
G-Heart: A GPU-based System for
Electrophysiological Simulation and

Multi-modality Cardiac Visualization
Lei Zhanga,b, Kuanquan Wanga, Wangmeng Zuoa, Changqing Gaia

a School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
Email: {wangkq, wmzuo}@hit.edu.cn

b School of Art and Design, Harbin University, Harbin 150086, China
Email: cszhanglei@gmail.com

Abstract— Cardiac electrophysiological simulation and
multi-modality visualization are computationally intensive
and valuable in studying the structure, mechanism, and dy-
namics of heart. The existing multi-CPU based approaches
can reduce the calculation time, but suffer from the hard-
ware and communication cost problems and are inefficient
for 3D data visualization. Compared with multi-CPU, the
highly parallel and multi-core properties of GPU make it a
suitable alternative for accelerating cardiac simulation and
visualization. In this paper, we develop a G-Heart system
where GPU-based acceleration technologies are adopted for
both the simulation of cardiac electrophysiological activities
and the online illustration 3D multi-modality (anatomical
and electrophysiological) data. In the simulation stage, a
phase-field method is employed to cope with the no-flux
boundary condition. For heart geometrical structure illustra-
tion, a GPU-based ray-casting volume rendering algorithm
is implemented and an improved context-preserving model
with user interaction is integrated into the proposed frame-
work. Finally, a fusion visualization method is proposed,
which can provide 3D visualization results for both the
simulation data and the anatomical data simultaneously.

Index Terms— visualization, heart modelling, electrophysio-
logical simulation, CUDA, GPGPU

I. INTRODUCTION

CArdiac electrical activities are valuable for the in-
vestigation of complex heart diseases, e.g., arrhyth-

mias, ischemia, and ventricular fibrillation, and can be
invasively measured by medical devices like electro-
cardiogram (ECG). With the progress in programmed
electrical modeling and stimulation, electrophysiological
simulation has gradually been a promising direction for
cardiac electrophysiology study. By simulating the cardiac
electrical activities over a wide variety of scales from
single ion channel proteins to whole organs, cardiac
electrophysiological simulation can help in revealing the
mechanisms of normal and abnormal cardiac electrical
activities, interpreting of clinical data, and even designing
drugs and therapeutic plans [1], [2] .

Over the last decades, cardiac electrophysiological sim-
ulation has received considerable research interests, and
numerous models have been developed for simulating the
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functions of protein, single cell, tissue, and whole heart
[3]. Recently, benefited by the progress in electrophys-
iological modeling and medical imaging, anatomically
realistic and biophysically detailed multi-scale computer
models of the heart are playing an increasingly impor-
tant role in advancing our understanding of integrated
cardiac function in health and disease [4]. For example,
action potential propagation simulation of ischemia in 3D
anatomically detailed ventricle is valuable in studying the
mechanisms and dynamics of ischemia-induced re-entry
and arrhythmia [5].

Cardiac electrophysiological model generally is a cou-
pled system of partial differential equations for modeling
the electrical wave propagation across tissue and ordinary
differential equations for modeling cell dynamics. The
solution to typical electrophysiological model, e.g., bido-
main and monodomain model, usually involves millions
of nodes, and suffers from the complex boundary and
computational inefficiency problems. Moreover, the multi-
CPU-based high-performance computing is also ineffi-
cient for 3D data visualization. To address the complex
boundary problem, a phase-field method was proposed in
[6], and Lu et al. adopted it for studying the influence
of ischemia on 3D human ventricle [7]. To alleviate the
computational inefficiency, high-performance computing
was developed to speedup electrophysiological simula-
tion. However, the scalability of most bidomain based
simulation is limited to hundreds of cores, and only few
work circumvented this limitation by using appropriate
grid partitioning and asynchronous IO parallel mechanism
[8], [9].

With the advent of GPU, general-purpose computing
on GPUs (GPGPU) becomes an emerging technology
to enhance computational efficiency [10]–[12]. Instead
of CPUs, GPU has massively parallel single instruction
multiple data processing units with hundreds of stream
processors, and these architectural advantages can be
utilized to speedup cardiac electrical activity simulation
[13], [14]. Most recently, Nimmagadda et al. proposed
a bidomain model with multi-GPU implementation for
electrophysiological simulation on clinical time-scales
[15].
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Another promising advantage of GPU is that it makes
the visualization of multi-modality volume cardiac data,
i.e., the detailed 3D anatomical data and the electro-
physiological simulation results, more convenient. By far,
several systems have been developed for the visualization
of electrophysiological data. Hurmusiadis developed a
simulation system called Virtual Heart [16] for electro-
physiological behavior demonstration. Lu et al. proposed
an electrophysiology simulation method and assessed the
simulation result by a ray-casting method [7].

However, these systems did not unify spatial informa-
tion of tissues with electrophysiological behavior. With-
out the context information from anatomical model, one
can not understand the visualization results easily. Thus,
electrophysiological behavior visualization must deal with
multi-volume data, i.e., one anatomical reference and one
or more electrophysiological measurements. In this sense,
Wang et al. [17] designed multi-dimensional transfer func-
tion to visualize cardiac electrophysiology simulation.
In their work, an improved LH histogram method was
proposed and multi-dimensional transfer function design
was discussed. With this method, boundary information
was enhanced and cardiac electrophysiology behaviour
was accurately presented. Unfortunately, their implemen-
tation could not provide real-time rendering results, and
results in poor user interaction performance. Moreover,
their works could not provide the correspondence of the
wave propagation and the time elapsing. To address this
problem, Kharche et al. proposed a high-performance
computing (HPC)+high-performance visualization (HPV)
framework to study the 3D anatomically detailed model of
clinical human atria electrophysiology [18]. Unfortunate-
ly, the bottleneck of the communication of their method
would drastically affect the visualization efficiency when
the data transfer increases.

In this paper, we extend our previous work [19], [20]
and present a framework named G-Heart to take advan-
tage of GPU computation capability for both cardiac elec-
trophysiology simulation and visualization. The G-Heart
takes the parameters of the cardiac electrophysiological
model as input, and generates the multi-volume rendering
results with spatial and temporal information as output.
The workflow of the G-Heart consists of two stages: the
simulation stage and the visualization stage.

The remainder of the paper is organized as follows:
Section II introduces the main ingredient of the G-heart
framework. Section III evaluates the performance of our
implementation. Finally, the paper is concluded in Section
IV.

II. G-HEART FRAMEWORK

Researches have been focused on GPU-based elec-
trophysiological simulation, but few attention was paid
to analysis for the simulation results. Workflow of the
proposed G-heart framework can be described as follows.
First, the electrophysiological simulation was performed
by our GPU-based simulation method. Then the electro-
physiological data sets were visualized on-line by multi-

modality visualization method. Meanwhile, simulation
data sets were stored onto the disk and could be visualized
by our simulation data sequence visualization method
which could provide the animation of the electrophysi-
ological simulation.

A. GPU-based electrophysiological simulation method

The Compute Unified Device Architecture (CUDA),
a heterogeneous CPU+GPU architecture introduced by
NVIDIA, has greatly improved the programmability of
GPUs for general purpose applications [21], [22]. For
cardiac electrophysiological simulation, the state of each
cell in cardiac is independent of each other. So the simu-
lation of the cells can be executed in parallel by the Single
Instruction Multiple Thread (SIMT) model supported by
CUDA. In this study, we use the TNNP model [23]
of human ventricle to represent the excitable dynamics
of cardiac tissue. The following equation defines the
transmembrane voltage V :

Vm =
Iion + Istim

Cm
+▽ · (D ▽ Vm) (1)

Iion = INa + IKl + Ito + IKr

+IKs + ICaL + INaCa + INaK

+IpCa + IpK + IbCa + IbNa (2)

where ▽ denotes the gradient operator, Cm is the cellular
capacitance, and D is the diffusion tensor. Iion and
Istim are sum of all transmembrane ionic currents and
externally stimulus current, respectively. Eq. (1) subject
to the zero flux boundary conditions:

▽ · (D ▽ Vm) = 0 (3)

To automatically handle the boundary conditions of
anatomical heart geometries, a phase-field method is
employed [24]. An auxiliary field ϕ is introduced, which
has a value of 1 inside the ventricle and 0 outside the
ventricle but within the bounding box [25].

ϕ(ξ) =

{
1, if ξ ∈ Ωven

0, if ξ ∈ Ωbox − Ωven
(4)

The value of ϕ is calculated by the following equation:

∂ϕ

∂t
= ξ2 − ∂G(ϕ)

∂ϕ
(5)

where ξ is used to control the width of the interface
between the ventricle and the bounding box, and G(ϕ)
is a double-well function with minima at ξ ∈ Ωven and
ξ ∈ (Ωbox − Ωven). We choose the function as follows:

G(ϕ) = − (2ϕ− 1)2

4
+

(2ϕ− 1)

8
(6)

and Eq. (6) is modified as:

ϕ
∂V

∂t
= −ϕ

Iion + Isim
Cm

+ ϕ▽ (D▽V ) (7)

We denote phase-field profile as phase-field information
of the tissue.

Finally, we can present the flow of the GPU-based
simulation method:
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Algorithm 1: GPU-based cardiac electrophysiological
simulation method
Input: Anatomical information.
Output: Cardiac electrophysiological simulation

results.
1 generate phase-field profile, initialize the voltage

volume and the states variables;
2 set up spatial and temporal step size;
3 transfer the phase-field profile, the voltage volume

and the states variables into device memory;
4 while not go through all the temporal steps do
5 if predefined condition satisfied then
6 transfer the voltage volume back into the

host memory and write the voltage volume
into the disk ;

7 end
8 update the voltage of each voxel in the voltage

volume via Eq. (7) ;
9 go to next temporal step;

10 end

During the execution, all state variables associated with
the equations of the TNNP model reside on the GPU
memory in order to maximize performance. The solution
of Eq. (7) is transferred back to the host memory only
when the voltage data have to be saved into the disk.

In this study, Eq. (7) is integrated with the spatial step
of 0.15mm and the temporal step of 0.02ms. The interface
ξ between the ventricle and the bounding box is 0.33mm,
and the forward Euler scheme is adopted.

B. GPU-based Visualization for 3D Electrophysiological
Data

After the simulation of wave propagation on 3D cardiac
tissue is completed, we study visualization methods that
not only provide the visualization of the simulation result-
s, but also provide the anatomical context and the tempo-
ral information of the electrophysiological behaviour.

Volume rendering is an effective method to generate
2D images from volume data, which has been applied
in electrophysiological simulation data sets [7]. However,
visualizing the tissue with electrophysiological behaviour
without spatial supporting information is not a good idea.
Inspired by work presented in [26], we need to provide a
anatomical context for the given tissue.

1) Visualization of electrophysiological data with
anatomical context: Visualizing the whole heart as the
anatomical context is a challenging problem. On the one
hand, from Fig. 1a we can see if we enhance surface
information interior objects will be occluded by other in
the front. On the other hand, Fig. 1b shows that if we try
to uncover the objects inside the rendering volume the
silhouette of the whole will be lost.

To remedy this problem, Wang et al. proposed an
improved Context-Preserving model for the heart anatom-
ical structure visualization [19]. The rendering results are

shown in Fig. 2. Fig. 2a, and Fig. 2b are rendering results
from different viewing positions.

Context-Preserving volume rendering model was intro-
duced by Bruckner et al. [27]. It is a function of shading
intensity, gradient magnitude, distance to the eye and
opacity of voxel. This model provides user another way
to view the interior structure while keeping the context
information other than conventional clipping technique.
So one can visualize the interior structures of interest and
the exterior structures simultaneously using the Context-
Preserving model.

For the heart anatomical structure visualization, the
interior structures and the boundary of different structures
are shown simultaneously in Fig. 2. We further discuss the
improved Context-Preserving model for the heart anatom-
ical structure in details. Conventional volume rendering
[28] method uses discrete approximation of integral along
a viewing ray by the front to back formulation to compute
opacity αi and color ci:

αi = αi−1 + α(Pi)(1− αi−1) (8)

ci = ci−1 + c(Pi)α(Pi)(1− αi−1) (9)

where α(Pi) and c(Pi) are opacity and color contributions
at position Pi, αi−1 and ci−1 are previous sum of opacity
and color. Lighting is another key ingredient of volume
illustration [29]. In particular, lighting can enhance the
material boundaries for classification and highlight the
surface and silhouette of certain object. For the Context-
Preserving model, lighting intensity serves as an input to
a function for opacity variation. Opacity variation is then
used for visual feature selection. In general, direct volume
rendering with shading, α(Pi) and c(Pi) are defined as
follows:

α(Pi) = αtf (fPi) (10)

c(Pi) = ctf (fPi)s(Pi) (11)

where αtf and ctf are the opacity and color transfer
functions. They map each scalar value to opacity and color
in volume illustration literature. s(Pi), which is the value
of shading intensity at point Pi, is computed as follows:

s(Pi) = cd(n · l) + cs(n · h)ce + ca (12)

where cd, cs and ca are the diffusion, specular and am-
bient lighting coefficients, respectively. ce is the specular
exponent, n is the normal, l is the normalized light vector,
and h is the normalized half-way vector. For conventional
direct volume rendering, the opacity at point Pi is only
determined by the scalar value fPi and the opacity transfer
function. For layered heart structure, boundaries informa-
tion is of great importance to highlight the transformation
from one tissue to another. So gradient information should
be taken into account for opacity-modulation [30]. The
opacity-modulation additionally scales the opacity by the
gradient magnitude, causing an enhancement of bound-
aries information.

For the Context-Preserving model, s(Pi) also does
contribution to the opacity-modulation. To perform the
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(a) Visualization of the silhouette information (b) Visualization of the interior structures

Figure 1: Rendering results of ray-casting method to show the contour information and the interior structures with
different opacity set-ups. (a) is used to show the contour of the human heart but the interior information is nearly
missing. (b) is used to reveal the interior tissues, while the exterior tissues becomes semitransparent and hard to exhibit
the surface curvature.

(a) Contex-Preserving 1 (b) Contex-Preserving 2

Figure 2: Rendering results from two different view points.

effect of clipping-plane, the opacity α(Pi) is revised as
Eq. 13.

α(Pi) = αtf (fPi) ·m(Pi) (13)

where mPi is described as follows:

mPi = |g|(κt·s(Pi)·(1−|p−e|)·(1−αi−1))
κs

(14)

where |g| is the gradient magnitude normalized to the
range [0, 1] (zero corresponds to the lowest and one to the
highest gradient magnitude in the data set), s(Pi) is the
shading intensity at the current sample position p, |p− e|
is the distance of the current sample position p to the eye
point e. κt controls the basic slope, and the parameter κs

is used to interactively tune the transfer function to view
the curvature. For our implementation, κt is in the range

of [0,2]. The larger of the κt, the more tissues near the
view point would be deemphasized. κs is in the range
of [0,3]. The silhouette information of the heart can be
enhanced by increasing the κs value.

Due to the layered and complex structure, the detailed
information will be of great importance. In order to
enhance the silhouette and boundary between different
tissues we use the Blinn-Phong model [31] to rewrite the
color formulation.

cw = c(p) + weight · (LBPShading) (15)

where weight is in the range of [0,1] and LBPShading
is the Blinn-Phong model. The modified formulation is
described as follows:

ci = ci−1 + cw(p) · α(p) · (1− αi−1) (16)
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The boundary information is highlighted via the local
shading.

After the improved Context-Preserving model for car-
diac anatomical structure is proposed, we adopt the multi-
volume visualization method [32] to visualize the multi-
modality volume data which include both the synthetic
data from aforementioned simulation and the anatomy
data from Visible Human Project [33]. The two different
modalities can enhance the in-depth analysis. The elec-
trophysiological simulation data sets which are necessary
might be visible in simulation data but not in the other
one and vice versa. Therefore, it is possible to see the
necessary part for a heart diagnosis in the combination of
two different data sets. The rendering results of traditional
ray-casting method and the fusion method were shown
and discussed in [20], [32].

2) Visualization of the time-varying feature of electro-
physiological data sets: After the multi-volume visualiza-
tion method was adopted to generate anatomical context
for the electrophysiological data visualization, the tissue
with the electrophysiological behavior was better illustrat-
ed. However, the time-varying feature is not explored yet.
The ideal method is to visualize the electrophysiological
data on-line, i.e., the simulation results are directly visu-
alized via Graphics Interoperability without data transfer
between host and device [20]. However, this would be
not suitable for the 3D electrophysiological simulation,
because the simulation is more time-consuming and the
difference of the voltage distribution between two tempo-
ral steps is minor. To remedy this problem, we provided an
off-line visualization method for 3D electrophysiological
data sequence with user interaction.

The proposed method can provide not only the spatial
information but also the temporal information. The detail
of the proposed method is presented as follows:

Algorithm 2: Visualization method for 3D cardiac
electrophysiology simulation data sequence
Input: DataA, DataSi, i = 0, 1, ..., N , T .
Output: Rendering results of simulation data

sequence to reveal the time varying feature
1 Initialization: i = 0;
2 VA = Load(DataA);
3 while i < N do
4 VS = Load(DataSi);
5 MultiV olumeV is(VA, VS);
6 i = i+ T ;
7 end

The method takes the anatomical data DataA, the elec-
trophysiological simulation data sequence DataSi, i =
0, 1, ..., N as inputs first. The T is used to control the
interval of two data sets. Function Load is used for load-
ing volume data into host memory then transferring the
volume data into 3D texture on GPU. MultiV olumeV is
denotes the multi-volume visualization method for both
electrophysiological simulation data sets and the anatom-
ical context [32]. During the visualization procedure, user

TABLE I.: Parameters of Multi-Volume visualization
method [32]

Parameters Values
κt 0.1
κs 2

weight 0.06
β 0.4

interaction is provided for obtaining satisfied visualization
results.

III. RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed
simulation method, the female heart data of Visible Hu-
man Project [33] are used for providing the anatomically
detailed information for generating the phase-field profile.
Our framework is ran on an Intel(R) Core (TM) 2 Duo
CPU E7500 with NVidia Tesla C1060 GPU for the
simulation of the wave propagation and NVidia GeForce
9600 GPU for visualization methods.

The wave propagation simulation of ischemia kernel
code is written in CUDA 4.0. The C1060 GPU is used
for evaluating the cardiac electrophysiology model of size
200 × 200 × 300. The cells were gathered into a volume
stored in GPU global memory and then divided into a
2D memory stack. Each 2D memory stack is consisted of
(19,13) grid with each block of size (16,16) and the x-
axis iteration was performed [34] in the kernel. In order to
perform efficient memory access, the constant parameters
of TNNP model during simulation were stored in GPU
constant memory and the phase-field profile was stored in
a 3D texture, respectively. The experimental results show
that the speed-up of our simulation method is more than
20 times faster compared to CPU simulation method.

The proposed multi-modality visualization method for
electrophysiological simulation data has been coded in
C++ with OpenGL and Cg 3.0. The rendering perfor-
mance for the multi-modality rendering method is about
25 frames per second and meets the requirement of a real
time system. When rendering the simulation sequence,
since the I/O of a single simulation data is minor, the
multi-modality method for simulation data sequence can
also provide real-time rendering results.

The electrophysiological data sequence visualization
with GPU-based ray-casting method is shown in Fig.3.

The electrophysiological data sequence visualization
with Alg. 2 is shown in Fig.4. The parameters of Fig.
4 used in Alg. 2 are presented in Table I. The values κt

and κs insure that the layered structure of the anatomical
context is properly illustrated. The value of weight makes
the anatomical context an assistant volume by shading
the anatomical structure with few effort. And β is used
to control the fusion of the anatomical data and the
simulation data [32]. The value of β is used to show that
the electrophysiological simulation data are predominant
in the rendering results.

Compared with Fig.3, the results shown in Fig.4 can
convey more spatial information. With the help of anatom-
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(a) time 1 (b) time 2 (c) time 3

Figure 3: Electrophysiological simulation set sequence visualization results via ray-casting method.

(a) time 1 (b) time 2 (c) time 3

Figure 4: Data sequence visualization results. From left to right the pictures can provide the time-varying feature of
the 3D electrophysiological simulation.

ical context, the tissue with electrophysiological behavior
is more easily to recognize in the complex layered struc-
ture.

Fig. 5 shows the detailed information of Fig. 4a.
The boundary information of the whole heart is clearly
rendered, which is surrounded by the blue oval. The
boundary between the tissue with electrophysiological
simulation and the anatomical context is also clearly
conveyed, which is surrounded by the green oval.

IV. CONCLUSIONS

In this paper, we introduced the G-Heart system, a
framework which exploited advanced GPU computing
for both simulation 3D electrical wave propagation on
human heart tissue and visualization of the simulation
results. Other than the studies that were either focused
on electrophysiological simulation or the electrophysi-
ological simulation data visualization, we presented a
unified process for the electrophysiological simulation
and the simulation results evaluation by visualization.
The advent of the G-Heart has bridged the gap between
the electrophysiological simulation and its visualization,

Figure 5: Detailed information of the rendering result.

and made it easy to understand the cardiac electrophys-
iological simulation. A GPU-based electrophysiological
simulation with anatomically detailed information was
provided in this paper. And in order to show the precise
location of the tissue, we provided an improved Context-
Preserving model for generating the anatomical context
of the simulation data sets. Furthermore, we presented
visualization method for exploring the time-varying fea-
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ture of the cardiac electrophysiology. Results show that
the G-Heart framework, can greatly reduce the electro-
physiological simulation time and provide high quality
rendering results of the electrophysiological simulation
data. The proposed methods in this paper, such as multi-
modality electrophysiological data sequence visualization,
can be easily adopted to other medical applications. In
future work, we plan to refine our visualization method
for improving both rendering quality and performance.
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