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Abstract—The optimal fractional order should be 
determined for image denoising by 2-D fractional wavelet 
transform (FWT). However, the actual application 
environment is complex, and the input image has already 
been polluted by unknown noise frequently in the process of 
capture and transmission. It is impossible to get the optimal 
fractional order on the basis of the objective evaluation 
standard in existence. Therefore, in view of the unknown 
image noise, a method to get the estimated value of optimal 
fractional order is put forward. Firstly, new objective 
evaluation standards for image denoising in fractional 
wavelet domain are defined, and its optimal value is 
obtained based on noise estimation. Then the optimal 
estimated fractional order is gained. The experiment results 
show that, 2-D FWT with the optimal fractional order can 
be selected reasonably and the unknown image noise can be 
filtered effectively in the estimated optimal fractional 
wavelet domain. 
 
Index Terms—image denoising, fractional wavelet 
transforms, the optimal fractional order, noise estimate 
 

I.  INTRODUCTION 

A.  Historical Perspective 
Images are often corrupted with noise during image 

acquisition and image transmission [1]. To improve the 
image quality and meet the need of follow-up image 
processing, image denoising has become an important 
work in image pre-processing. In recent years, image 
denoising methods are emerging one after another. 
Several classes of denoising algorithms such as nonlocal 
means [2], [3], wavelets [4], [5], [6], [7], [8], and total 
variation (TV) [9], [10], [11] have all achieved much 
success. These algorithms are based on different theories, 
and all show good performance in denoising. When 
denoising an image, the TV method makes use of the 
geometric features of the image, the wavelet method 
makes use of the statistical features of the coefficients, 

and the nonlocal means method makes use of the 
redundancy in the image texture features [12]. 

Fourier transform (FT) converts a signal from time 
versus amplitude to frequency versus amplitude. FT is the 
time–frequency representation of the signal. The 
conventional FT can be visualized as a change in 
representation of the signal corresponding to a 
counterclockwise rotation of the axis by an angle 2/π . 
Two successive rotations of the signal through 2/π  will 
result in an inversion of the time axis. FT has some 
drawbacks like it does not give any information about the 
occurrence of the frequency component at a particular 
time and is not applicable for nonstationary signals. To 
overcome this problem, researchers came up with the 
short-time FT (STFT) [13]. In STFT, a moving window is 
applied to the signal, and then the FT is applied to the 
signal within the window as the window is moved over 
the whole real line.Although STFT has rectified almost 
all the limitations/drawbacks of FT, but still in some 
cases STFT is also not applicable as in the case of real 
signals having low frequencies of long duration and high 
frequencies of short duration. Such signals could be better 
described by a transform which has a high frequency and 
low time resolution at low frequencies and a low 
frequency and high time resolution at high frequencies. In 
these type of situations, wavelet transform can provide a 
better description of the signal (image) instead of STFT. 
Wavelets [14] are basically functions that are localized in 
frequency around a central value and are limited in time. 
Hence, wavelets are different from the functions used in 
Fourier analysis since neither they have a constant 
waveformnor they are of finite support. Wavelets exhibit 
constant shape because they are generated from only one 
function [15].  

As a very useful tool for multi-resolution and time-
frequency analysis, wavelet transform (WT) has been 
widely studied and applied in image processing [16-17]. 
The Fractional Wavelet Transform (FWT) has become a 
new research topic in signal processing, which extend the  
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WT to a time-generalized frequency domain called 
fractional domain [18]. 

B.  Purpose and Contribution 
FWT considers parameter ]1,0[∈p  as the fractional 

order, and can analyze signals in fractional domain which 
make signal processing more flexible. With different 
fractional orders, transformed signals perform various 
characteristics [18]. Moreover, in fractional domain, the 
fractional order is uncertain. We must to determine the 
optimal fractional order firstly. Currently, the selection of 
the optimal fractional order is according to the evaluation 
criteria of image denoising, which needs original image 
without noise. However, images are often corrupted with 
noise in complicated working environment and the noise 
is uncertain. Thus, a novel method for unknown noise is 
presented to gain the optimal fractional order. 

The paper is organized as follows. Section II gives the 
basic background, primarily the theory of fractional 
Fourier, wavelet transform and fractional wavelet 
transform. Section Ⅲ gives the overview of the 2-D FWT. 
This section also illustrates the procedure of 2-D FWT. In 
section Ⅳ , noise estimation method is discussed. The 
method of the optimal fractional order is introduced in 
section Ⅴ  and the experiment details and results are 
discussed in Section Ⅵ . Finally, conclusions are 
presented. 

II.  PRELIMINARIES 

This section gives the basic background, primarily the 
theory of fractional Fourier, wavelet transform and 
fractional wavelet transform which is as follows [19]. 

A.  Fractional Fourier Transform  
The concept of Fractional Fourier transform (FRFT) is 

introduced by Victor Namias in 1980 by generalizing 
Fourier transform. It is also called rotational Fourier 
transform or angular Fourier transform since it depends 
on a parameter a which is interpreted as a rotation by an 
angle α  in the time-frequency plane. This parameter α  
is called the transform order/fractional order. 
Mathematically, α -order fractional Fourier transform of 
the function ( )tf is defined as: 

( ) ( )[ ]( ) ( ) ( )∫
∞

∞−
== ttfxtKxtfFxF d,α

α                 (1) 

where α  is called the transform order and ( )xtK ,α  is 
the fractional Fourier transform kernel and is given as: 
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where n  is a given integer. Further, rearranging the 
kernel ( )xtK ,α as: 
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0sin =α  then by a limiting process the kernel reduces to 
a Dirac delta ( )( )tx ±δ . More details on the 
rearrangement can be found in. Now, let us consider a set 
of normalized n -order Hermite functions with unit 
variance, i.e. 

( ) ( ) 2/2

!2

1 t
nnn eth

n
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π
                          (4) 

where ( )•nh  is the n th-order Hermite polynomial and 
given by 

( ) ( ) ( )22
1 tntn

n eDeth −−=                                 (5) 

where nD  represents the n th-order derivative with 
respect to t . Now, using Mehler’s Hermite Polynomial 
formula, 

( ) ( ) ( )∑
∞

=

∗=
0

,
n

nnn tHxHxtK α
α λ                            (6) 

where 2/πλ in
n e−= . If the (6) is observed then it is clear 

that it is the spectral expansion of the transform kernel 

αK  with eigenvalues αλn  and ( )tH n  that acts as 
corresponding eigenvectors. Now, using (1) and (6) 
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where 2/πα a= . Further, (7) also interprets that FRFT 
is a weighting sum of the Hermite functions. The FRFT 
of a signal exists under the same conditions in which its 
Fourier transform exists. The inverse FRFT can be 
visualized as the FRFT with transform order α− . The 
main property of FRFT is that the signal obtained is in 
purely time domain if transform order (α ) is 0 and in 
purely frequency domain if transform order (α ) is 2/π . 
It is important to point out that various α  values provide 
transformations with distinctive properties. Hence, α  
can be adjusted in many applications to provide enhanced 
results in comparison to other existing methods.  

B.  Wavelet Transform (WT) 
Wavelets are basically functions that are localized in 

frequency around a central value and that are limited in 
time, i.e., they are of finite support and hence are 
localized in time around a central value. Therefore, 
wavelets are different from the functions that are used in 
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Fourier analysis in the sense that they have neither 
constant waveform nor finite support. The wavelets are 
generated from a single function called mother wavelet 
function by dilating and translating it in the time 
parameter. Mathematically, the mother wavelet function 
w is defined as. 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

Ψ=Ψ
s

t
s

ts
τ

τ
1

,                                    (8) 

where s and τ are the parameters which are used to 
control dilation and translation respectively. The mother 
wavelet function always satisfies the two conditions 
given as 

( )∫
∞

∞−
=Ψ 0d, tts τ                                                      

( )∫
∞

∞−
=Ψ 1d

2
, tts τ                                              (9) 

 
here first part of (9) shows the zero mean condition 
whereas second part shows the square norm one 
condition. On the basis of mother wavelet function Ψ , 
the wavelet transform of a function ( )tf  is defined by the 
following equation. 

( ) ( ) ( )∫
∞

∞−
Ψ= tttfsW s d, ,ττ                            (10) 

The above equation suggests that the wavelet 
transform is the correlation of the input signal with a 
time-reversed version of Ψ  rescaled by a factor of s . 
Given the wavelet transform of a function it is possible to 
restore the signal perfectly using the inverse wavelet 
transform defined as. 
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 with ( )uΨ̂  as the Fourier 

Transform of ( )tΨ . It is important to note that in (8)-(11), 
the wavelet basis functions are not specified. This is a 
difference between the wavelet transform and the Fourier 
transform, or other transforms. The theory of wavelet 
transforms deals with the general properties of the 
wavelets and wavelet transforms only. It defines a generic 
framework within which one can design wavelets as per 
requirements of the application. 

C.  Fractional Wavelet Transform (FWT) [20] 
To adapt the localization existing in the FRFT to the 

localization existing in the wavelet components, the 
following definition for the FWT: performing a FRFT 
with the optimal fractional order p  over the entire input 
signal and then performing the conventional wavelet 
decomposition. For reconstruction, one should use the 
conventional inverse wavelet transform and then carry 
out a FRFT with the fractional order of p−  to return 
back to the plane of the input function. A flowchart of the 
FWT is illustrated in Fig. 1. The fractional order p  of the 
FWT is determined in such a way that the mean-square 

error between the original input and the reconstructed 
input is minimal. Indeed, this optimization step may be 
long and be followed by many calculations.  

 

 
 

Figure 1.  Flowchart  of  the FWT 
 
Mathematically, the FWT may be formulated as 

follows: 
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where ( )( )baW p ,  is the FWT and pB  is defined by (13) 
and (14). Note that, for 1=p , the FWT becomes the 
conventional wavelet transform. 
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where nH is a Hermite polynomial of order n , or, 
according to the bulk optics definition. 
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where 2/pπφ = . 
The formula for backreconstructing the input is 
( )
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And the hybrid FWT will then be 
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III.  2-D FRACTIONAL WAVELET TRANSFORM  

A.  2-D FWT 
The definition of 2-D FWT [21] is presented by 

synthesizing FWT [20] and 2-D WT, which is base on the 
WT and FRFT [22]. The 2-D FWT of the signal 
( )yxf , can be defined as follows: 
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In the fractional domains it can be written as: 
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where ( )yxh bamn
′′,  are the scaled and shifted wavelet 

functions of mother wavelet function, ( )nmmn aaa ,=  is 

the discrete scaling vector, ( )yx bbb ′′= ,  is the shift 

vector, [ ]2,1 ppp = ， 1p and 2p  are the fractional 
orders. 

While the back-reconstructing formula in the fractional 
domains is: 
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B.  2-D FWT Calculation Steps 
The calculation steps of 2-D FWT are shown as Fig. 2. 

As image decomposes, p  order 2-D FRFT and the 2-D 
WT are used in sequence. As image reconstructs, the 2-D 
inverse wavelet transform (IWT) and p−  order 2-D 
FRFT are used in sequence. 

 
Figure 2.  2-D FWT calculation steps 

 
 
The image with additive noise can be represented by: 

           ( ) ( ) ( )jiNjiXjiX ,,,ˆ +=                     (20)  
where ( )jiX , , ( )jiN ,  denote the image signal and noise 
signal respectively. 

According to the superposition principle in linear 
transformation, the 2-D FWT of the signal with two 
additive and independent signals is equal to the sum of 
each 2-D FWT. Therefore, take the 2-D FWT of both 
sides in (20): 

  ( ) ( ) ( )vuNvuXvuX ppp ,,,ˆ +=             (21) 

where ( )vuX p ,ˆ , ( )vuX p , and ( )vuN p ,   denote the 2-D 

FWT of ( )jiX ,ˆ , ( )jiX ,  and ( )jiN ,  respectively. 
The procedure of 2-D FWT-based image denoising 

method is given as follows. 
• Step1. Giving the noise image ( )jiX ,ˆ , and then find 

optimal fractional order p  to reach the maximum 
Peak Signal to Noise Ratio (PSNR); 

• Step2. Taking 2-D FWT of the noise image ( )jiX ,ˆ ,  
map into the optimal fractional wavelet domain, the 

image in fractional wavelet domain is obtained by 
(21).                        

• Step3. The image ( )vuX p ,ˆ  is denoised in the optimal 
fractional wavelet domain; 

• Step4. Taking p−  order 2-D FRFT of the image, the 
denoised image can be obtained. 

IV.  NOISE ESTIMATION 

A.  Evaluation Indicators of Image Denoising 
Evaluation standard of images quality is often 

described by the Peak Signal to Noise Ratio (PSNR) [23], 
and the PSNR is defined as: 

2

1 1
2

( ( , ) ( , ))
10lg( )

255

m n

i j
X i j X i j

PSNR
m n

= =

−
= −

× ×

∑∑
         (22) 

where ( )jiX ,  is the original image, ( )jiX ,ˆ  is the 
estimate image after denoising, m and n  are the row 
dimension and column dimension of the image 
respectively. 

Higher PSNR means the denoised image is 
approximate to the original image, and the method has 
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better denoising effectiveness. In practice, a good 
denoising method can be found by visual effect and 
indicators of image denoising. 

B.  Noise Estimation 
Images are often corrupted with noise, and the original 

image ( )jiX ,  is unknown in practice. Therefore, it is 
impossible to calculate the PSNR  by (11), and then the 
optimal fractional order p  can’t be acquired without the 
optimal PSNR . To obtain the original image ( )jiX , , the 
noise must be estimated firstly. In this paper, we mainly 
discuss the estimation of zero mean white Gaussian noise 
σ which has no relation with the images. 

Research of noise estimation algorithms mainly focus 
on avoiding considering texture and edge information as 
noises. There are several traditional methods of noise 
estimation σ  as bellows: One of the traditional methods 
is by subtracting the denoised image from the noising 
image. Usually, this method requires filters which can 
effectively remove the noise and preserve better edge 
details for the image. Another method is the noise image 
is taken apart into several pieces, and then separately 
estimates every partσ ; take proper value as estimated 
value better. The third method is according to image 
statistical property to estimate image noiseσ . 

 With the wide application of WT, the σ can be 
acquired by using the feature of image wavelet 
coefficients. The noise estimation method based on 
image wavelet coefficients is superior to the above. As 
the image is transformed into wavelet domain by WT, 
the large scale frequency coefficients have the main 
energy, and little energy exist in the high frequency with 
small amplitude. Thus, if the image has much noise, the 
coefficients of the highest frequency are considered as 
noises, and the σ  can be estimated. Donoho et al. [24] 
have proved that noise variance is proportional to 
wavelet threshold, indicated that an accurate estimation 
of noise variance has an important influence on 
denoising effectiveness, and presented a noise estimation 
method by using the median amplitude of diagonal high-
frequency wavelet coefficients, which is expressed 
as MAD . Then the noise variance can be calculated by 
(23). 

     6745.0/ˆ MAD=σ                                (23)  

V.  OPTIMAL FRACTIONAL ORDER OF 2-D FWT 

The selection of the optimal fractional order p  is a 
vital step in image denoising by 2-D FWT, and the select 
principle is to obtain the optimal PSNR  after filter. 
However, the original image ( )jiX ,  is needed to 
calculate the objective evaluation standard PSNR by (22).  
As images are often corrupted with noise in acquisition 
and transmission process, and the noise is uncertain, the 
original image ( )jiX ,  can not be obtained.  

To tackle the puzzle, a method of select the optimal 
fractional order p  is presented in this paper, which is 
based on noise estimation. Mean Squared Error with 

Unknown Input Noise ( MSEUIN ) and Peak Signal to 
Noise Ratio with Unknown Input Noise ( PSNRUIN ) are 
proposed as the new evaluation standards of image 
denoising. The definitions of MSEUIN  and PSNRUIN  
are given by (24) and (25) respectively. 

2
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 (25) 
where ( )jiY ,  is input image with unknown noise, 

( )jiX ,ˆ  is the estimate image after denoising, and  

( )jiN ,ˆ is estimation noise. 
 

( , )X i j( , )N i j( , )Y i j

PSNRUIN

p

/ 0.6745MADσ =

      
Figure 3. The selection process of the optimal fractional order p  based 

on PSNRUIN  
 

The closer ( )jiN ,ˆ  matches actual noise ( )jiN , , the 

closer ( ) ( )jiNjiY ,ˆ, −  matches the original image 

without noise ( )jiX , . If ( )jiN ,ˆ  equals ( )jiN , , 
PSNRUIN  equals PSNR . Likewise, the smaller 
the MSEUIN , the bigger the PSNRUIN and the closer 
estimate image ( )jiX ,ˆ  match ( )jiX , , the better effect of 
image denoising is achieved. Therefore, the fractional 
order p  corresponding to the maximum PSNRUIN  is 
represented as the estimate of optimal fractional order p̂ . 
The selection process of p̂  based on the PSNRUIN  is 
shown as Fig. 3. 

VI.  EXPERIMENTAL RESULTS 

A.  Noise Estimation 
Take lena image for example. The variance of the 

input white Gaussian noise σ  is set as 10:10:90. The 
noise estimation method based on the median amplitude 
of diagonal high-frequency wavelet coefficients is 
adopted. The mother wavelet is sym4, the image is 
decomposed into two frequencies by 2-D FWT, and the 
front diagonal high-frequency wavelet coefficients is 
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picked up. The simulation results of noise estimation are 
listed in Table I.   

TABLE I.   
NOISE ESTIMATION OF LENA IMAGE. 
σ  σ error 
10 10.37 -3.7% 
20 20.06 -0.3% 
30 29.67 1.1% 
40 38.68 3.3% 
50 47.10 5.8% 
60 55.35 7.8% 
70 62.21 11.1% 
80 69.20 13.5% 
90 74.83 16.9% 

 
Table I indicates the variance of image noise can be 

effectively estimated by using the proposed method. 
Especially, as the σ  ranges from 10 to 40, the errors are 
within ± 5%. Therefore, the objective data obtained by 
the proposed method can be used to evaluate image 
quality accurately. 

B.  Selection of the Optimal Fractional Order 
To demonstrate the validity of the proposed method of 

selecting the optimal fractional order p̂  based on 
PSNRUIN empirically, we have conducted simulations 
on lena image with white Gaussian noise. The variance 
of the input white Gaussian noise σ  is set as 10:10:90. 
The simulation results are given in Table II. As σ  
equals 40, denoising effectiveness of p  acquired by 
PSNR  and p̂  acquired by PSNRUIN  is shown in Fig. 4. 

In the simulations, the noised image is decomposed 
with wavelet firstly. From (23), the estimate for noise 
variance σ̂  can be calculated by the median amplitude 
of diagonal high-frequency wavelet coefficients ( MAD ) 
and zero mean white Gaussian noise ( )jiN ,ˆ  is achieved. 

Then, ( )jiX ,ˆ  denoised by p̂  order FWT, the estimate of 

white Gaussian noise ( )jiN ,ˆ  and noised image ( )jiY ,  
are used to calculate PSNRUIN . The order value 
corresponding to the maximum PSNRUIN  as it ranges 
from 0 to 1 is the optimal fractional order p̂ . Here, the 
soft-threshold function is adopted in 2-D FWT analysis. 
By using different wavelet basis function db3, db4, db5, 
db6, db7,db8 and the image decomposed into 2, 3, and 4 
frequency bands respectively, thus there have been 
different PSNR corresponding to each case and the 
maximal PSNR is determined.  

In Table II, wname and level represent the wavelet 
basis function and the number of decomposed bands 
corresponding to the maximum PSNR  respectively. The 
PSNR  is calculated by using the optimal fractional order 
with known noise, and PSNRP  is the PSNR  

corresponding to the optimal fractional order p̂ . The 
error between PSNRP  corresponding to p̂  and PSNR  
corresponding to p  is given as (26). 

= PSNR PSNRP
PSNR

error −                                      (26) 

 
TABLE II.  

THE SELECTION OF THE OPTIMAL FRACTIONAL ORDER p̂  BASED ON 2-D 

FWT DENOISING OF LENA IMAGE 

σ  wname level p ×100 PSNR
10 db8 2 [0,0] 30.28 
20 db8 2 [4,4] 28.64 
30 db8 2 [5,5] 27.51 

40 db8 2 [5,6] 26.36 

50 db8 3 [2,1] 24.94 

60 db8 3 [2,2] 24.53 
70 db8 3 [2,2] 24.01 
80 db8 3 [2,2] 23.42 
90 db7 3 [2,2] 22.89 

 
TABLE II.  （CONTINUED） 

σ σ  p ×100 PSNRUIN PSNRP error
10 10.44 [0,0] 21.29 30.28 0 
20 20.06 [4,4] 19.12 28.64 0 
30 29.85 [5,5] 17.06 27.51 0 
40 38.83 [6,6] 15.30 26.36 0 
50 47.54 [2,1] 13.51 24.94 0 
60 55.39 [2,2] 12.36 24.53 0 
70 62.34 [2,2] 11.43 24.01 0 
80 69.20 [2,3] 10.64 23.39 0.13%
90 74.51 [3,3] 10.01 22.82 0.31%

 

 
(a) Orginal lena image with no noise 
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          (b) Lena image with white Gaussian noise 

 

           
(c)Denoising result base on 2-D FWT as p = [5,6]   

  

 
  (d) Denoising result base on  2-D FWT as p̂ = [6,6] 

Figure 4.  Denoising of  the lena image  
In Table II, the p  and p̂  are approximately equal. 

The difference between p and p̂  exists when σ ≥80 and 
the error between PSNR  and PSNRP  is within 0.5%. 
As Fig. 4 suggests, there is a negligible difference in 
denoising effectiveness between p and p̂ . According 
these comparative experiments, the proposed method 
used to select the optimal fractional order p  of image 
with unknown noise is accurate and effective. 

Besides, to confirm whether the proposed method of 
the optimal fractional order p̂  based on the 
PSNRUIN can also apply to 2-D FRFT denoising, 
simulated results of the lena image with white Gaussian 
noise by using 2-D FRFT are shown in Table Ⅲ.  

TABLE Ⅲ 
THE SELECTION OF THE OPTIMAL FRACTIONAL ORDER p̂  BASED ON 2-D FRFT DENOISING OF LENA IMAGE 

σ  p ×100 PSNR p ×100 PSNRUIN PSNRP error 

10 [97,100] 32.25 [93,92] 26.33 31.46 2.45% 

20 [95,97] 29.89 [91,91] 21.14 28.52 4.58% 
30 [95,95] 27.66 [90,89] 17.86 25.46 7.95% 
40 [94,94] 25.79 [89,88] 15.58 23.33 9.54% 
50 [94,94] 24.32 [88,88] 13.90 21.92 9.87% 
60 [94,93] 22.96 [87,87] 12.61 20.18 12.11% 
70 [94,93] 21.92 [87,86] 11.59 19.14 12.68% 
80 [93,93] 20.94 [86,86] 10.81 18.23 12.94% 
90 [94,92] 20.24 [86,85] 10.12 17.40 14.03% 

As shown in Table Ⅲ , there are different values 
between p  and p̂ , which indicates the estimator p̂  for 
p  is inaccurate by using the proposed method based on 
PSNRUIN . With the increase of noise σ , the error 
between PSNR  and PSNRP increases, and the error is 
within 10% when σ <50. Therefore, the method of the 
optimal fractional order p̂  based on PSNRUIN  used to 
estimate the optimal fractional order p  for image 
denoising with unknown noise by 2-D FRFT is 
unfavourable. 

VII.  CONCLUSIONS 

With the development of time-frequency image 
processing, FWT theory and its application in image 

processing increasingly draw experts and scholar's 
attention. Aiming to the image with unknown noise in 
practice, Peak Signal to Noise Ratio with Unknown Input 
Noise ( PSNRUIN ) is considered as the evaluation 
standards of image denoising, and the optimal fractional 
order can be calculated according to the PSNRUIN .  
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