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Abstract—The Network-on-Chip (NoC) approach for 
designing (System-on-Chip) SoCs is currently used   for 
overcoming the scalability and efficiency problems of 
traditional on-chip interconnection schemes, such as shared 
buses and point-to-point links. NoC design draws on 
concepts from computer networks to interconnect 
Intellectual Property (IP) cores in a structured and scalable 
way, promoting design re-use. This paper presents the 
design and evaluation of a parameterizable NoC router for 
FPGAs. The importance of low area overhead for NoC 
components is pivotal in FPGAs, which have limited logic 
and routing resources. We obtain a low area router design 
by applying optimizations in switching fabric and dual 
purpose buffer/connection signals. We utilize a store and 
forward flow control with input and output buffering. We 
proffer a component library to increase re-use and allow 
tailoring of parameters for application specific NoCs of 
various sizes. The proposed router supports the mesh 
architecture which is well known for its scalability and 
simple XY routing algorithm. We present IP-core-to-router 
mapping strategies for multi-local port routers that enable 
ample opportunity to optimize the NoC for application 
specific data traffic. A set of experiments were conducted to 
explore the design space of the proposed NoC router using 
different values of key router parameters: channel width 
(flit size), arbitration scheme and IP-core-to-router 
mapping strategy. Area and latency results from the 
experiments are presented and analyzed. These results will 
be useful to designers who want to implement NoC on 
FPGAs.   
 
Index Terms—Network-on-Chip, NoC, System-on-chip, SoC, 
FPGA, VHDL, evaluation, router, arbiter, flit size, multi-
local, mesh 
 

I. INTRODUCTION 

The complexity of a system on silicon is comparable 
to other macro systems such as space shuttle or 
skyscrapers, when measured in terms of the number of 
basic elements intricately connected together, but at a 
micro level. Moore’s law describes an important trend in 
the history of the integrated circuit (IC): the number of 
transistors that can be placed on an IC is increasing 
exponentially, doubling approximately every two years. 
This trend has continued for more than half a century. 
Increasing transistor density, higher operating 
frequencies, shorter time-to-market and reduced product 

life cycle, characterize today's semiconductor industry [8]. 
As semiconductor technology evolves, electronic 
industries continually push the envelope for greater 
functional and performance capabilities in new electronic 
systems. This is creating a continuing need for new 
design methodologies and design space exploration. 

An embedded system is a special-purpose computer 
system designed to perform one or a few dedicated 
functions, often with real-time computing constraints. 
Embedded systems range from portable devices such as 
digital watches, cameras and MP3 players, to large 
stationary units like traffic lights and factory controllers. 
Complexity varies from low, with a single micro-
controller chip, to very high with multiple intellectual 
property (IP) cores and peripherals. The exponential 
growth in chip density is opening the door for the 
implementation of even larger and more complex systems, 
where complete embedded systems can be built onto a 
single chip. This paradigm shift is known as System-on-
Chip (SoC) and is becoming increasingly common and 
complex. SoCs may contain many hardware and/or 
software blocks, such as processors, DSPs, memories, 
peripheral controllers, gateways, and other custom logic 
blocks. 

The on-chip interconnect architecture used in SoCs is 
a key factor that impacts the overall performance. Since 
the introduction of SoC concept, designers relied on a 
custom-designed ad-hoc mixture of buses and dedicated 
wires for on-chip interconnections. Dedicated wires are 
effective for systems with a small number of cores, but 
available routing resources are quickly used up as system 
complexity grows. They also provide poor reusability and 
flexibility. A shared bus is a set of wires common to 
multiple cores, which increases both reusability and 
scalability. This scheme works well for Master-Slave 
communication patterns, where peripherals (slaves) wait 
for data to be received or requested from a more complex 
IP core (master). However, when there are several 
masters in the system, contention creates a bottleneck 
which gets worse as complexity grows. Although using 
hierarchical bus models connected by bridges may reduce 
some of these constraints, it also complicates protocols 
while failing to fully eliminate the scalability problem. 
Design and verification times also grow with SoC 
complexity [13]. 
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fast prototyping   results. Due to timing, limitations had 
to be set on the design space. Network parameters can be 
broken into three groups [22]: Infrastructure, 
Communication Mechanism, and Mapping. 

Infrastructure aims to determine the network 
architecture and includes topology, channel width, 
buffering and floor planning. These parameters are all 
application specific and should be left to the designer’s 
discretion. Chanel width describes the size of the data 
passed between routers. It is important since it directly 
affects bandwidth but can lead to the side effects of 
increased area and power consumption. Our library 
allows for a parameterizable channel width. Topology 
refers to the way routers are connected in the network. It 
should be chosen to minimize area, while maximizing 
utilization without causing bottlenecks. Saldana et al. 
evaluate different topologies in terms of area and routing 
resources [3]. Ring and star achieve slightly better results, 
although both fail to provide solutions to the scalability 
problem. As the number of nodes increases, ring suffers 
large end to end delay and star suffers from a central 
bottleneck. Narasimhan et al. compare the performance 
of 2D torus to mesh, showing a slight edge for 2D torus 
[4]. They however, do not compare the extra routing 
resources needed or the increase area of each router due 
to a more complex routing algorithm. We restrict the 
topology to mesh, which is most common among FPGA 
networks, but allow for various implementation sizes up 
to an 8 x 8 network. With available FPGAs, it would be 
impractical to build anything larger due to area and 
routing resource constraints. Buffering defines the 
approach used to store messages while they cannot be 
scheduled. This has a serious impact on the area overhead 
of the network, however, it can also have a serious 
impact in reducing network latency. We use input and 
output buffering to prevent head-of-line blocking. This 
occurs when a packet or packets, experience blocking and 
cause the blocking of later packets which could otherwise 
be processed. The inclusion of an output buffer allows 
the blocked packet to move out of the input buffer, to 
unblock the later packets for processing. Buffer 
allocation should be based on traffic patterns. The authors 
of Hermes [8], design a generic router which has a 
parameterizable buffer depth. They also include insight 
through testing various buffer sizes for area and 
performance values.  Floor planning involves the 
placement of network components on the chip, it is more 
important for ASIC when compared to FPGA 
implementation. 

Communication mechanism deals with flow control, 
switching mode, switching mechanism, and routing 
algorithm. These parameters are usually set when 
designing the NoC platform. Flow Control deals with the 
allocation of channels and buffers to data as it travels 
from source to destination. The two extremes are packet 
switching and circuit switching. In circuit switching, 
there is a dedicated connection between the two modules 
in which raw data can be transmitted freely. This 
technique requires a setup time to build and tear down 
connections, and its channel reservation nature often 

leads to idle times and causes unreliable blocking. The 
only upside to this method is its ability to provide 
guaranteed bandwidth during connection times. This 
method does not scale as well. In packet switching, data 
is broken into packets which carry routing information. 
Packets can further be broken down into flow control 
units (flits). Modules can send packets at any time and 
there are often many different packets in flight at a given 
time. The routers must process and redirect each packet 
accordingly. The Switching mode defines how packets 
move through the network. The most important are store-
and-forward (SAF), virtual cut-through (VCT), and 
wormhole (WH). In SAF, a switch cannot forward a 
packet until all its flits have been received. Therefore, 
latency is proportional to packet size. In WH, the first flit 
(header) determines the next hop and all remaining flits 
follow. Therefore, latency is proportional to flit size. This 
method combines packet switched and circuit switched 
ideas but also leads to channel reservation. It also 
requires a complex routing algorithm. VCT uses a 
combination of both ideas to provide latency based on flit 
size without idle times by guaranteeing buffering before 
setting up the connection. However, this method uses 
large number of buffers and very complex routing 
algorithms making it unsuitable for light-weight networks. 
We have chosen SAF for its light-weight algorithm and 
to prevent channel reservation. Future testing may extend 
flexibility to include WH as well. Switching refers to 
how connections are made inside a router. We use a 
partial crossbar scheme to save area. The routing 
algorithm determines the path the packet will take. We 
use XY routing for its simplicity and low area overhead. 
This scheme also prevents livelock. Routing schemes can 
also require congestion control and recovery mechanisms, 
which can lead to added area overhead. We allow this to 
be handled by the application layer. 

Mapping determines how to integrate a given 
application to the NoC platform and includes scheduling 
and module mapping. Scheduling is a traditional 
computer science topic but most work neglects inter-
processor communication. Arbitration schemes consider 
priority of packets in routers among the network and 
include static and dynamic. Dynamic arbitration makes a 
decision at run-time and is more flexible, however also 
requires a larger area. Our library provides a few 
different component to allow for area and performance 
trade-offs. Arbitration can also deal with preventing 
deadlock. Module mapping aims at selecting IP modules 
to different locations to minimize traffic. There 
parameters are application specific and are both tested 
later. 

III. RELATED WORK 

Our Router has been designed and synthesized on an 
Altera Stratix II FPGA. Therefore, although there are a 
number of ASIC and custom IC implementations, we 
restrict our discussion of related work to FPGA 
implementations. This section is intended to provide a 
comprehensive review of the state of the art for NoC 
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implementation on FPGAs, although the authors do not 
make claims about its completeness. 

The first working implementation of FPGAs was 
presented by Marescaux et al. [6]. It has many faults 
mainly large size, and a one dimensional architecture 
which fails to provide a high degree of scalability. They 
extend their work in [7], allowing a more flexible 
architecture, but still suffering large area. They use VCT 
flow control which is now [14] considered too area 
intensive for FPGA platforms because of complex 
routing logic without eliminating any buffer constraints. 

Moraes et al, present Hermes [8], a router with 
parameterizable data width and buffer depth. They 
perform simulations on a 5 x 5 mesh to explore the 
parameter buffer depth. They conclude with the notion 
that increased buffer size reduced latency, but only to a 
saturation point. Their design uses centralized arbitration 
and routing units, which decreases area but stalls 
performance as routing requests are queued to be handled 
one at a time. Their design also suffers from a very low 
clock speed. They later extend their work to provide an 
automatic router generation and traffic analyzer [9]. 

A comparable router, RASoC [10], was presented by 
Zeferino et al. The main difference being they use a WH 
flow control. Performance differences are yet to be 
compared and may be considered for future work as a 
WH downfall is that it reserves channels which can cause 
blocking. However, WH also requires complex routing 
logic as well as extra bits in the datapath for framing. 
They also used Altera FPGA to synthesize their 5-port, 8-
bit router which occupies 486 LE's and has a clock 
frequency of approximately 57MHz. This area is quite 
large for a router whose buffers are limited to 4 per port.  

PNoc, proposed by Hilton et al in [13], gives us a 
router with circuit switched flow control. They test their 
router against bus based approaches to show 
improvements. However, routing complexity grows as 
the number of ports, or number of routers increase and 
therefore reduces scalability. It also suffers typical CS 
setup and teardown latencies and possible idle time 
which could block other needed communication. 

Sethuraman et al. propose LiPaR in [14], which was a 
starting point of our design, but significant improvements 
were added by us. They use SAF, input and output 
buffering, and decentralized components. Optimizations 
are made in the crossbar matrix to reduce area through 
careful analysis of the XY routing algorithm. However, 
we extend these optimizations to the arbitration unit.   
They use a single 5x5 crossbar matrix for switching 
rather then 5 5x1 partial crossbars leading to a larger area. 
Their complex crossbar design results in a slower clock 
speed and increased area. 

They later propose multi-local port routers (MLPR) in 
[15], which have the potential of improving area and 
performance metrics. However, the authors fail to 
provide any synthesis results to support their proposal. 
Another extension the authors propose is Optimap [16], 
an exhaustive CAD tool for mapping IP's and choosing 
network size.   

Vestias et al. propose GNoC in [17], a generic router 
which supports a range of routing, switching and 
arbitration protocols. They create a tool for exploring the 
sharing of some decentralized components to reduce area 
that is based on the injection rate of ports. Unfortunately, 
they lock all protocols to certain values and do not 
explore them further. Their tool shows how they can save 
area when injection rates are low but does not test to see 
if performance is degraded. 

MoCres, designed by Janarthanan et al. in [18], uses 
complex VCT flow control and attempts to reduce area 
by sacrificing area through centralizing components. 
They create multi-clock domain to enable high clock 
frequencies during transfers. Optimizations from XY 
routing in the crossbar matrix have been extended to the 
routing algorithm, and gave us the idea for a further   
arbitration unit extension. We have also used their idea of 
creating VHDL wrappers to simulate the stand-alone 
router or routing configurations to compare parameters. 

Our paper attempts to zero in on all the best router 
characteristics from the above to make as many 
optimizations in area as possible while concentrating on 
system performance. We notice a lack of evaluation and 
comparison of network parameters on FPGAs and try to 
test accordingly. Most work has focused on dynamic 
arbitration schemes, mainly round robin (RRA), which 
may be too area consuming when implementing 
decentralized components. We see that the data width 
size is often set to 8-bit flits as many papers assume a 
size without analysis. Most importantly, we agree with 
the opportunity to optimize data traffic through use of 
MLPR. Our plan is to present area utilization and 
performance values for the above network parameters to 
help future designers make accurate decisions for their 
computing needs. 

IV. ROUTER ARCHITECTURE 

In this section we describe the architecture of the 
proposed parameterizable router for NoC implementation 
on FPGAs. The router has 4 ports, North, East, South, 
and West for communication with neighboring routers. 
There can also be anywhere from 1 to 4 Local ports for 
connecting to IP cores. FIFO buffers were created at the 
input and output ports for temporary storage. 
Communication between them is established by use of a 
two-way handshake of request/grant signals controlled by 
logic controllers. These signals are also used for 
configuration of the partial crossbar switch to reduce area 
overhead. The partial crossbar switch serves as the data 
connection for input to output port. We also use the 
empty/full status signals from the FIFO buffers as 
request/grant signals for inter/intra-router communication 
(Figure 2). Further details are provided in the following 
paragraphs.  

Buffer size has been set to a depth of 8 bytes. This 
parameter has been previously explored in related work 
[8] and it was shown that a buffer size of 8 bytes gives 
reasonably good area and latency results. Flit size is 
parameterizable, with 8 bits being the smallest possible 
size. The first flit, known as the header, contains routing 
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Figure 13. Effects of Flit Size on Latency 

Follow up research can use the developed 
infrastructure to implement and evaluate NoC 
architectures with different communication mechanism 
parameters (switching mode, routing algorithm) to further 
decrease area and/or increase performance. Currently, 
another member of our research group is working on the 
design of a network interface to allow an IP core running 
Wishbone protocols to connect to our router which would 
allow router evaluation using real world applications.   

 
Figure 14. Effects of IP Core Placement on Latency 
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