

when q executes the assignment of line 4e for p, and
Discover[q][p][1] stays True in [AD1, CD1]. Denote by
CR0 (resp. CR1) the time when q executes its last step
before AD0 (resp. AD1). At CR0 and CR1, q reads
True from Reveal[p]. If AD1 < AD0, then q executes
line 4b for p in (AD1, AD0). Thus, AD1 < CD1 <
AD0 < CD0, which is a contradiction. We get that
CR0 < AD0 < CR1 < AD1.

Denote by R the last time p executes line 5. From
R on, if False is assigned to Discover[q][p][0] or to
Discover[q][p][1], this assignment is done by q.

Since AD0 < CR1 < AD1, q executes at least two
more steps after AD0, which we denote by S1 and S2.

Consider the following two cases.

1) R < S1. By Observation 3, q reads True from
Reveal[p] at S1, and executes the assignment of line
4e for p at S2. At this point, both Discover[q][p][0]
and Discover[q][p][1] are True, and according the
code, they stay True.

2) S1 < R. Then, CR0 < AD0 < R. By Observation
3, there are points R′ and E′ s.t. R′ < CR0 ≤ E′ <
R, p executes line 5 at R′, and during [R′, E′], p is
in the same passage as it is at R′ and it has not yet
executed line 13. Denote by F0 the last time after E′

when p executes line 14a for q . Note that F0 < R,
and p is in consecutive passages at F0 and R. Since
Discover[q][p][0] is True during [AD0, CD0] and
F0 < R < CD0, we get that CR0 < F0 < AD0.
By Observation 3 and since F0 < S1 < R,
Reveal[p] is False at S1. Thus, S2 is the first part
of the condition of line 4f. Then, q executes the
second part, and reads Discover[q][p][1] as False.
Afterwards, at a time we denote by T ∗, q assigns
False to Discover[p][q][0]. CD0 < T ∗, and thus
R < T ∗ < CR1 < AD1. By Observation 3
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and the code, after T ∗, q performs a passage in
which it executes the assignments of lines 4d and
4e for p. During the time interval between T ∗ and
the second assignment, Discover[q][p][1] is False,
and afterwards it stays True. Thus, after AD1,
Discover[q][p][1] stays True.

Lemma 4: Algorithm 1 satisfies k-Exclusion.
Proof: Suppose, by way of contradiction, that there

is an execution in which there is a point T when a process
enters the CS although there are k processes in the CS.
In the rest of the proof, consider this execution until T .

Let P be the set of k + 1 processes in the CS at T .
By Property 2 of a CTS, there is a process p in P whose
last Scanp returned a permutation that ordered all of the
other processes in P before it, and no Labelq , for any
q ∈ P , started after the last Labelp had finished. Denote
the set of such processes by C. Each p ∈ C, in its last
execution of line 10, initialized precede to include all the
k processes in P \{p}. Let p be the process in C s.t. each
q ∈ C \ {p} had started its last Scanq before p started its
last Scanp. Denote S = {i ∈ P : the last Scani returned
a permutation in which p < i, and the last Labelp had
finished before the last Scani started}.
Claim 1. S = ∅.

Proof: Suppose, by way of contradiction, that there
is a process i ∈ S. Since the last Scanp and Scani returned
permutations that are not consistent with regards to the
order they impose on {p, i}, the last Scanp had started
before the last Labeli finished. Thus, the last Scanp had
started before the last Scani started. By our choice of p,
we get that i ∈ P \ C.

Suppose that there is a process j ∈ P that started a
Labelj after i had finished its last Labeli. Since p finished
its last Labelp after j had started its last Labelj , p finished
its last Labelp after i had finished its last Labeli. Thus,
the last Scanp started after i had finished its last Labeli,
which is a contradiction.

Since i ∈ P \ C, there is a process j ∈ P s.t. the last
Scani returned a permutation in which i < j. Thus, the
last Scani returned a permutation in which p < i < j. By
Property 2 of a CTS, the last Scanj returned a permutation
in which i < j. Since the last Scanp and Scani returned
permutations that are not consistent with regards to the
order they impose on {p, j}, the last Scanp had started
before the last Labelj finished. Thus, the last Labelp had
finished before the last Scanj started.

If the last Scani had started before the last Scanj
started, then the last Scani and Scanj returned permu-
tations that are consistent with regards to the order they
impose on {p, i}. Else, the last Scani and Scanj returned
permutations that are consistent with regards to the order
they impose on {p, j}. In the first case, the permutation
returned by the last Scanj satisfies p < i < j, and in the
second, it satisfies p < j. We get that j ∈ S.

Since we chose i ∈ S arbitrarily, there is a function
f : S → S s.t. for each s ∈ S, the last Scans returned a
permutation in which s < f(s). By Property 2 of a CTS,

there is a process s∗ ∈ S whose last Scans∗ returned
a permutation that ordered all the other processes in S
before it, and thus we have a contradiction.

Let A be the set of every process i that executed
line 5 after the last Labelp had finished, entered line 12
afterwards, and either i is p or the previously mentioned
execution of line 5 was followed by a Scani that returned
a permutation in which p < i. Clearly, A 6= ∅. For any
i ∈ A, we use the following notation. If i = p, then Scan∗i
denotes the last Scanp; else, it denotes the last Scani that
started after the last Labelp, returned a permutation in
which p < i, and afterwards i entered line 12. Let Label∗i
denote the Labeli that precedes Scan∗i.

Let q be the process in A whose last execution of line 5
before Scan∗q was after the last execution of line 5 before
Scan∗i of any other i ∈ A. Denote the time after Scan∗q
when q enters line 12 by T ∗. There is a process i s.t. one
of the following conditions holds.

1) i ∈ P \ {q} and Compete[i][q] was False at some
point during the last time before T ∗ when q was in
the while-loop. By Observation 1 and since i is in
the CS at T , there was a point during the last time
before T ∗ when q was in the while-loop in which
i was before its last execution of line 1 for q. Note
that the last Labeli had started before the last Labelp
finished, and the last Labelp had finished before
Scan∗q started. Thus, we have a contradiction.

2) i ∈ P \ {q} and q did not add i to its precede set
during the last time before T ∗ when it executed line
10. Thus, Scan∗q returned a permutation in which
q < i. We get that q 6= p, and Scan∗q returned a
permutation in which p < q < i (thus, p 6= i).
Since Scanp and Scan∗q returned permutations that
are not consistent with regards to the order they
impose on {p, i}, the last Scani started after the last
Labelp had finished. Thus, the last Scani returned
a permutation in which p < i (in order to be
consistent with Scan∗q), and we get that i ∈ S.
By Claim 1, we have a contradiction.

3) i ∈ P \ {q} and q calculated (Discover[i][q][0] ∧
Discover[i][q][1] ∧ !Ignore[i][q] ∧ !Order< [i][q])
as True during the last time before T ∗ when q was
in the while-loop. By Lemma 3, the last time before
T ∗ when q executed line 5 preceded the last time
when i checked the condition of line 4e for q. Thus,
the last Scani started after the last time before T ∗

when q executed line 5, which is also after the last
Labelp and Label∗q had finished. By Claim 1, i = p
or the last Scani returned a permutation in which
i < p.
By Observation 2 and since the last Labeli had
started before the last Labelp finished, q read
Ignore[i][q] as False when i was after its last ex-
ecution of line 8 for q. Thus, q next calculated
!Order< [i][q] as True after the last time when
i executed line 7 for q; therefore the last Scani
returned a permutation in which q < i. Thus, q 6= p,
the last Scani returned a permutation in which q <
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i ≤ p, and Scan∗q returned a permutation in which
p < q. Since the last Scani and Scan∗q started after
the last Labelp and Label∗q had finished, we get a
contradiction.

4) q calculated (Discover[i][q][0] ∧ Discover[i][q][1] ∧
Allow[i][q]) as True during the last time before T ∗

when q was in the while-loop. Denote by Q1 and Q2

the times when q read True from Discover[i][q][1]
and Allow[i][q], respectively, when it executed this
calculation. Note that Q1 < Q2.
Note that i is the only process that writes True to
Discover[i][q][1] (only in line 4e) and Allow[i][q]
(only in line 12), which are initially False. Thus,
there are points I1 and I2 when i executed the
assignments of lines 4e and 12 for q, respectively,
s.t. Discover[i][q][1] was always True in [I1, Q1] and
Allow[i][p] was always True in [I2, Q2]. By Lemma
3, Discover[i][p][1] stayed True from Q1 until the
time E when q next entered the exit section, and
the last time Tr before Q1 when q executed line 5
preceded the last time Tc before Q1 when i checked
the condition of line 4e for q.
Suppose that I2 < Tc. Then, there is a point
in (I2, Tc) when i executed line 4b for q. Since
Discover[i][q][1] is always True in [I1, E], I2 < I1.
Allow[i][q] was False at I1, since i executed line 4c
for q before I1 s.t. its following execution of line
12 for q was after I1. Thus, I2 < Q2 < I1 < Q1.
Since Q1 < Q2, we have a contradiction.
Since Tc < I2, i executed line 5 and Scani in
(Tc, I2). Thus, we can denote by T ′r the last time
before I2 when i executed line 5, and by Ts the
last time before I2 when i started Scani. We get
that Tr < Tc < T ′r < Ts < I2. Thus, the last
Labelp had finished before T ′r. Moreover, the Scani
that started at Ts returned a permutation in which
q < i (otherwise the assignment at I2 would not
have happened). This implies that i 6= q.
If q = p, then clearly i ∈ A. Else, since the last
Labelp and Label∗q had finished before Ts, and
Scan∗q returned a permutation in which p < q,
we get that the Scani that started at Ts returned
a permutation in which p < q < i. Again, we get
that i ∈ A. This is a contradiction to our choice of
q, since we have proved that Tr < T ′r < Ts, and
that i is in line 12 after Ts.

Lemma 5: Algorithm 1 satisfies FIFE in O(n) steps.
Proof: Let p and q be two processes such that p

finishes the doorway at T1, q enters the doorway at T2 >
T1, q enters the CS at T3 > T2, and
• p is in the entry section during [T1, T3].
• q is in the entry section during [T2, T3).
When we refer to an instruction executed by p (resp.

q), consider its last execution by p (resp. q) before T3.
By Observation 3, Reveal[p] is True during [T1, T3].

Thus, if q reads Discover[q][p][0] or Discover[q][p][1] as
False when executing line 4 for p, then it next assigns

True to both of them. The only other process that can
write False to these variables is p, and only in the exit
section. Since p is in the entry section during [T1, T3],
when q finishes executing line 4, Discover[q][p][0] and
Discover[q][p][1] are True. By the code, while p does not
enter the CS, they stay True.

Note that Labelp finishes before Labelq starts. By Prop-
erty 1 of a CTS, the next Scanq returns a permutation in
which p < q. Thus, when q next executes line 12, it writes
True to Allow[q][p]. Since q is the only process that writes
False to Allow[q][p], and only in line 4c after reading
Discover[q][p][0] or Discover[q][p][1] as False, there is a
time T s.t. T2 < T ≤ T3, after which Discover[q][p][0],
Discover[q][p][1] and Allow[q][p] are True as long as p
does not enter the CS. Thus, from T on, p makes O(n)
steps after which it executes precede← ∅ in line 11(b)i. It
then executes O(n) additional steps, after which it enters
the CS.

Lemma 6: Algorithm 1 satisfies Starvation Freedom.
Proof: Suppose, by way of contradiction, that Al-

gorithm 1 does not satisfy Starvation Freedom. Thus, by
Lemmas 2 and 5, there is an execution in which there are
less than k faulty processes, and there is a point T s.t.
from T on, all non-faulty processes are in the remainder
section or starved in the while-loop. Denote this set of
starved processes by P . Observation 2 implies that from
T on, for any non-faulty process p and any process i,
!Ignore[p][i] is True. Note that from T on, the values of
all the shared variables do not change.

Let p be a process in P . Since p is stuck in the while-
loop, there is a set W of at least k processes which were
ordered before p in the permutation returned by the last
Scanp, and p cannot remove any of them from its precede
set. Since there are less than k faulty processes, there
is a non-faulty process w ∈ W . Note that from T on,
(Discover[w][p][0] ∧ Discover[w][p][1] ∧ !Order< [w][p])
is False. Moreover, from T on, !Compete[w][p] is False,
and thus, by Observation 1, w ∈ P .

Since we chose p ∈ P arbitrarily, there is a function
f : P → P s.t. for all p ∈ P , the last Scanp
returned a permutation in which f(p) < p, and from
T on, (Discover[f(p)][p][0] ∧ Discover[f(p)][p][1] ∧
!Order< [f(p)][p]) is False. Note that from T on,
!Order< [p][f(p)] is True. Also, there is a nonempty set
{s0, s1, . . . , sm−1} = S ⊆ P s.t. for 0 ≤ i ≤ m − 1,
f(si) = s(i+1)modm. Let (f, S) be such a pair s.t. S is
of minimum size. Note that m ≥ 2.

By Property 2 of a CTS, we can assume w.l.o.g that
the last Scans1 returned a permutation that ordered all the
processes in S \ {s1} before s1, and no Labels, for any
s ∈ S, started after the last Labels1 had finished. From T
on, !Order< [s1][s] is True for all s ∈ S. Thus, from T
on, (Discover[s1][s0][0] ∧ Discover[s1][s0][1]) is False.

Claim 2. Let i, j ∈ {0, 1, . . . ,m − 1} s.t. i 6=
j, and the last Scansi had started before the last
Labelsj finished. Then, from T on, (Discover[sj ][si][0] ∧
Discover[sj ][si][1]) is True.
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Proof: The last execution of line 5 by si occurred
before the last check of the condition of line 4 for si by sj .
By Observation 3, we get that after the last execution of
line 5 by si, Reveal[si] forever stays True. Since si ∈ P ,
it does not next execute lines 14a and 14b.

If when sj last checked the condition of line 4 for
si, (Discover[sj ][si][0] ∧ Discover[sj ][si][1]) was True,
then, by the code, it forever stays True. Else, after
sj last checked this condition, it executed the assign-
ments of lines 4d and 4e. Then, (Discover[sj ][si][0] ∧
Discover[sj ][si][1]) was True, and by the code, it for-
ever stays True. Thus, from T on, (Discover[sj ][si][0] ∧
Discover[sj ][si][1]) is True.

By Claim 2, the last Scans0 started after the last Labels1
had finished. Since the last Scans0 and Scans1 returned
permutations that are not consistent with regards to the
order impose on {s0, s1}, the last Scans1 had started
before the last Labels0 finished. By Claim 2, from T on,
(Discover[s0][s1][0] ∧ Discover[s0][s1][1]) is True, and
thus (Discover[s0][s1][0] ∧ Discover[s0][s1][1]∧ !Order<
[s0][s1]) is True.

Denote t0 = r0 = s0, t1 = s2 and r1 = s1. For
all i ∈ {2, . . . ,m − 2}, denote ti = ri = si+1. For all
i ∈ {0, . . . ,m − 2}, denote g(ti) = t(i+1)mod(m−1) and
h(ri) = r(i+1)mod(m−1). Denote S∗ = {t0, . . . , tm−2}
and S∗∗ = {r0, . . . , rm−2}. Consider the following cases.

1) The last Scans1 started after the last Labels2 had
finished. Thus, the last Scans0 and Scans1 returned
permutations that are consistent with regards to
the order they impose on {s1, s2}. Thus, the last
Scans0 returned a permutation in which s2 < s1 <
s0. Since (g, S∗) cannot contradict the choice of
(f, S), (Discover[s2][s0][0] ∧ Discover[s2][s0][1] ∧
!Order[s2][s0]) is True. By Lemma 3, the last
Scans0 and Scans2 started after the last Labels0 and
Labels2 . Since their returned permutations are not
consistent with regards to the order they impose on
{s0, s2}, we have a contradiction.

2) The last Scans1 had started before the last
Labels2 finished. By Claim 2, from T on,
(Discover[s2][s1][0] ∧ Discover[s2][s1][1]) is True.
Since f(s1) = s2, from T on, !Order< [s2][s1]
is False. Thus, the last Scans2 returned a permu-
tation in which f(s2) < s2 < s1. Since (h, S∗∗)
cannot contradict the choice of (f, S), from T on,
(Discover[f(s2)][s1][0] ∧ Discover[f(s2)][s1][1] ∧
!Order< [f(s2)][s1]) is True. Thus, the last
Scanf(s2) returned a permutation in which s1 <
f(s2). By Lemma 3, the last time s1 executed line
5 had been before the last time f(s2) executed the
condition of line 4e for s1. Thus, the last Labels1
had finished before the last Scanf(s2) started. Con-
sider the two following cases.

a) The last Scans2 started after the last Labelf(s2)
had finished. Thus, the last Scans2 and
Scanf(s2) started after the last Labels1 and
Labelf(s2) had finished. Since they returned
permutations that are consistent with regards

to the order they impose on {s1, f(s2)}, we
have a contradiction.

b) The last Scans2 had started before the
last Labelf(s2) finished. By Claim 2,
from T on, (Discover[f(s2)][s2][0] ∧
Discover[f(s2)][s2][1]) is True. Thus, from T
on, !Order< [f(s2)][s2] is False, and the last
Scanf(s2) returned a permutation in which
f(s2) < s2. The last Scans2 and Scanf(s2)
started after the last Labels1 and Labels2 had
finished, and thus returned permutations that
are consistent with regards to the order they
impose on {s1, s2}, which is a contradiction.

Lemma 7: Algorithm 1 has O(n) RMR complexity in
both the DSM and CC models.

Proof: Algorithm 1 uses a CTS in which each Label
and Scan performs O(n) reads and writes. Thus, lines 3
and 6 require O(n) RMRs in both models. Each of the
other lines of the algorithm, except those of the while-
loop, requires O(n) RMRs in both models.

In the DSM model, each process reads only local vari-
ables in the while-loop, which do not make RMRs. Thus,
Algorithm 1 has O(n) RMR complexity in this model.

Now consider the CC model. Let v be a shared variable
accessed by a process p in the while-loop. There is only
one process which is not p that can write to v. Denote
this process by pv .

We next prove that while p is in the while-loop, it
performs O(1) RMR reads of v, or O(1) RMR reads of
v after which it is enabled in O(n) steps. Since there are
O(n) shared variables accessed by p in the while-loop,
this implies that Algorithm 1 has O(n) RMR complexity
in the CC model. In each of the following cases, assume
some minimum constant number of writes to v while p
is in the while-loop (otherwise, our claim clearly holds).

1) v = Compete[i][p]. Thus, pv = i and i ∈ precede.
i only writes to v in lines 1 and 15. Next we refer
only to writes to v. After at most two writes, i enters
the doorway, and then executes the write in line 1
and the write in line 15. Thus, while p is in the
while-loop and before its fourth RMR read of v, i
enters the doorway and then the CS. By Lemma 5,
before the fourth RMR read of v, p is enabled in
O(n) steps.

2) v = Ignore[i][p]. Thus, pv = i and i ∈ precede.
i only writes to v in lines 2 and 8. Next we refer
only to writes to v. After at most two writes, i enters
the doorway, and then executes the write in line 2,
the write in line 8, and again the write in line 2.
Thus, while p is in the while-loop and before its
fifth RMR read of v, i enters the doorway and then
the CS. By Lemma 5, before the fifth RMR read of
v, p is enabled in O(n) steps.

3) v = Order< [i][p]. Thus, pv = i and i ∈ precede.
i only writes to v in line 7. Next we refer only to
writes to v. After at most one write, i enters the
doorway, and then executes the write in line 7. Its

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014 535

© 2014 ACADEMY PUBLISHER



next write to v is again in line 7. Thus, while p is in
the while-loop and before its third RMR read of v,
i enters the doorway and then the CS. By Lemma
5, before the third RMR read of v, p is enabled in
O(n) steps.

4) v = Discover[i][p]. Thus, pv = i. i only writes to
v in lines 4a, 4b, 4d, 4e, 4(f)i and 4(f)ii. Next we
refer only to writes to v. By Observation 3, while
p is in the while-loop, Reveal[p] is True. Thus,
after at most five writes, i executes the writes in
lines 4a, 4b, 4d and 4e. Then, both Discover[i][p][0]
and Discover[i][p][1] are True. We get that while p
stays in the while-loop, both Discover[i][p][0] and
Discover[i][p][1] stay True, and the condition of line
4 stays False. Thus, there are no additional writes
to v. We get that there are at most nine writes to v
while p is in the while-loop.

5) v = Allow[i][p]. Thus, pv = i. i only writes to v in
lines 4c and 12. Next we refer only to writes to v.
After at most two writes, i enters the doorway, and
then it may execute the writes in lines 4c and 12.
Before the next write, i enters the CS. Thus, while p
is in the while-loop and before its fifth RMR read of
v, i enters the doorway and then the CS. By Lemma
5, before the fifth RMR read of v, p is enabled in
O(n) steps.

Finally, by Lemmas 1, 2, 4, 5, 6 and 7, we get the
following result.

Theorem 1: Algorithm 1 is a bounded-space k-
Exclusion algorithm that satisfies FIFE and Starvation
Freedom. Moreover, it has an RMR complexity of O(n)
in both the DSM and CC models.

VI. CONCLUSION AND FUTURE WORK

We have presented the first known bounded-space k-
Exclusion algorithm that uses only Read and Write,
satisfies Starvation Freedom, and has a bounded RMR
complexity. We have also proved that our algorithm
satisfies FIFE, and has an RMR complexity of O(n) in
both the CC and DSM models.

One direction for future research is to improve the
RMR complexity of our algorithm. The only known
algorithm with a better RMR complexity uses unbounded
space and synchronization primitives stronger than Read
and Write, and is local-spin only in the CC model [8].

The RMR complexity of the class of Mutual Exclusion
algorithms that use only Read and Write has an Ω(log n)
lower bound [15]. Thus, another direction for future
research is to prove a better lower bound for the RMR
complexity of the class of k-Exclusion algorithms that use
only Read and Write (or prove that it does not exist).

Finally, we note that it might be interesting to study the
amortized RMR complexity of k-Exclusion algorithms.
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