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Abstract—In order to improve the accuracy of the repetitive 
motion trajectory tracking control for industrial robots of 
less rapid demanding, an online adaptive PD iterative 
learning control algorithm is proposed. In order to improve 
the accuracy, PD parameters are optimized online at each 
sampling time with the advantage of genetic algorithm for 
global optimization. In order to avoid overshoot, penalty 
function is used and overshoot is regard as one of the best 
indicators. Finally, this algorithm is tried in PUMA560. 
Simulation analysis shows that the proposed algorithm is 
better than unmodified in accuracy. 
 
Index Terms—PD iterative learning control, genetic 
algorithm, adaptive online, PUMA560 
 

I.  INTRODUCTION 

Iterative Learning Control (ILC) method was proposed 
by Arimoto et al in 1984 which successfully established 
the ILC framework in the control systems community by 
defining the principles that underlie “learning control” [1]. 
Significant achievements are made in the development of 
ILC, which is applied in a wide range of industries [2, 3], 
especially in robot [4, 5]. Iterative learning control (ILC) 
is an effective control tool for improving the transient 
response and tracking performance of uncertain dynamic 
systems that operate repetitively. Systems typically 
treated under the ILC framework are repetitively operated 
dynamic systems, such as a robotic manipulator in a 
manufacturing environment or a chemical reactor in a 
batch processing application [6]. Objective of ILC is to 
make the system tracking error gradually decreases after 
repeated running, and fully track the desired trajectory 
ultimately. The experience of the previous control of the 
control system is used. The deviation of actual output 
information measured and the target track given in 
advance is used to correct the not ideal control signals. 
An ideal input is founded by a relatively simple learning 
algorithm to produce the desired movement of the 
controlled object [7, 8].  

Significant progresses are made in convergence, 
robustness and applied research on learning [9, 10]. Some 
popular approaches are proposed which include the 
design of D-type compensators, and PID-type 
compensation strategies [1]. Model based algorithms 
have also been proposed [11]. However, most of 
algorithms with guaranteed convergence are only 
applicable to linear plants. This is a severe limitation 

because the dynamics of repetitive systems can be highly 
non-linear. So a new class of ILC algorithms that are able 
to cope with nonlinearities is necessary to be derived. 
And most of the process variables are subject to certain 
constraints that are set by safety considerations or 
physical constraints [12]. Hence algorithms that can 
handle these hard constraints in a straightforward manner 
are needed. External disturbances and noises should 
always been taking under consideration. Learning 
algorithms based on optimality can be proved to be a very 
useful solution to the above problem. The use of 
optimality criteria in ILC is introduced by many 
researchers in the past [13, 14], which offers satisfactory 
results in terms of convergence and tracking of the 
reference signal for a range of dynamical systems. 
However, most of those algorithms above still work only 
for unconstrained linear dynamical systems. 

In recent years, algorithms working for constrained 
non-linear dynamical systems are investiged by many 
researchers [15, 16]. To solve the ILC problem for 
nonlinear systems whose nonlinearities are not Lipschitz 
continuous or not linearly parameterizable, a powerful 
strategy is to apply fuzzy system [17] or neural network 
[18] as a nonlinear approximator when designing the 
iterative learning controller. Iterative learning control is a 
control methodology for tracking a reference trajectory in 
repetitive systems which is used to be a non-linear 
dynamical system, those found in applications such as 
robotics, semiconductors, and chemical processes. A 
number of surveys [19, 20] have effectively covered the 
novel ideas and development of ILC methodology [21].In 
order to improve the accuracy of the tracking control, 
many algorithms are proposed. Genetic Algorithms are 
proposed as a method to implement optimality based 
Iterative Learning Control algorithms byVasilis Hatzikos 
and David Owens in 2002[22]. A convex optimization 
approach to robust iterative learning control is researched 
for linear systems with time-varying parametric 
uncertainties [23]. 

The main contribution of this paper is the introduction 
of novel Genetic Algorithm (GA) framework for the 
solution of the PD Type ILC problem based on optimality. 
In order to improve the accuracy, PD parameters are 
optimized online at each sampling time with the 
advantage of genetic algorithm for global optimization. In 
order to avoid overshoot, penalty function is used and 
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Figure 2.  D-H coordinates. 

overshoot is regard as one of the best indicators. Finally, 
this algorithm is tried in PUMA560. 

The paper is organized as follows. In Section 2, the 
kinematics and dynamics of PUMA560 are discussed. 
The introduction of novel Genetic Algorithm is discussed 
in Section 3. In Section 4, PD ILC based on adaptive on-
line tuning genetic algorithm is investiged.  Finally, 
simulation analysis of PUMA560 trajectory control is 
discussed in Section 5. 

II.  KINEMATICS AND DYNAMICS OF PUMA560 

PUMA560 is an advanced industrial robot which is 
produced by Unimation InC in U.S... It is a general 
manipulator with 6 freedom degrees including six 
rotatable joints. These joints are combined to mimic 
human waist, shoulder, elbow and wrist movements. 
PUMA560 is widely applied by the imitate ability.  The 
arm can reach any point within the operating range in a 

predetermined position with 6 freedom degrees. 
PUMA560 can perform a variety of tasks with the 
flexibility. So PUMA560 is an ideal research and 
laboratory equipment. It consists of three basic 
components: robots, controllers and teach pendant.  

A. Kinematics 
The Denavit-Hartenberg (D-H) convention is a method 

of drawing robot manipulators free body diagrams. 
Denvit-Hartenberg (D-H) convention study is necessary 
to calculate forward kinematics in serial robot 
manipulator. The coordinate system of the robot's D-H is 
defined as shown in Figure 1. The robot's D-H parameters 
are shown in Table 1[24]. 
 

End coordinates (px, py, pz) of robot arm can be 
calculated by the following when the angle value of each 
joint is known. Equations solving end coordinates (px, py, 
pz) follow as: 

 

[ ] 12234233221 sdsdcacacpx −−+=          (1) 

[ ] 12234233221 cdsdcacaspy +−+=            (2) 

23423233 cdsasapz −−−=                  (3) 

Angle value of each joint of robot arm can be 
calculated by the following when the end coordinates (px, 
py, pz) is known. Equations solving various joint 
variables follow as: 

( ) ⎟
⎠
⎞⎜

⎝
⎛ −+±−= 2

2
22

21 ,2tan,2tan dppdAppA yxxyθ (4) 

( ) ⎟
⎠
⎞⎜

⎝
⎛ −+±−= 22

4
2

3433 ,2tan,2tan kdakAdaAθ (5) 

2

2
4

2
2

2
3

2
2

222

2a
ddaappp

k zyx −−−−++
= (6) 

( ) ( )( )[
( ) ( )( )]33211324

4321132323 ,2tan

acapspcpsad

dsapspcpcaaA

yxz

yxz

++++−

−++−−=θ
(7) 

3232 θθθ −=                         (8) 

( )23231231114 ,2tan sacsaccacasaA zyxyx +−−+−=θ      (9) 
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Where iis θsin= , iic θcos= ,  

( )jijic θθ +=+ cos , ( )jijis θθ +=+ sin . 

B. Dynamics 
The relationship between the movement of objects and 

components force is described as kinetic. Newton - Euler 
method is used in this article. Newton - Euler equations 
are established based on the movement coordinates and 
d'Alembert. 
The kinetic equations: 

)(),()( qGqqhqqD ++=τ             (12) 

TABLE I.   
 D-H PARAMETER TABLE 

 ai-1 αi-1 di θi
i=1 0° 0 0 θ1
i=2 -90° 0 d2 θ2
i=3 0° a2 0 θ3
i=4 -90° a3 d4 θ4
i=5 90° 0 0 θ5
i=6 -90° 0 0 θ6
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For n joints of the manipulator, D(q) is the n × n 
positive definite matrix, which is called inertia matrix; 

),( qqh ,is a n × 1 vector, which is called centrifugal 
force and the Coriolis force; G(q) is a n × 1vector of 
gravity. 

q can be calculated by the formula (13) when τ is 
known: 

∫∫ −−= − ))(),(()( 1 qGqqhqDq τ       (13) 

The inverse dynamics algorithm is composed of two 
parts: First, speed and acceleration of the link are delivery 
released outwardly, and then the interacting forces and 
moments of each link are recursive calculated inwardly, 
as well as joint driving force or torque. 
(1) outwardly Recursion (i: 0 -> n-1) (rotating joints) 
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(2)inwardly Recursion (i: n-> 1) 
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 Note that the contact force and moment between the 
ends of the operating arm and the outside should be 
included in the equilibrium equation to be the initial value 
of inwardly recursive if the operating arm moves in the 
free space: 01

1
1

1 == +
+

+
+

n
n

n
n nf . In addition, 

gv =0
0 and upward, such as the base of the robot 

upward accelerate with g to offset the impact of gravity if 
the gravity of the connecting rod is considered. 

III.   GENETIC ALGORITHMS 

A genetic algorithm (GA) is a search technique used in 
computing to find true or approximate solutions to 
optimization and search problems, which are categorized 
as global search heuristics. During the last decade GAS 
has been applied in many engineering areas, with varying 

degrees of success within each. The major elements of a 
typical GA for optimization of system can be synopsized 
with the following items: 

A. Determination and Expression of the Parameters 
First the range of parameters generally given by users 

is determined; then they are coded by the accuracy 
requirements. Each parameter corresponds to an encoder. 
The relationship between the parameters and codes is 
established to be the object which can be operated as a 
genetic algorithm. 

B. Selection of the Initial Population 
Because of the need for programming, initial 

population is generated randomly by the computer. For 
different encoding, different forms of random numbers 
are resulted. In addition, the size of the population is 
specified by taking into account the complexity of 
calculation. 

C. Determination of the Fitness Function 
Best of the parameters meeting the conditions under 

constraints is selected in the general optimization design. 
Stability, accuracy and rapidity are considered as the 
indicators of a control system. The fast is reflected by the 
rise time. The shorter rise time, the faster control, and the 
better quality of the system. Fitness function related to 
the objective function is directly considered as a fitness 
function for parameter optimization when the objective 
function is determined. 

D. Operation of Genetic Algorithm 
Steps of the copy operation, the crossover operator and 

mutation operation are included in the specific genetic 
manipulation. First, fitness proportional method is used 
for replication. Fitness value is obtained through the 
fitness function, and then copy probability corresponding 
to each string is obtained. The product of the copy 
probability and string number of each generation is the 
number of string copied in the next generation. String of 
larger copy probability will have more children and 
grandchildren in the next generation, but the opposite will 
be eliminated. Secondly single-point crossover is finished 
with crossover probability of Pc. Matching pool is 
composed of string selected from member copied with 
probability of Pc, and then members of the matching pool 
are matched randomly, cross-location is determined 
randomly. Finally, the mutation is finished with 
probability of Pm. a new generation of population is 
obtained through reproduction, crossover and mutation of 
initial population. The population decoded is substituted 
into the fitness function until the end condition is met. 
End condition is determined by the specific issues, as 
long as the target parameter is in the specified range. The 
above procedure is represented in Figure 2[25-27]. 

IV.   PD ILC BASED ON ADAPTIVE ON-LINE TUNING 
GENETIC ALGORITHM 
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Figure2. Figure of GA operation. 

Figure3. Figure of the basic principle 
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A. PD ILC 
D type algorithm is sensitive to the high frequency 

interference of the error signal due to the differential 
action. This problem can be resolved by the P type 
control algorithm. The maximum error can be reduced 
and the tracking accuracy can be improved by PD type 
ILC algorithm. The conventional PD type iterative 
control law: 

( ) ( ) ( ) ( )tektektutu kdkpkk 111 +++ ++=        (23) 

Where kp and kd is the PD type iterative control gain, 
ek+1(t) = yd(t)- yk+1(t). 

B. Adaptive On-line Tuning Genetic Algorithms 
In order to improve the accuracy, PD parameters are 

optimized online at each sampling time with the 
advantage of genetic algorithm for global optimization. a 
sufficient number of individual is selected at sampling 
instant k to calculate the type of adaptation. The PD 
control parameters corresponding to the great degree of 
self- adaptive are selected as the PD control parameters at 
the sampling time by Genetic Algorithm optimization. In 
order to obtain a satisfactory transition process dynamics 
and prevent overshoot, absolute error and weighted and 
of error and error rate of change is set as the minimum 
objective function of parameters of the i-th individual for 
the k-th sampling time. 

( ) ( ) ( )ideierroriiJ pp βα +=           (24) 

errori (i) is position self-tracking error of the i-th 
individual for the k-th sampling time, de(i) is rate of 

position self-tracking error change of the i-th individual 
for the k-th sampling time. 

In order to avoid overshoot, penalty function is used 
and overshoot is regard as one of the best indicators. 
Optimal index at this moment is: 
  If  errori(i)<0 

   ( ) ( ) ( ) ( )ierroriideierroriiJ pp 100++= βα (25) 

Figure of the basic principle is shown in Figure3: 

V.   SIMULATION ANALYSIS 

PUMA560 is considered as the simulation object and 
the specific DH parameters are shown in Table 1. Six 
inputs and outputs are respectively qdi and qi (i = 1-6) 
because of six joints of PUMA560.errori (i) of J(i) is 
defined as: 

( )
( )( )
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6

1
∑
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ijerror
iErrori             (26) 
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Where Errori(j)(i) is position self-tracking error of the 
i-th individual in the j-th size for the k-th sampling time, 
De(j)(i) is rate of position self-tracking error change of 
the i-th individual in the j-th size for the k-th sampling 
time. 

( ) ( ) ( )iDeiErroriiJ pp βα +=     (28) 
If errori(i)<0 
( ) ( ) ( ) ( )iErroriiDeiErroriiJ pp 100++= βα (29) 
The initial value of each joint is set as 0. The starting 

point X0 is [0.4521, -0.1505, 0.4318] and end point Xd is 
[0.3, 0, 0.4]. The selection of point path in this article is 
determined by the quaternion method. In order to 
facilitate the experiment, the experiment is carried out in 
the smart space. In the objective function, αp=0.95, 
βp=0.05.In the GA part, the number of individuals Size is 
120, the evolution algebra is 10, Pc is 0.9. Adaptive 
mutation probability method is used, that is, the greater 
the degree of adaptive, the smaller the mutation 
probability. Mutation probability Pm=0.2-[1:1: Size] 
×0.01/ Size. 

Simulation platform is shown in Figure 4, which is 
composited by the input unit, control unit and output unit. 
The detail description of GA unit is shown in Figure 5.  
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Tracking effects in 30 iterations of six joints are shown 
in Figure 6. It can be clearly seen that the effect gets 
better and better as long as more iterations. It tracks on a 
given trajectory basically when the number of iterations 
reaches to 30 times by a number of simulations. 

The control inputs of the six joints are shown in Figure 
7. State before 0.15s is only shown to express the change 
of the control input at the beginning stage well since 
system began to enter the stationary phase in the 0.15s 
time.  

Change graph of kp and kd of three joints in the 30th 
iteration is shown in Figure8. It can obviously be seen 
that kp and kd change in the tracking process. It can be 
seen from Figure 8 that variation of kp and kd is 
relatively large at the beginning, because the e is 
relatively large and gradually stabilizes. 

The path tracking effect diagram after 30 iterations is 
shown in Figure 9. It can be seen that effect in PD 
iterative self-learning control proposed is better than PD 
iterative control, and it can tracks the given target 
trajectory more accurately. 
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Error convergence process in 30 iterations is shown in 
Figure 10. It can be seen that convergence rate in PD 
iterative self-learning control proposed is better than PD 
iterative control whether in the X direction or Y direction, 
as well as the final error value is smaller. 

VI. CONCLUSION 

PD iterative control based on adaptive on-line genetic 
algorithm of PUMA560 is researched in depth. The basic 
principle of genetic algorithm and the PD type iterative 
learning control is understood firstly. Then an online 
adaptive PD iterative learning control algorithm is 
proposed. PD parameters are optimized online at each 
sampling time with the advantage of genetic algorithm 
for global optimization. In order to avoid overshoot, 
penalty function is used and overshoot is regard as one of 
the best indicators. Simulation analysis shows that the 
proposed algorithm is better than unmodified in accuracy. 
But, this algorithm only applies to industrial robots of 
less rapid demanding and is referenced for further study 
of the repetitive motion trajectory tracking control for 
industrial robots of higher rapid demanding. 
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