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Abstract — MapReduce Programming paradigm provides 
an elegant and efficacious platform for catering large scale 
parallel implementations of Heuristic Search Algorithms. 
We present here an implementation and analysis of Parallel 
Breadth First Heuristic Search (PBFHS) Algorithm for 
solving very large combinatorial problems. Using N-Puzzle 
as our application domain we found that the scalability of 
Breadth First Search (BFS) and Iterative Deepening A* 
(IDA*) is limited on a single machine due to hardware 
constraints. In this algorithm, we generate a remarkably 
restrictive, yet a large search space using combination of 
highly efficient admissible and non-admissible heuristics. 
The graphs compiled from resulting output advocates our 
design and implementation flow. A 7 node Hadoop cluster 
setup on Amazon EC2, solves the hardest 24 Puzzle in 3 
hours, and 35 Puzzle in 13 hours of computing time. 
 
Index Terms — hadoop, heuristic, n-puzzle, parallel breadth 
first heuristic search, mapreduce  
 

I.  INTRODUCTION 

N-Puzzle is a classical problem for modeling 
algorithms involving heuristics.  It is a sliding puzzle (Fig. 
1) that consists of a frame of numbered square tiles in 
random order with one tile missing. They are normally 
solved using tree traversal techniques like breadth first 
search, A*, IDA* [1][3] etc. But it becomes more and 
more difficult to keep track of puzzle states as the search 
space increases exponentially with the height of the tree. 
Furthermore in case of N-Puzzle, the search space is 
extremely large, which makes it difficult to be processed 
and stored on a single machine. 

MapReduce [2] is a parallel programming paradigm 
for processing big data sets over clusters of compute 
nodes. The processing is divided into two phases namely 
Map & Reduce. Map phase processes key/value pairs to 
generate a set of intermediate key/value pairs, and reduce 
phase merges the key/value pairs with the same key. In 
nutshell: Map(k1,v1) → list(k2,v2) : Reduce(k2, list (v2)) 
→ list(v3). 

The inbuilt shuffle, sort and merge property of Hadoop 
can be exploited to process large and repeated data sets of 

N-Puzzle. The sequence of moves in N-Puzzle may lead 
to visited configurations (states), which on a simple 
platform necessitates recording of visited puzzle states, 
whereas in case of MapReduce they can be simply 
emitted as key/value pairs with a type flag marked. The 
type flag is either a parent which shows that, the state has 
already been expanded or else, a child. The hadoop’s 
architecture with our configuration settings, takes care of 
domain independent tasks such as data partitioning, 
shuffling, sorting, task scheduling, data merging, node 
communication, synchronization, and automatic restart of 
failed tasks. Our scheme provides an approach for 
effective utilization of resources within a cluster (such as 
processor, main memory and disks) for solving large 
combinatorial problems. The bottleneck which comes 
into play is the performance of I/O system and data 
transfer rate over the network. 

MapReduce processing is not efficient for small data 
sets because in such cases, job initialization time starts 
dominating the processing time. Our input being just a 
single N-Puzzle’s start configuration, we devised our 
algorithm in three phases of MapReduce processing. The 
first phase acts as an initialization phase and the other 
two phases are chained together and iterated upon until 

the goal state is reached. In the first MapReduce phase, 
the mapper generates a sufficiently large amount of 
successor puzzle states (child configurations) using stack 
based depth first traversal, which are then emitted as key-
value pairs, where key being the puzzle configuration and 
value consisting of parent/child flag, heuristics and depth. 
The partitioner is designed such as to feed similar 

Figure 1. Eight Sliding Puzzle 
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configurations to same reducer. Abiding by the delayed 
duplication technique, the reducers combine these 
key/value pairs and eliminate the duplicate puzzle states, 
thereby outputting a refined data set for subsequent 
MapReduce stages.  

In the second MapReduce phase, the mapper traverses 
three levels of successive puzzle states and emits them as 
key-value pairs, from which the duplicates are eliminated 
by reducers, as mentioned above.    

The third phase acts as a special elimination phase 
which is executed after every few iterations, whenever 
the number of child states exceeds the pre-decided 
threshold. In this phase, the mapper randomly emits the 
key-value pairs, where key is the combination of reducer 
number & heuristics and value consisting of the puzzle 
configuration & depth. The reducer in this phase receives 
random puzzle configurations as opposed to earlier 
phases. In addition, it receives sorted key-value pairs 
based on their heuristic values, which aids in  limiting the 
amount of generated successor puzzle states for further 
processing, thus keeping a tight upper bound. 

II. PROCESS OVERVIEW 

We have considered 35 puzzle as a sample to analyze 
& demonstrate the aforementioned algorithmic process 
and its implementation layout as depicted in Fig. 2 is 
discussed here. 

A. Input Configuration 
The job input consists of an N-Puzzle start 

configuration expressed as comma separated string with 
its type flag set as child. 

B. Initialization MapReduce Phase (1st Phase) 
This phase as shown in Fig. 2 is executed once in 

application lifecycle to produce sufficient amount of 
puzzle states to be processed on distributed MapReduce 
framework. The mapper implements a stack based depth 
first traversal, generating 12 levels of (exponentially 
increasing) successive puzzle states, which are then 
emitted as keys and the corresponding type flag, 
heuristics & depth as values. 
 The partitioner groups the similar keys (states), feeding 
them into same reduce partition. The reducer is executed 
for each partition thereby eliminating duplicate states, 
keeping the lowest depth number intact. These distinct 
puzzle states are then emitted by reducer to next 
MapReduce phase.

 

C. Second MapReduce Phase (2nd Phase) 
The Second MapReduce phase as shown in Fig. 2 

marks the beginning of the iterative chained jobs. The 
mapper inspects the type attribute of incoming key-value 
pairs, the puzzle states marked as parent are not 
processed but simply emitted to reducers thereby 
providing a mechanism to maintain a list of visited states. 
The states marked as child are converted to parents and 
used for subsequent, three levels of child generation 
(left/right/bottom/top if any) using stack based iteration 
method. Each map phase traverses three levels to 
generate sufficient states to process in further MapReduce 
phases. Heuristics are evaluated for new child states, and 
are emitted with their appropriate depths. The parents 
generated in the above process are also emitted along 
with their heuristics and depth. 

The partitioner and reducer remains same as used in 
the Initialization MapReduce phase. 

Figure 2. Process Overview 
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D.  Elimination MapReduce Phase (3rd Phase) 
The special elimination phase as depicted in Fig. 2, is 

executed after every few iterations, whenever the number 
of child states exceeds the pre-decided threshold. The 
mapper randomly emits the puzzle states to different 
reducers with a custom key comprising of reducer 
number and the four calculated heuristics and value being 
full configuration and type details. 

The Partitioner partitions the keys depending upon the 
reducer number allotted. The customized Grouping 
Comparator sorts the keys based on the heuristics. The 
ordering can be inferred from Fig. 3, which shows that 
the percentage change (1) between the average 
magnitudes of each heuristics, grouped five subsequent 
levels (depths) at a time.  %	݄݁݃݊ܽܥ ൌ 	 ലଶ௡ௗ	ீ௥௢௨௣ିଵ௦௧	ீ௥௢௨௣ലଵ௦௧	ீ௥௢௨௣ 	ൈ 100    (1) 

More the percentage change in the average value, 
better is the performance of the heuristic. The heuristics 
are ordered by Manhattan Distance with Linear Conflicts, 
Permutation Inversion, Tiles out of row & column and N-
Max Swaps respectively.  Manhattan distance is given 
more priority, as Permutation inversion is a non-
admissible heuristic i.e. it is not optimal and may result in 
suboptimal solution, but may do so in much shorter time, 
hence given more priority than other heuristics. 

Each reducer, restricts the population to prime few 
thousands based on the sorted order, thereby putting a 
tight upper bound on maximum number of child states to 
be processed in each iteration. The Fig. 4 shows the 
number of states generated in each iteration of 
MapReduce phases for 35 Puzzle and the Fig. 5 shows 
the total number of parents getting accumulated as 
iteration proceeds. 

III. SOLVABILITY TEST 

The solvability of N-Puzzle can be checked using 
configuration factors such as number of inversions, grid 
width and blank position [9][10]. An inversion is when a 
tile precedes another tile with a lower number on it. The 
solution state has zero inversions. 

The following conditions are checked for solvability: 
a. If the grid width is odd, then the number of inversions 

should be even. 

b. If the grid width is even, and the blank is on an even 
row counting from the bottom (second-last, fourth-last 
etc.), then the number of inversions should be odd. 

c. If the grid width is even, and the blank is on an odd 
row counting from the bottom (last, third-last, fifth-last 
etc.) then the number of inversions should be even. 

IV. HEURISTICS 

Heuristic is a function, h(n) defined on puzzle state of 
search tree, which serves as an estimate of how close the 
current and final goal configurations’ are. It ranks 
alternative configurations’ and helps in making 
appropriate decision of which branch to follow during 
search process. The heuristics applied are described in 
this section. 

Figure 4. Number of Parents per Depth for 35 Puzzle

Figure 3. Percentage change in Heuristics for 35 Puzzle

            Figure 5. Total number of parents for 35 Puzzle 

Figure 6. Sample 8 Puzzle 
Configuration 
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A. Manhattan Distance Heuristic with Linear Conflicts 
(MDLC) 

The Manhattan Distance is the distance between two 
points measured along axes at right angles defined as in 
ሺ݊ሻܪ  .(2) ൌ 	∑ ሺ|	 ௜ܺሺݏሻ	–	 ௙ܺ௜	| 	െ 	 |	 ௜ܻሺݏሻ	–	 ௙ܻ௜	|ሻ௡௜ୀଵ   (2) 

Where Xi and Yi are coordinates of tile ‘i’ in state s 
and Xfi and Yfi are coordinates of tile ‘i’ in the goal state 
and n represents the total number of non-blank tiles. The 
limitation of the Manhattan Distance heuristic is that it 
considers each tile independently, while in fact tiles 
interfere with each other.  

This interference can be reduced by using an 
enhancement called Linear Conflict. Two tiles t1 and t1 
are in a linear conflict if t1 and t2 are in the same line, the 
goal positions of t1 and t2 are both in that line, t1 is to the 
right of t2 and goal position of t1 is to the left of the goal 
position of t2. The linear conflict adds at least two moves 
to the Manhattan Distance of the two conflicting tiles, by 
forcing them to surround one another. Both Manhattan 
Distance as well as Linear Conflict are admissible 
heuristics. Fig. 7 relates the maximum, average and 
minimum MDLC values of a 35 puzzle problem. 

The value of Manhattan distance with linear conflicts 
for sample 8 puzzle configuration (Fig. 6) is: 

Manhattan Distance = 2+1+2+1+0+1+2+3 = 12 
Linear Conflicts = (3, 1) = 2 
Total Distance = 14 

B. Permutation Inversions Heuristics 
A pair of tiles (ti, tj) is called inversion in permutation t if 
i > j and ti < tj [6][7][8]. 	
                           ܰ ൌ	∑ ݊௜௡௜ୀଵ                               (3) 

(3) where ni denotes the permutations of order n for ith tile 
and N the total number of permutations. It is a non-
admissible heuristic. Fig. 8 relates the maximum, average 
and minimum permutation inversion heuristic values of a 
35 puzzle problem. The value of permutation inversion 
heuristic for sample 8 puzzle configuration shown in Fig. 
6 is: 

N = 6 + 2 + 0 + 2 + 2 + 2 + 0 + 0 = 14 
 

C. Tiles out of Row and Column Heuristics 
It is summation of the total number of tiles which are 

not in their correct row and the tiles which are not in their 
correct column. It is an admissible heuristic. 

H(n) = Number of tiles out of row + number of    tiles 
out of column 

Fig. 9 relates the maximum, average and minimum 
heuristic values of a 35 puzzle problem. 
The value of Tiles out of row and column heuristic for 
sample 8 puzzle configuration (Fig. 6) is: 

H(n) = 3 + 5 = 8 

D.  N Max Swaps Heuristics 
It refers to the number of steps it would take to solve 

the problem, if any tile (not just adjacent tile) can be 
swapped with the blank tile. It is an admissible heuristic. 
The heuristic function is implemented using two arrays 
P[ ] represents current permutation, and B[ ] represents 
the location of element i in the permutation array. Then 
P[B[n]] and P[B[B[n]]] are iteratively swapped until the 
goal state is reached.  

Figure 9 relates the maximum, average and minimum 
N Max Swaps heuristic values of a 35 puzzle problem. 
The value of N Max Swap heuristic for sample 8 puzzle 
configuration (Fig. 6) is:   

H(n) = 8 
 

V. TEST ENVIRONMENT 

The test environment used:- 

Figure 7. Manhattan Distance Heuristic with Linear Conflicts

Figure 9. Tiles out of Row and Column Heuristic 

Figure 8. Permutation Inversion Heuristic 
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• Platform: Amazon Elastic Compute Cloud 
(EC2). 

• Instance Type: Small Instances. 
• Number of Instances: 7 
• Operating System: CentOS 5.8 
• Memory: 1.7 GB 
• Programming Language: Java 
• Framework: Hadoop 

VI. CONCLUSION 

We provide here an efficient implementation of 
Parallel Breadth First Heuristic Search (PBFHS) fused 
with stack based depth first traversal using MapReduce 
Programming model. The algorithm is proficient, fault-
tolerant and easy to implement, because the Hadoop’s 
MapReduce framework takes care of all domain 
independent tasks. With its efficient utilization of 
distributed resources (CPU, main memory and disks), 
MapReduce provides us a platform for solving large 
search space problems by efficaciously distributing the 
workload across the cluster. 

This algorithm solves large N Puzzle problems which 
cannot be solved on a single computer due to severe 
memory constraints, limited processing power and slower 
I/O capability. The graphs obtained from the computation 
data provide means to compare different heuristics and to 
apply them in an ordered fashion, thereby drastically 
reducing the search space. The distributed approach 
solves the hardest 24 puzzle taking 32 iterations (109 
level generation) in 3 hours and 35 puzzle taking 75 
iterations (235 level generation) in 13 hours of 
computation time. 

ACKNOWLEDGMENT 

We would like to thank Persistent Systems Ltd. and 
Visvesvaraya National Institute of Technology for 
providing us computing resources and facilities required 
for implementing this algorithm.  

REFERENCES 
[1] A. Reinefeld, T. Schütt, “Out-of-Core Parallel Heuristic 

Search with MapReduce”, High-Performance Computing 
Symposium HPCS 2009, Kingston, Ontario. 

[2] J. Dean, S. Ghemawat, “MapReduce: simplified data 
processing on large clusters”, Magazine Communications 
of the ACM, vol. 51, 2008, pp. 107-113. 

[3] Korf, R.E.: Depth-first iterative-deepening: An optimal 
admissible tree search, Artificial Intelligence, 97-109, 
1985. 

[4] Zhou, R., Hansen, E.A.: Parallel breadth-first heuristic 
search on shared-memory architecture. In: Workshop on 
heuristic search, memory-based heuristics and their appl. 
(2006) 

[5] Knuth, D. E. The Art of Computer Programming, Vol. 3: 
Sorting and Searching, 2nd ed. Reading, MA: Addison-
Wesley, 1998. 

[6] Skiena, S. "Inversions and Inversion Vectors." §1.3 in 
Implementing Discrete Mathematics: Combinatorics and 
Graph Theory with Mathematica. Reading, MA: Addison-
Wesley, pp. 27-31, 1990. 

[7] Pemmaraju, S. and Skiena, S. Computational Discrete 
Mathematics: Combinatorics and Graph Theory in 
Mathematica. Cambridge, England: Cambridge University 
Press, 2003. 

[8] Johnson, W. W. "Notes on the '15 Puzzle. I.' “Amer. J. 
Math. 2, 397-399, 1879. 

[9] Story, W. E. "Notes on the '15 Puzzle. II.' "Amer. J. Math. 
2, 399-404, 1879. 

[10] Zhou, R., Hansen, E.A.: Parallel breadth-first heuristic 
search on shared-memory architecture. In: Workshop on 
heuristic search, memory-based heuristics and their appl. 
2006. 

 
Rohit P. Kondekar was born in Nagpur, 
India in 1990. He received the B.Tech 
degree in Computer Science and 
Engineering from National Institute of 
Technology (VNIT), Nagpur, India in 
2012. 

Since July 2012, he has been working 
as Member of Technical Staff (MTS) at 
Oracle India, Bangalore. He is passionate 

about Big Data innovations and has three internationally 
acclaimed IEEE conference publications on solving large scale 
Genetic and Image Processing Algorithms using Hadoop. He 
also published a paper in association with Indian Institute of 
Technology CSE Labs for devising a Bluetooth based system 
for simulating optical mark recognition sheets on mobile phones. 
 

Mohit Modi was born in Alwar, India, in 
1991. He received the B.Tech degree in 
Computer Science and Engineering from 
National Institute of Technology (VNIT), 
Nagpur, India in 2012. 

He has worked as Summer Trainee at 
Birlasoft. Since June 2012, he has been 
working with OEM Patching team on 
Exadata Systems at Oracle India, 

Bangalore. He is passionate about latest research in Information 
Retrieval and Data Science.  

 
Akash Gupta was born in Patna, India 
in 1990. He received the B.Tech degree 
in Computer Science and Engineering 
from National Institute of Technology 
(VNIT), Nagpur, India in 2012. 

Since June 2012, he has been working 
as Rotational Software Engineer at 
Microsoft India, Hyderabad in the 
Master Data Management Team. He is 

passionate about latest innovation in the field of Big Data & 
machine learning 

Figure 10. N Max Swap Heuristic 
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