
Implementation and Analysis of Iterative
MapReduce Based Heuristic Algorithm for

Solving N-Puzzle

Rohit P. Kondekar
Visvesvaraya National Institute of Technology, Nagpur, India

Email: rohitkondekar@gmail.com

Mohit Modi, Akash Gupta, Parag S. Deshpande, Gulshan Saluja, Richa Maru and Ankit Rokde
Visvesvaraya National Institute of Technology, Nagpur, India

Email: mohitmodi.cse12@gmail.com, psdeshpande@cse.vnit.ac.in

Abstract — MapReduce Programming paradigm provides
an elegant and efficacious platform for catering large scale
parallel implementations of Heuristic Search Algorithms.
We present here an implementation and analysis of Parallel
Breadth First Heuristic Search (PBFHS) Algorithm for
solving very large combinatorial problems. Using N-Puzzle
as our application domain we found that the scalability of
Breadth First Search (BFS) and Iterative Deepening A*
(IDA*) is limited on a single machine due to hardware
constraints. In this algorithm, we generate a remarkably
restrictive, yet a large search space using combination of
highly efficient admissible and non-admissible heuristics.
The graphs compiled from resulting output advocates our
design and implementation flow. A 7 node Hadoop cluster
setup on Amazon EC2, solves the hardest 24 Puzzle in 3
hours, and 35 Puzzle in 13 hours of computing time.

Index Terms — hadoop, heuristic, n-puzzle, parallel breadth
first heuristic search, mapreduce

I. INTRODUCTION

N-Puzzle is a classical problem for modeling
algorithms involving heuristics. It is a sliding puzzle (Fig.
1) that consists of a frame of numbered square tiles in
random order with one tile missing. They are normally
solved using tree traversal techniques like breadth first
search, A*, IDA* [1][3] etc. But it becomes more and
more difficult to keep track of puzzle states as the search
space increases exponentially with the height of the tree.
Furthermore in case of N-Puzzle, the search space is
extremely large, which makes it difficult to be processed
and stored on a single machine.

MapReduce [2] is a parallel programming paradigm
for processing big data sets over clusters of compute
nodes. The processing is divided into two phases namely
Map & Reduce. Map phase processes key/value pairs to
generate a set of intermediate key/value pairs, and reduce
phase merges the key/value pairs with the same key. In
nutshell: Map(k1,v1) → list(k2,v2) : Reduce(k2, list (v2))
→ list(v3).

The inbuilt shuffle, sort and merge property of Hadoop
can be exploited to process large and repeated data sets of

N-Puzzle. The sequence of moves in N-Puzzle may lead
to visited configurations (states), which on a simple
platform necessitates recording of visited puzzle states,
whereas in case of MapReduce they can be simply
emitted as key/value pairs with a type flag marked. The
type flag is either a parent which shows that, the state has
already been expanded or else, a child. The hadoop’s
architecture with our configuration settings, takes care of
domain independent tasks such as data partitioning,
shuffling, sorting, task scheduling, data merging, node
communication, synchronization, and automatic restart of
failed tasks. Our scheme provides an approach for
effective utilization of resources within a cluster (such as
processor, main memory and disks) for solving large
combinatorial problems. The bottleneck which comes
into play is the performance of I/O system and data
transfer rate over the network.

MapReduce processing is not efficient for small data
sets because in such cases, job initialization time starts
dominating the processing time. Our input being just a
single N-Puzzle’s start configuration, we devised our
algorithm in three phases of MapReduce processing. The
first phase acts as an initialization phase and the other
two phases are chained together and iterated upon until

the goal state is reached. In the first MapReduce phase,
the mapper generates a sufficiently large amount of
successor puzzle states (child configurations) using stack
based depth first traversal, which are then emitted as key-
value pairs, where key being the puzzle configuration and
value consisting of parent/child flag, heuristics and depth.
The partitioner is designed such as to feed similar

Figure 1. Eight Sliding Puzzle

420 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.2.420-424

configurations to same reducer. Abiding by the delayed
duplication technique, the reducers combine these
key/value pairs and eliminate the duplicate puzzle states,
thereby outputting a refined data set for subsequent
MapReduce stages.

In the second MapReduce phase, the mapper traverses
three levels of successive puzzle states and emits them as
key-value pairs, from which the duplicates are eliminated
by reducers, as mentioned above.

The third phase acts as a special elimination phase
which is executed after every few iterations, whenever
the number of child states exceeds the pre-decided
threshold. In this phase, the mapper randomly emits the
key-value pairs, where key is the combination of reducer
number & heuristics and value consisting of the puzzle
configuration & depth. The reducer in this phase receives
random puzzle configurations as opposed to earlier
phases. In addition, it receives sorted key-value pairs
based on their heuristic values, which aids in limiting the
amount of generated successor puzzle states for further
processing, thus keeping a tight upper bound.

II. PROCESS OVERVIEW

We have considered 35 puzzle as a sample to analyze
& demonstrate the aforementioned algorithmic process
and its implementation layout as depicted in Fig. 2 is
discussed here.

A. Input Configuration
The job input consists of an N-Puzzle start

configuration expressed as comma separated string with
its type flag set as child.

B. Initialization MapReduce Phase (1st Phase)
This phase as shown in Fig. 2 is executed once in

application lifecycle to produce sufficient amount of
puzzle states to be processed on distributed MapReduce
framework. The mapper implements a stack based depth
first traversal, generating 12 levels of (exponentially
increasing) successive puzzle states, which are then
emitted as keys and the corresponding type flag,
heuristics & depth as values.
 The partitioner groups the similar keys (states), feeding
them into same reduce partition. The reducer is executed
for each partition thereby eliminating duplicate states,
keeping the lowest depth number intact. These distinct
puzzle states are then emitted by reducer to next
MapReduce phase.

C. Second MapReduce Phase (2nd Phase)
The Second MapReduce phase as shown in Fig. 2

marks the beginning of the iterative chained jobs. The
mapper inspects the type attribute of incoming key-value
pairs, the puzzle states marked as parent are not
processed but simply emitted to reducers thereby
providing a mechanism to maintain a list of visited states.
The states marked as child are converted to parents and
used for subsequent, three levels of child generation
(left/right/bottom/top if any) using stack based iteration
method. Each map phase traverses three levels to
generate sufficient states to process in further MapReduce
phases. Heuristics are evaluated for new child states, and
are emitted with their appropriate depths. The parents
generated in the above process are also emitted along
with their heuristics and depth.

The partitioner and reducer remains same as used in
the Initialization MapReduce phase.

Figure 2. Process Overview

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 421

© 2014 ACADEMY PUBLISHER

D. Elimination MapReduce Phase (3rd Phase)
The special elimination phase as depicted in Fig. 2, is

executed after every few iterations, whenever the number
of child states exceeds the pre-decided threshold. The
mapper randomly emits the puzzle states to different
reducers with a custom key comprising of reducer
number and the four calculated heuristics and value being
full configuration and type details.

The Partitioner partitions the keys depending upon the
reducer number allotted. The customized Grouping
Comparator sorts the keys based on the heuristics. The
ordering can be inferred from Fig. 3, which shows that
the percentage change (1) between the average
magnitudes of each heuristics, grouped five subsequent
levels (depths) at a time. %	 	 	 		 	 100 (1)

More the percentage change in the average value,
better is the performance of the heuristic. The heuristics
are ordered by Manhattan Distance with Linear Conflicts,
Permutation Inversion, Tiles out of row & column and N-
Max Swaps respectively. Manhattan distance is given
more priority, as Permutation inversion is a non-
admissible heuristic i.e. it is not optimal and may result in
suboptimal solution, but may do so in much shorter time,
hence given more priority than other heuristics.

Each reducer, restricts the population to prime few
thousands based on the sorted order, thereby putting a
tight upper bound on maximum number of child states to
be processed in each iteration. The Fig. 4 shows the
number of states generated in each iteration of
MapReduce phases for 35 Puzzle and the Fig. 5 shows
the total number of parents getting accumulated as
iteration proceeds.

III. SOLVABILITY TEST

The solvability of N-Puzzle can be checked using
configuration factors such as number of inversions, grid
width and blank position [9][10]. An inversion is when a
tile precedes another tile with a lower number on it. The
solution state has zero inversions.

The following conditions are checked for solvability:
a. If the grid width is odd, then the number of inversions

should be even.

b. If the grid width is even, and the blank is on an even
row counting from the bottom (second-last, fourth-last
etc.), then the number of inversions should be odd.

c. If the grid width is even, and the blank is on an odd
row counting from the bottom (last, third-last, fifth-last
etc.) then the number of inversions should be even.

IV. HEURISTICS

Heuristic is a function, h(n) defined on puzzle state of
search tree, which serves as an estimate of how close the
current and final goal configurations’ are. It ranks
alternative configurations’ and helps in making
appropriate decision of which branch to follow during
search process. The heuristics applied are described in
this section.

Figure 4. Number of Parents per Depth for 35 Puzzle

Figure 3. Percentage change in Heuristics for 35 Puzzle

 Figure 5. Total number of parents for 35 Puzzle

Figure 6. Sample 8 Puzzle
Configuration

422 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

A. Manhattan Distance Heuristic with Linear Conflicts
(MDLC)

The Manhattan Distance is the distance between two
points measured along axes at right angles defined as in
(2). 	∑ |	 	–	 	| 	 	 |	 	–	 	| (2)

Where Xi and Yi are coordinates of tile ‘i’ in state s
and Xfi and Yfi are coordinates of tile ‘i’ in the goal state
and n represents the total number of non-blank tiles. The
limitation of the Manhattan Distance heuristic is that it
considers each tile independently, while in fact tiles
interfere with each other.

This interference can be reduced by using an
enhancement called Linear Conflict. Two tiles t1 and t1
are in a linear conflict if t1 and t2 are in the same line, the
goal positions of t1 and t2 are both in that line, t1 is to the
right of t2 and goal position of t1 is to the left of the goal
position of t2. The linear conflict adds at least two moves
to the Manhattan Distance of the two conflicting tiles, by
forcing them to surround one another. Both Manhattan
Distance as well as Linear Conflict are admissible
heuristics. Fig. 7 relates the maximum, average and
minimum MDLC values of a 35 puzzle problem.

The value of Manhattan distance with linear conflicts
for sample 8 puzzle configuration (Fig. 6) is:

Manhattan Distance = 2+1+2+1+0+1+2+3 = 12
Linear Conflicts = (3, 1) = 2
Total Distance = 14

B. Permutation Inversions Heuristics
A pair of tiles (ti, tj) is called inversion in permutation t if
i > j and ti < tj [6][7][8]. 	
 	∑ (3)

(3) where ni denotes the permutations of order n for ith tile
and N the total number of permutations. It is a non-
admissible heuristic. Fig. 8 relates the maximum, average
and minimum permutation inversion heuristic values of a
35 puzzle problem. The value of permutation inversion
heuristic for sample 8 puzzle configuration shown in Fig.
6 is:

N = 6 + 2 + 0 + 2 + 2 + 2 + 0 + 0 = 14

C. Tiles out of Row and Column Heuristics
It is summation of the total number of tiles which are

not in their correct row and the tiles which are not in their
correct column. It is an admissible heuristic.

H(n) = Number of tiles out of row + number of tiles
out of column

Fig. 9 relates the maximum, average and minimum
heuristic values of a 35 puzzle problem.
The value of Tiles out of row and column heuristic for
sample 8 puzzle configuration (Fig. 6) is:

H(n) = 3 + 5 = 8

D. N Max Swaps Heuristics
It refers to the number of steps it would take to solve

the problem, if any tile (not just adjacent tile) can be
swapped with the blank tile. It is an admissible heuristic.
The heuristic function is implemented using two arrays
P[] represents current permutation, and B[] represents
the location of element i in the permutation array. Then
P[B[n]] and P[B[B[n]]] are iteratively swapped until the
goal state is reached.

Figure 9 relates the maximum, average and minimum
N Max Swaps heuristic values of a 35 puzzle problem.
The value of N Max Swap heuristic for sample 8 puzzle
configuration (Fig. 6) is:

H(n) = 8

V. TEST ENVIRONMENT

The test environment used:-

Figure 7. Manhattan Distance Heuristic with Linear Conflicts

Figure 9. Tiles out of Row and Column Heuristic

Figure 8. Permutation Inversion Heuristic

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 423

© 2014 ACADEMY PUBLISHER

• Platform: Amazon Elastic Compute Cloud
(EC2).

• Instance Type: Small Instances.
• Number of Instances: 7
• Operating System: CentOS 5.8
• Memory: 1.7 GB
• Programming Language: Java
• Framework: Hadoop

VI. CONCLUSION

We provide here an efficient implementation of
Parallel Breadth First Heuristic Search (PBFHS) fused
with stack based depth first traversal using MapReduce
Programming model. The algorithm is proficient, fault-
tolerant and easy to implement, because the Hadoop’s
MapReduce framework takes care of all domain
independent tasks. With its efficient utilization of
distributed resources (CPU, main memory and disks),
MapReduce provides us a platform for solving large
search space problems by efficaciously distributing the
workload across the cluster.

This algorithm solves large N Puzzle problems which
cannot be solved on a single computer due to severe
memory constraints, limited processing power and slower
I/O capability. The graphs obtained from the computation
data provide means to compare different heuristics and to
apply them in an ordered fashion, thereby drastically
reducing the search space. The distributed approach
solves the hardest 24 puzzle taking 32 iterations (109
level generation) in 3 hours and 35 puzzle taking 75
iterations (235 level generation) in 13 hours of
computation time.

ACKNOWLEDGMENT

We would like to thank Persistent Systems Ltd. and
Visvesvaraya National Institute of Technology for
providing us computing resources and facilities required
for implementing this algorithm.

REFERENCES
[1] A. Reinefeld, T. Schütt, “Out-of-Core Parallel Heuristic

Search with MapReduce”, High-Performance Computing
Symposium HPCS 2009, Kingston, Ontario.

[2] J. Dean, S. Ghemawat, “MapReduce: simplified data
processing on large clusters”, Magazine Communications
of the ACM, vol. 51, 2008, pp. 107-113.

[3] Korf, R.E.: Depth-first iterative-deepening: An optimal
admissible tree search, Artificial Intelligence, 97-109,
1985.

[4] Zhou, R., Hansen, E.A.: Parallel breadth-first heuristic
search on shared-memory architecture. In: Workshop on
heuristic search, memory-based heuristics and their appl.
(2006)

[5] Knuth, D. E. The Art of Computer Programming, Vol. 3:
Sorting and Searching, 2nd ed. Reading, MA: Addison-
Wesley, 1998.

[6] Skiena, S. "Inversions and Inversion Vectors." §1.3 in
Implementing Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica. Reading, MA: Addison-
Wesley, pp. 27-31, 1990.

[7] Pemmaraju, S. and Skiena, S. Computational Discrete
Mathematics: Combinatorics and Graph Theory in
Mathematica. Cambridge, England: Cambridge University
Press, 2003.

[8] Johnson, W. W. "Notes on the '15 Puzzle. I.' “Amer. J.
Math. 2, 397-399, 1879.

[9] Story, W. E. "Notes on the '15 Puzzle. II.' "Amer. J. Math.
2, 399-404, 1879.

[10] Zhou, R., Hansen, E.A.: Parallel breadth-first heuristic
search on shared-memory architecture. In: Workshop on
heuristic search, memory-based heuristics and their appl.
2006.

Rohit P. Kondekar was born in Nagpur,
India in 1990. He received the B.Tech
degree in Computer Science and
Engineering from National Institute of
Technology (VNIT), Nagpur, India in
2012.

Since July 2012, he has been working
as Member of Technical Staff (MTS) at
Oracle India, Bangalore. He is passionate

about Big Data innovations and has three internationally
acclaimed IEEE conference publications on solving large scale
Genetic and Image Processing Algorithms using Hadoop. He
also published a paper in association with Indian Institute of
Technology CSE Labs for devising a Bluetooth based system
for simulating optical mark recognition sheets on mobile phones.

Mohit Modi was born in Alwar, India, in
1991. He received the B.Tech degree in
Computer Science and Engineering from
National Institute of Technology (VNIT),
Nagpur, India in 2012.

He has worked as Summer Trainee at
Birlasoft. Since June 2012, he has been
working with OEM Patching team on
Exadata Systems at Oracle India,

Bangalore. He is passionate about latest research in Information
Retrieval and Data Science.

Akash Gupta was born in Patna, India
in 1990. He received the B.Tech degree
in Computer Science and Engineering
from National Institute of Technology
(VNIT), Nagpur, India in 2012.

Since June 2012, he has been working
as Rotational Software Engineer at
Microsoft India, Hyderabad in the
Master Data Management Team. He is

passionate about latest innovation in the field of Big Data &
machine learning

Figure 10. N Max Swap Heuristic

424 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

