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Abstract—The Network-on-Chip (NoC) approach for
designing (System-on-Chip) SoCs is currently used  for
overcoming the scalability and efficiency problems of
traditional on-chip interconnection schemes, such as shared
buses and point-to-point links. NoC design draws on
concepts from computer networks to interconnect
Intellectual Property (IP) cores in a structured and scalable
way, promoting design re-use. This paper presents the
design and evaluation of a parameterizable NoC router for
FPGAs. The importance of low area overhead for NoC
components is pivotal in FPGAs, which have limited logic
and routing resources. We obtain a low area router design
by applying optimizations in switching fabric and dual
purpose buffer/connection signals. We utilize a store and
forward flow control with input and output buffering. We
proffer a component library to increase re-use and allow
tailoring of parameters for application specific NoCs of
various sizes. The proposed router supports the mesh
architecture which is well known for its scalability and
simple XY routing algorithm. We present IP-core-to-router
mapping strategies for multi-local port routers that enable
ample opportunity to optimize the NoC for application
specific data traffic. A set of experiments were conducted to
explore the design space of the proposed NoC router using
different values of key router parameters: channel width
(flit size), arbitration scheme and IP-core-to-router
mapping strategy. Area and latency results from the
experiments are presented and analyzed. These results will
be useful to designers who want to implement NoC on
FPGA:s.

Index Terms—Network-on-Chip, NoC, System-on-chip, SoC,
FPGA, VHDL, evaluation, router, arbiter, flit size, multi-
local, mesh

I. INTRODUCTION

The complexity of a system on silicon is comparable
to other macro systems such as space shuttle or
skyscrapers, when measured in terms of the number of
basic elements intricately connected together, but at a
micro level. Moore’s law describes an important trend in
the history of the integrated circuit (IC): the number of
transistors that can be placed on an IC is increasing
exponentially, doubling approximately every two years.
This trend has continued for more than half a century.
Increasing  transistor  density, higher  operating
frequencies, shorter time-to-market and reduced product
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life cycle, characterize today's semiconductor industry [8].
As semiconductor technology evolves, electronic
industries continually push the envelope for greater
functional and performance capabilities in new electronic
systems. This is creating a continuing need for new
design methodologies and design space exploration.

An embedded system is a special-purpose computer
system designed to perform one or a few dedicated
functions, often with real-time computing constraints.
Embedded systems range from portable devices such as
digital watches, cameras and MP3 players, to large
stationary units like traffic lights and factory controllers.
Complexity varies from low, with a single micro-
controller chip, to very high with multiple intellectual
property (IP) cores and peripherals. The exponential
growth in chip density is opening the door for the
implementation of even larger and more complex systems,
where complete embedded systems can be built onto a
single chip. This paradigm shift is known as System-on-
Chip (SoC) and is becoming increasingly common and
complex. SoCs may contain many hardware and/or
software blocks, such as processors, DSPs, memories,
peripheral controllers, gateways, and other custom logic
blocks.

The on-chip interconnect architecture used in SoCs is
a key factor that impacts the overall performance. Since
the introduction of SoC concept, designers relied on a
custom-designed ad-hoc mixture of buses and dedicated
wires for on-chip interconnections. Dedicated wires are
effective for systems with a small number of cores, but
available routing resources are quickly used up as system
complexity grows. They also provide poor reusability and
flexibility. A shared bus is a set of wires common to
multiple cores, which increases both reusability and
scalability. This scheme works well for Master-Slave
communication patterns, where peripherals (slaves) wait
for data to be received or requested from a more complex
IP core (master). However, when there are several
masters in the system, contention creates a bottleneck
which gets worse as complexity grows. Although using
hierarchical bus models connected by bridges may reduce
some of these constraints, it also complicates protocols
while failing to fully eliminate the scalability problem.
Design and verification times also grow with SoC
complexity [13].
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With the current trend in integration of more complex
SoCs, there is a need for better communication
infrastructure on chip that will solve the scalability
problem by supporting multiple concurrent connections
between IP cores, allow reuse of pre-tested IP cores to
minimize design and verification times, all the while
maintaining a low area-overhead. Many architectural
templates have been proposed for hardware platforms for
future SoCs to provide standardized communication.
NoC has been introduced as a new interconnection
paradigm able to integrate IP cores in a structured and
scalable way [2][22]. This idea aims to allow system
modules to communicate with each other over an on-chip
network and has been gaining support world-wide. NoCs
are based on the concepts adopted on the building of
interconnection networks for parallel computers. Each
router has a set of ports which are used to connect routers
with its neighboring routers and with the IP cores of the
system. This solution also promotes independent design
of IP cores. There is a great need for research in hardware
implementation of NoC-based systems to determine the
feasibility of implementing various components, and also
to accurately determine the design tradeoffs  involved
in NoC implementation.

ASICs are increasingly being replaced by FPGA for
applications with low to medium volume, due to longer
design cycles and high cost [14]. FPGA's have also
continued to grow with the increase in chip density.
Modern FPGA's have various hardware and/or software
blocks embedded within them, such as DSP blocks,
memory, and even processors. These blocks, along with
customizable logic blocks, makes them the perfect
candidate for NoC designs. A fundamental difference
between ASICs and FPGAs is that wires in ASICs are
designed such that they match the requirements of a
particular design. Wire parameters such as length, width,
layout and the number of wires can be varied to
implement a desired circuit. Conversely, in an FPGA,
area is fixed and routing resources exist whether or not
they are used. The electrical characteristics of the FPGA
are fixed by the chip vendor, not by the user [3].
Exploiting the advantages of NoC in FPGAs for
implementing SoC designs is an active area of research
where the goal becomes implementing a circuit within
the limits of available resources. Hence, it is important to
design a generic light-weight router, whose area can be
traded off for performance in many different ways, to
meet application requirements.

This paper presents the design and evaluation of a
parameterizable NoC router for FPGAs. The importance
of low area overhead for NoC components is crucial in
FPGAs, which have fixed logic and routing resources.
We achieve a low area router design through
optimizations in switching fabric and dual purpose
buffer/connection signals. We use a store and forward
flow control with input and output buffering. We propose
a component library to increase re-use and allow tailoring
of parameters for application specific NoCs of various
sizes. Our router supports the mesh architecture which is
well known for its scalability and simple XY routing
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algorithm. We introduce IP-core-to-router mapping
strategies for multi-local port routers that provide ample
opportunity to optimize the NoC for application specific
data traffic. A set of experiments were conducted to
explore the design space of the proposed NoC router
using different values of key router parameters: channel
width (flit size), arbitration scheme and IP-core-to-router
mapping strategy. Area and latency results from the
experiments are presented and analyzed. These results
will be useful to designers who want to implement NoC
on FPGAs. This router was presented as a poster in a
conference and an abstract only of this paper was
previously published [23].

The rest of the paper is organized as follows: Section
2 presents an overview NoC and NoC router design.
Section 3 provides a description of related work. An
overview of the proposed router architecture is given in
Section 4. In Section 5, we present experimental
evaluation results for a stand-alone router used in a
variety of mesh configurations, with different
combinations of router parameter values. Section 6
concludes the paper with a summary and discussion of
future work.

Il. Noc BACKGROUND

A sample NoC-based system is shown in Figure 1. It
shows a mesh topology used to interconnect sixteen IP
cores. Each core is connected to the routing node (router)
using a network adapter. Each router is connected to its
nearest neighbor using a link.

+—— Core

Network Adapter
Routing Node
j¢— Link

B——D—%

B—%.

Go—L——
——%—%

Figure 1. NoC Mesh Architecture

Network parameters are an important research topic
among NoC designers. To further enhance performance,
the parameters of the NoC should be chosen based on the
specific application. Therefore, the goal in a general
network design is to leave as much designer flexibility as
possible. Not every network parameter can be created
flexible and many of the parameters are dependent on
each other. NoC implementation and evaluation can
provide insight into how to select these parameters,
although a better solution may be a flexible library of
interchangeable components. We have chosen to create
such a library using VHDL, and use an FPGA to provide
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fast prototyping  results. Due to timing, limitations had
to be set on the design space. Network parameters can be
broken into three groups [22]: Infrastructure,
Communication Mechanism, and Mapping.

Infrastructure aims to determine the network
architecture and includes topology, channel width,
buffering and floor planning. These parameters are all
application specific and should be left to the designer’s
discretion. Chanel width describes the size of the data
passed between routers. It is important since it directly
affects bandwidth but can lead to the side effects of
increased area and power consumption. Our library
allows for a parameterizable channel width. Topology
refers to the way routers are connected in the network. It
should be chosen to minimize area, while maximizing
utilization without causing bottlenecks. Saldana et al.
evaluate different topologies in terms of area and routing
resources [3]. Ring and star achieve slightly better results,
although both fail to provide solutions to the scalability
problem. As the number of nodes increases, ring suffers
large end to end delay and star suffers from a central
bottleneck. Narasimhan et al. compare the performance
of 2D torus to mesh, showing a slight edge for 2D torus
[4]. They however, do not compare the extra routing
resources needed or the increase area of each router due
to a more complex routing algorithm. We restrict the
topology to mesh, which is most common among FPGA
networks, but allow for various implementation sizes up
to an 8 x 8 network. With available FPGAs, it would be
impractical to build anything larger due to area and
routing resource constraints. Buffering defines the
approach used to store messages while they cannot be
scheduled. This has a serious impact on the area overhead
of the network, however, it can also have a serious
impact in reducing network latency. We use input and
output buffering to prevent head-of-line blocking. This
occurs when a packet or packets, experience blocking and
cause the blocking of later packets which could otherwise
be processed. The inclusion of an output buffer allows
the blocked packet to move out of the input buffer, to
unblock the later packets for processing. Buffer
allocation should be based on traffic patterns. The authors
of Hermes [8], design a generic router which has a
parameterizable buffer depth. They also include insight
through testing various buffer sizes for area and
performance values.  Floor planning involves the
placement of network components on the chip, it is more
important for ASIC when compared to FPGA
implementation.

Communication mechanism deals with flow control,
switching mode, switching mechanism, and routing
algorithm. These parameters are usually set when
designing the NoC platform. Flow Control deals with the
allocation of channels and buffers to data as it travels
from source to destination. The two extremes are packet
switching and circuit switching. In circuit switching,
there is a dedicated connection between the two modules
in which raw data can be transmitted freely. This
technique requires a setup time to build and tear down
connections, and its channel reservation nature often
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leads to idle times and causes unreliable blocking. The
only upside to this method is its ability to provide
guaranteed bandwidth during connection times. This
method does not scale as well. In packet switching, data
is broken into packets which carry routing information.
Packets can further be broken down into flow control
units (flits). Modules can send packets at any time and
there are often many different packets in flight at a given
time. The routers must process and redirect each packet
accordingly. The Switching mode defines how packets
move through the network. The most important are store-
and-forward (SAF), virtual cut-through (VCT), and
wormhole (WH). In SAF, a switch cannot forward a
packet until all its flits have been received. Therefore,
latency is proportional to packet size. In WH, the first flit
(header) determines the next hop and all remaining flits
follow. Therefore, latency is proportional to flit size. This
method combines packet switched and circuit switched
ideas but also leads to channel reservation. It also
requires a complex routing algorithm. VCT uses a
combination of both ideas to provide latency based on flit
size without idle times by guaranteeing buffering before
setting up the connection. However, this method uses
large number of buffers and very complex routing
algorithms making it unsuitable for light-weight networks.
We have chosen SAF for its light-weight algorithm and
to prevent channel reservation. Future testing may extend
flexibility to include WH as well. Switching refers to
how connections are made inside a router. We use a
partial crossbar scheme to save area. The routing
algorithm determines the path the packet will take. We
use XY routing for its simplicity and low area overhead.
This scheme also prevents livelock. Routing schemes can
also require congestion control and recovery mechanisms,
which can lead to added area overhead. We allow this to
be handled by the application layer.

Mapping determines how to integrate a given
application to the NoC platform and includes scheduling
and module mapping. Scheduling is a traditional
computer science topic but most work neglects inter-
processor communication. Arbitration schemes consider
priority of packets in routers among the network and
include static and dynamic. Dynamic arbitration makes a
decision at run-time and is more flexible, however also
requires a larger area. Our library provides a few
different component to allow for area and performance
trade-offs. Arbitration can also deal with preventing
deadlock. Module mapping aims at selecting IP modules
to different locations to minimize traffic. There
parameters are application specific and are both tested
later.

I1l. RELATED WORK

Our Router has been designed and synthesized on an
Altera Stratix 1l FPGA. Therefore, although there are a
number of ASIC and custom IC implementations, we
restrict our discussion of related work to FPGA
implementations. This section is intended to provide a
comprehensive review of the state of the art for NoC
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implementation on FPGAs, although the authors do not
make claims about its completeness.

The first working implementation of FPGAs was
presented by Marescaux et al. [6]. It has many faults
mainly large size, and a one dimensional architecture
which fails to provide a high degree of scalability. They
extend their work in [7], allowing a more flexible
architecture, but still suffering large area. They use VCT
flow control which is now [14] considered too area
intensive for FPGA platforms because of complex
routing logic without eliminating any buffer constraints.

Moraes et al, present Hermes [8], a router with
parameterizable data width and buffer depth. They
perform simulations on a 5 x 5 mesh to explore the
parameter buffer depth. They conclude with the notion
that increased buffer size reduced latency, but only to a
saturation point. Their design uses centralized arbitration
and routing units, which decreases area but stalls
performance as routing requests are queued to be handled
one at a time. Their design also suffers from a very low
clock speed. They later extend their work to provide an
automatic router generation and traffic analyzer [9].

A comparable router, RASoC [10], was presented by
Zeferino et al. The main difference being they use a WH
flow control. Performance differences are yet to be
compared and may be considered for future work as a
WH downfall is that it reserves channels which can cause
blocking. However, WH also requires complex routing
logic as well as extra bits in the datapath for framing.
They also used Altera FPGA to synthesize their 5-port, 8-
bit router which occupies 486 LE's and has a clock
frequency of approximately 57MHz. This area is quite
large for a router whose buffers are limited to 4 per port.

PNoc, proposed by Hilton et al in [13], gives us a
router with circuit switched flow control. They test their
router against bus based approaches to show
improvements. However, routing complexity grows as
the number of ports, or number of routers increase and
therefore reduces scalability. It also suffers typical CS
setup and teardown latencies and possible idle time
which could block other needed communication.

Sethuraman et al. propose LiPaR in [14], which was a
starting point of our design, but significant improvements
were added by us. They use SAF, input and output
buffering, and decentralized components. Optimizations
are made in the crossbar matrix to reduce area through
careful analysis of the XY routing algorithm. However,
we extend these optimizations to the arbitration unit.
They use a single 5x5 crosshar matrix for switching

rather then 5 5x1 partial crossbars leading to a larger area.

Their complex crossbar design results in a slower clock
speed and increased area.

They later propose multi-local port routers (MLPR) in
[15], which have the potential of improving area and
performance metrics. However, the authors fail to
provide any synthesis results to support their proposal.
Another extension the authors propose is Optimap [16],
an exhaustive CAD tool for mapping IP's and choosing
network size.
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Vestias et al. propose GNoC in [17], a generic router
which supports a range of routing, switching and
arbitration protocols. They create a tool for exploring the
sharing of some decentralized components to reduce area
that is based on the injection rate of ports. Unfortunately,
they lock all protocols to certain values and do not
explore them further. Their tool shows how they can save
area when injection rates are low but does not test to see
if performance is degraded.

MoCres, designed by Janarthanan et al. in [18], uses
complex VCT flow control and attempts to reduce area
by sacrificing area through centralizing components.
They create multi-clock domain to enable high clock
frequencies during transfers. Optimizations from XY
routing in the crossbar matrix have been extended to the
routing algorithm, and gave us the idea for a further
arbitration unit extension. We have also used their idea of
creating VHDL wrappers to simulate the stand-alone
router or routing configurations to compare parameters.

Our paper attempts to zero in on all the best router
characteristics from the above to make as many
optimizations in area as possible while concentrating on
system performance. We notice a lack of evaluation and
comparison of network parameters on FPGAs and try to
test accordingly. Most work has focused on dynamic
arbitration schemes, mainly round robin (RRA), which
may be too area consuming when implementing
decentralized components. We see that the data width
size is often set to 8-bit flits as many papers assume a
size without analysis. Most importantly, we agree with
the opportunity to optimize data traffic through use of
MLPR. Our plan is to present area utilization and
performance values for the above network parameters to
help future designers make accurate decisions for their
computing needs.

IV. ROUTER ARCHITECTURE

In this section we describe the architecture of the
proposed parameterizable router for NoC implementation
on FPGAs. The router has 4 ports, North, East, South,
and West for communication with neighboring routers.
There can also be anywhere from 1 to 4 Local ports for
connecting to IP cores. FIFO buffers were created at the
input and output ports for temporary storage.
Communication between them is established by use of a
two-way handshake of request/grant signals controlled by
logic controllers. These signals are also used for
configuration of the partial crossbar switch to reduce area
overhead. The partial crossbar switch serves as the data
connection for input to output port. We also use the
empty/full status signals from the FIFO buffers as
request/grant signals for inter/intra-router communication
(Figure 2). Further details are provided in the following
paragraphs.

Buffer size has been set to a depth of 8 bytes. This
parameter has been previously explored in related work
[8] and it was shown that a buffer size of 8 bytes gives
reasonably good area and latency results. Flit size is
parameterizable, with 8 bits being the smallest possible
size. The first flit, known as the header, contains routing
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coordinates used to identify which router and which local
port the packet is destined for. With each port capable of
having up to 4 local ports, the least significant 2 bits are
used to identify between them. That leaves 6 bits for
router identification, which allows for an 8 x 8 mesh. Our
implementation does not include High Level Protocols
(HLP), but could easily be implemented on an application
level if necessary.

The block diagram of the proposed router is shown in
Figure 3. Each port module is designed the same, and
therefore, includes the requests for all output channels
even though an input channel will never request its own
output channel. Figure 4 shows the interaction among
input and output channels within the router. Each input
and output channel runs its own FSM logic and hence can
request and set up concurrent connections. Below we will
include details on the I/O channels and the crossbar
switch designs.

Router 1 Router 2
East Port West Porl
Sending out Sending in
emply in N empty out
data out (8bits) —’:‘_> data in (8bits)
Output fo Input
L Input to Output
f::::'"gu't" 2| Sending out
y ol — | emptyin
datain (8bits) =T data out (8bits)

Figure 2. Intra-router Connections

A. Input Controller

All input channel modules are generic and include a
buffer unit of depth 8 and a logic controller. The empty
signal from the buffer enables outside data transfers.
Once the whole packet has been transferred, the full
signal from the buffer enables the input controller to
decide its next hop from information in the header. It then
sends a request signal to the appropriate port's output
logic controller. The packet must wait for a grant from
the output port before allowing the whole packet to be
transferred, one flit at a time. Once the input buffer
empties, the whole process can start over again.

B. Switching Mechanism

The crossbar switch is a set of demultiplexers having
an interconnection allowing all possible connections
between input and output channels. Three optimizations
have been made in the crossbar switch. First, it uses a
partial scheme, which includes one 5 by 1 unit for each
output rather than one 5 by 5 unit for all outputs, for a 5
port router. Each output is connected to a different port.
Next, there are no multiplexers in the design. The input
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data is connected to all partial crossbar units which will
choose the appropriate data for the output. The fact that at
a time, the output channel can only serve one input
request is exploited here. The final optimizations are
made in the partial units of the north and south. Though
analysis of the XY routing algorithm, we can conclude
that these units will never receive data from the east or
west. This reduces the inputs of all of these units by two.
All optimizations reduce the area without effecting
performance of the router.

_________ -l \

- North Port |
Diata i (3bil) _ Datatonorth(8bit)
sending = Datafromnorth8ket)
cmpey In >~

- | EastPort ¥
Dt ot (St 4
sending o i
empey out

_ - e

s | South Port NN i e

I -
* ~-
- West Port |
Full Switch
_ B .
- Local 1 Port v
- " ——
- Local2Port| %~ ¥/ A
|

_ -l ¢

- Local 3 Port | ~

— »

- Local 4 Port |

Figure 3. Block diagram of a 4-local port router

C. Output Controller

All output channel modules are generic and include a
buffer unit of depth 8 and a logic controller. The empty
signal from the buffer allows a grant to be made
assuming there is a request from an input channel, while
the full signal allows the output controller to send if
output is ready. The output logic controller includes an
arbitration unit which makes decisions on which port to
grant access in the case when more than one port sends a
request. Our router employs a variety of schemes
including both static and dynmamic. With an arbitration
unit in each port, it is important to reduce logic area,
while maintaining high performance. We will discuss
these schemes in greater detail later. Once a grant has
been made, it is also used to configure the partial crossbar
matrix. The buffer must then empty before allowing
arbitration to make another grant. During this time, other
requests can be made which may affect which port
receives the next grant. Arbitration may play an
important role in preventing deadlock, a quality of
service (QoS) that XY routing does not provide.

D. XY Routing

Each router contains a routing coordinate. This
coordinate is relative to its position in the mesh. Once an
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input buffer is full, the header can be compared to the
coordinate. It first compares the 3 bits in the header to 3
bits in the coordinate to find its vertical displacement. If
the header is greater, it is forwarded to the north, less, it
is forwarded south, and equal, its vertical displacement is
already correct. Next, the 3 header bits declaring is
horizontal displacement are compared to the coordinate.
The same process is used, until the packet arrives at the
correct router. Once there, we use the last two header bits
to determine if it should be forwarded to local port 1, 2, 3,
or 4. Since the vertical displacement is taken care of first,
we can conclude that if a packet arrives from the east or
west, it can never be delivered to the north or south. Its
vertical displacement is correct and it must either be
forwarded horizontally, or to a local port. This leads to
optimization and saves significant area as the crossbar
matrix can often be the largest component of the router.
XY routing is free of livelock and starvation.
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Figure 4. Interaction among I/O Channels

E. Arbitration

In static arbitration schemes, the priority of each port
is chosen during design. First, we use a generic fixed
scheme where priority is given to the north first, and
degrades clockwise. Then we design a fixed scheme that
varies for each port, and also includes optimizations in
the north and south due to the XY routing algorithm.
Static schemes cannot avoid deadlock. In dynamic
arbitration schemes, the priority of each port is calculated
during run-time by the unit. We include 3 counting
schemes and a coin passing scheme. The counting
schemes all have similar area results, but their
performance depends on the application. The first scheme
gives priority to the port that has been busiest (sending
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the most requests). The Next scheme gives priority to the
port that has been waiting the longest. Here, the
arbitration unit counts cycles after a request has been
received for all ports. The last counting scheme gives
priority to the port that sends the least packets (opposite
to the first scheme). Finally, in coin passing scheme, one
input port is assigned the coin. The port assigned with the
coin, has priority, until it has been granted. Then the coin
is passed to the next port, clockwise. If the port with the
coin is not making a request, the unit grants the request of
the port closes to it, again clockwise. This scheme is
much like round robin used in many FPGA NoC router
implementations.

dala
43 8 8 1 8
north local east south west
| |
I ) 4 |l
|
| S II
| A
f % |
3x1 north| | 5x1local | | 5x1 east | [3x1 scuth| | 5x1 west
demux demux demux demux deTux
north local cast south weost
N 'L? '*\L 'x/l* 'JJ*—

Figure 5. Proposed Switching Fabric for Router

V. EXPERIMENTAL EVALUATION RESULTS

In this section we first present the experimental
framework for exploring NoC router parameters. We then
present a summary and analysis of synthesis and
simulation results. We use Altera Quartus to synthesize
the NoC-based system to obtain area and clock frequency
values [20]. We chose to target a popular Stratix |1 FPGA
family, device EPIS40F1508C5. We use Mentor
Graphics Modelsim [21], to model IP traffic and simulate
activity. All router components and test bench wrappers
have been implemented in VVHDL. Components were
originally tested for functionality in Quartus environment.
The router coordinates are set before simulation. We vary
values of the following three  parameters: arbitration
type, flit size, and IP-core-placement (IP-core-to-router
mapping). Results of simulations focused on overall
latency in terms of cycles. Using synthesis results,
latency was later calculated in units of microseconds.
Average throughput was also calculated (although not
shown) using total number of packets sent.
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Local 00 Local 00
IP1 P2
r

Router
000000

Local 01 Local 01
P4 IP3

Figure 6. Single Router Configuration

A. Experimental Evaluation Framework

When setting up experiments for evaluating the
proposed parameterizable router, we could not find
commonly accepted techniques for router evaluation.
This aspect of research is still work in progress with no
commonly accepted benchmarks for NoC/router
evaluation [22].Therefore, we created test scenarios to
model NoC network traffic to allow mesh architecture
and stand-alone router evaluation, and interface with our
network protocols.

For exploring different arbitration schemes, we
implemented a wrapper around our stand-alone router
with different arbitration units embedded within. This
wrapper focused on sending packets to the local node to
create arbitration dilemmas, although packets were sent
and received by all ports. In total 111 packets were sent
out from various ports in groups from as small as 1 to as
large as 10.

Local 00 Local 00

IP1 IP2
OO ;. DO
Router e ._| Router
000000 | 000001
y s
Local 01 Local 01
IP 4 ‘ IP3

Figure 7. 1x2 Mesh Configuration

Next, for exploring effects of using different flit sizes,
we implemented various wrappers around our stand-
alone router with different datapath sizes (flit size). This
wrapper was based on the traffic in the arbiter type test,
but with larger packet sizes. In total 544 packets were
sent out from various ports in groups from as small as 16
to as large as 64. As the flit size was increased, the test
was modified to send less packets to keep the amount of
data transferred the same. For example, if 544 8-bit
packets were sent, only half that (272 packets) would be
needed for 16-bit flits.

Finally, we implemented various wrappers around
different configurations of mesh size, number of local
ports and mapping. This wrapper was designed to model
a 4 IP core application. The 3 basic configurations
without mapping are shown in figures 6, 7, and 8. In total
201 packets were injected into the mesh through local
ports. IP core 1 acted as the central processing node
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sending a total of 160 packets to IPs 2 and 3. IP cores 2
and 3 acted as custom logic blocks receiving 20 packets
at a time and responding 5 packets to IP 4. IP core 4
acted as an output display of some sort, receiving the
resulting 5 packets from IPs 2 and 3 each stage in the

application. The application ended with IP core 4
sending a final packet to IP core 1.
Local 00| Local 00
IP 1 P2
—,
Router Router
001000 |~ *| 001001
B 4 1
Local 00| Local 00
IP 3 P4
' v, Y , y
Router | Router
000000 000001

Figure 8. 2x2 Mesh Configuration

B. Area Results

The area results are shown in Figures 9, 10, and 11.
Each parameter has two associated values, corresponding
to synthesis optimizing for area (red) and synthesis
optimizing for speed (blue). In most cases, when Quartus
Il is optimizing for speed, it tries to get rid of slow
memory bits and LUTs as memory which can be very
area expensive which can in turn slow down the design. It
is important to note that this device has 384 M512's, 183
M4K's and 4 M1M rams, so any memory bits consumed
by the routers buffering requirements should not
constrain the design of the SoC. Our 5-port, 8-bit router
consumes only 598 (1.45%) LEs, running at a frequency
of over 100MHz, making it one of the most competitive
FPGA implementations with all standard features. For
arbitration schemes, static arbiters are much smaller, with
the round robin like arbiter being the closest dynamic
scheme, a couple hundred LE's larger. To no surprise, we
observe increases in area as flit size increases, however
they are not as significant as expected. In the
configuration test, it can be seen that using fewer routers
(although they have more local ports) reduces the overall
network area.

Woptimized for area

Woptimized for speed

custom  custom

fixed count count count coin
schemel scheme? scheme3  passing each port

ArhiterType

Figure 9. Effects of Arbiter Type on Area Utilization
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C. Effects of Arbitration Scheme on Latency

Figure 12 shows the latency results for different
arbitration schemes. The dynamic schemes outperformed
the static fixed scheme, but not by much. However when
each port has its fixed scheme custom designed, the gap
between them closes. Overall the fixed scheme should be
preferred because it gives good latency and area results.
If the chance of deadlocks is high, then dynamic counting
and coin passing schemes should be preferred even
though they consume more area.

s000 1~

4500 17

4000 1

3500

3000

2500 B optimized for area

Area (LE's)

2000 ¥ B optimized for speed

1500

1000

500 1

Flitsize

Figure 10. Effects of Flit Size on Area Utilization

D. Effects of Flit Size on Latency

Figure 13 shows latency results for different flit sizes.
As flit size is increased, the latency decreases drastically.
Note that when flit size is doubled, latency is reduced by
approximately half. Current FPGAs restrict synthesis for
larger flit sizes due to 1/O pin restrictions, but it would be
interesting to see how long this trend continues before a
saturation point is reached. Based on these results we
recommend using the largest flit possible given the area
constraints for NoC implementation on FPGA.

E. Effects of Configuration on Latency

Figure 14 shows latency results for different
configurations  (IP-core-to-router mapping schemes).
Although adding more local ports increases router
congestion, it leads to decreased latency as packets did
not have as many hops to travel. The most important
result this paper presents is the importance of multi-
router connections to a single IP core. This case explores
connecting an IP core to more than 1 router, in this case
connecting the main IP core (busiest) to both routers in a
1x2 mesh. This method shortens the number of hops for
the main communication node, while decreasing router
congestion. It was also important in this case, as IP core 1
was communicating with 2 nodes, both in separate
direction. Therefore, IP core 1 was able to send packets
to one core while waiting for a routing decision to be for
connection to another core (1 X 2 map 2 extended in
Figure 14).

©2014 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 9, NO. 3, MARCH 2014

3000 1

2500 1
2000 17

1500
Woptimized for ares

Area (LE's)

1000 Boptimized for speed

sa0 1

0 T T T T T f
single  1x2mapl 1xZmap2 2xZmapl 2xZmapl 1xZmapl
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Figure 11. Effects of IP Core Placement on Area Utilization

V. CONCLIUSION

This paper presented the design and evaluation results
for a parameterizable NoC router for FPGAs. A NoC
router platform was created with flexible parameters such
as mesh size, number of local ports, channel size, and
arbitration type. Our 5-port, 8-bit router consumes only
598 LE s running at a frequency of over 100MHz,
making it one of the most competitive FPGA
implementations with all standard features. Experimental
evaluation results show that multiple local-port routers
reduce overall network area and latency for our SAF
router. The severity of latency and area trade-offs for
different arbiter types, flit sizes and configurations have
been presented. We expect that the evaluation results
presented here will be useful to designers who want to
implement NoC-based systems on FPGASs.

Lavemcy (wi)
-

Bepmeedforven

Boptemaed for speed
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Figure 12. Effects of Arbiter Type on Latency
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Figure 13. Effects of Flit Size on Latency

Follow wup research can wuse the developed
infrastructure to implement and evaluate NoC
architectures with different communication mechanism
parameters (switching mode, routing algorithm) to further
decrease area and/or increase performance. Currently,
another member of our research group is working on the
design of a network interface to allow an IP core running
Wishbone protocols to connect to our router which would
allow router evaluation using real world applications.
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R d
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Figure 14. Effects of IP Core Placement on Latency
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