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Abstract—The existing matrix factorization based 
collaborative recommendation algorithms have lower 
robustness against shilling attacks. With this problem in 
mind, in this paper we propose a robust collaborative 
recommendation algorithm based on least median squares 
estimator. We first propose a method of weight calculation 
to filter out the largest residuals by introducing the least 
median squares estimator (LMedS-estimator) of robust 
statistics, which can reduce the increment of target item’s 
feature vector caused by shilling attacks. Then we apply the 
method of weight calculation to RLS-estimator in order to 
realize the robust estimate of user feature matrix and item 
feature matrix. Finally, we develop a robust collaborative 
recommendation algorithm to make predictions. 
Experimental results on two different-scale MovieLens 
datasets show that the proposed algorithm outperforms the 
existing methods in terms of both the prediction accuracy 
and robustness. 
Index Terms—shilling attacks, robust collaborative 
recommendation algorithm, least median squares estimator, 
reweighted least squares estimator, robustness 

I  INTRODUCTION 

Collaborative filtering is the most successful 
recommendation technique which has been widely used 
in e-commerce recommender systems [1]. Collaborative 
filtering algorithms [2] can be generally categorized as 
either memory-based algorithms [3] or model-based 
algorithms [4]. Memory-based algorithms generate 
predictions based on the similarity between users and 
items respectively. Model-based algorithms use training 
data to generate a model, and then the model is used to 
predict the ratings for the items that have not been rated. 

Due to the openness of recommender systems, 
malicious users can manipulate their output by injecting a 
large number of fake profiles into the systems’ rating 
database. Such behavior has been referred to as shilling 
attacks [5]. To distinguish the genuine profiles, we 
usually call the fake profiles as attack profiles. For the 
different purposes of attacks, shilling attacks can be 
divided into push attacks and nuke attacks [6]. Common 

attack types include random attack, average attack, 
bandwagon attack, etc. [7] [8]. To reduce the influence of 
shilling attacks, we can perform attack detection before 
recommendation or enhance the inherent robustness of 
recommendation algorithms. In the field of recommender 
systems, robustness refers to the ability of a recommender 
system to provide stable recommendations when its 
rating database is contaminated with some portion of 
noisy or attack profiles. In this paper, we focus on 
developing a robust collaborative recommendation 
algorithm [9]. 

Matrix factorization (MF) [10] is one of the most 
widely used methods in collaborative recommender 
systems. The MF models proposed in [11] [12] [13] [14] 
are the extension of basic MF by taking into account user 
biases, item biases and their interaction, a neighborhood 
model among items, and temporal effects respectively. 
But the item biases and neighborhood model are 
vulnerable to shilling attacks. Moreover, the least squares 
estimator is sensitive to outliers. 

The probabilistic matrix factorization model in [15] 
transforms the prediction problem to an optimization 
problem, which can be applied to very large datasets and 
perform better in the circumstances that users have few or 
no ratings. The probabilistic latent semantic analysis 
model in [16] can trim most of attack profiles through the 
hidden dependencies between users and items, which is 
based on the calculation of users’ conditional probability 
under different latent variables. But this method is only 
suitable for large-scale attacks. In [17], the variable 
selection method based on principal component analysis 
is proposed to detect and eliminate suspicious users. This 
method can successfully detect suspicious users on 
average attacks, but it requires high similarity between 
attack profiles. 

M-estimator is proposed to construct robust matrix 
factorization in [18], which attempts to restrict the 
influence of outliers by replacing the square of residuals 
with a less rapidly increasing loss function. But this 
method only works on moderate attacks. Compared with 
the M-estimators based matrix factorization model 
(MMF), the least trimmed squares estimator based matrix 
factorization (LTSMF) in [19] shows better robustness 
and accuracy. Unlike traditional least squares estimator 
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(LS-estimator), LTS-estimator trims part of the largest 
residuals, which may cause the loss of information for 
genuine users. In addition, the threshold should be as 
close as possible to the number of genuine users, which is 
difficult to realize in practice. The L-estimator is 
introduced in [20], which defines a weight function by 
quartiles to limit the scope of the objective function. This 
method can reduce the influence of attack profiles, but 
the L-estimator completely ignores part of the data which 
may include information of genuine users. For this reason, 
the precision of the matrix factorization based on 
L-estimator is low. 

In [21], we present a robust collaborative filtering 
recommendation algorithm based on multidimensional 
trust model which measures the credibility of ratings of 
users from different aspects. This algorithm selects the 
trustworthy neighbors to generate recommendations and 
shows better robustness in comparison with other 
neighbor-based recommendation algorithms. 

As mentioned above, the existing collaborative 
recommendation algorithms based on matrix factorization 
have the following limitations. 

1) The estimate of the parameters is sensitive to 
outliers. 

2) The robustness of the recommendation algorithms is 
relatively poor when facing shilling attacks.  

To address the above problems, in this paper we 
propose a robust collaborative recommendation algorithm 
based on least median squares estimator. The main contri-
butions include: 

1) We introduce LMedS-estimator and RLS-estimator 
of robust statistics to realize the robust estimate of user 
feature matrix and item feature matrix. 

2) We present a method of weight calculation based on 
median to filter out the largest residuals, which can 
reduce the increment of target item’s feature vector 
caused by shilling attacks. 

3) We devise a robust collaborative recommendation 
algorithm and conduct experiments on two different-scale 
MoviLens datasets to demonstrate its effectiveness. 

II  MATRIX FACTORIZATION MODEL 

The matrix factorization models (MF) treat matrix 
factorization as a subspace fitting problem, which map 
user-item information into a latent feature space. Roughly 
speaking, MF methods use the linear combination of user 
factor and item factor to explain the specific user’s 
preferences for the particular item. The expression is as 
follows: 

ˆ T=R Q P                  (1) 

where R̂  is the matrix of rating predictions, 
( , , )1 nQ q q  is the f×n item feature matrix, f is the 

number of features in the given factorization, qi is a 
f-dimensional feature vector for item i, ( , , )1 mP p p  
is the f×m user feature matrix, pu is a f-dimensional 
feature vector for user u. Let R be the rating matrix, U be 
the set of users, I be the set of items, n be the total 

number of users, m be the total number of items, rui be the 
rating of user u to item i, ûir  be the predicted rating, the 
expression is as follows: 

ûir = ×T
i uq p                 (2) 

In matrix factorization models, the feature matrix P 
and Q are obtained by minimizing function: 

ˆ: arg min ( )L= = T
P,QQ, P R Q P, R       (3) 

To avoid over-fitting, the normalization factor can be 
added to the object function: 

ˆ ˆ: arg min ( ) ( )L λ= = + ΩT
,, ,P QQ P R Q P R R   (4) 

where λ  is a constant. 

III  LEAST MEDIAN SQUARES BASED MATRIX 
FACTORIZATION (LMedSMF) 

A. Definitions 
Definition 1. (Residual). Residual is the difference 

between observed value and regression estimate, that is 
the difference between real rating and prediction, denoted 
by eui. 

ˆui ui uie r r= −                (5) 
The reliability of data or other interferences can be 

obtained by the residual analysis. From the analysis of 
Equation 5, we know that eui is larger when rui is larger. 
In general, rui always has the maximum value for push 
attacks, which means the attackers tend to have larger 
residuals. The mean of residuals for each user is depicted 
in Fig. 1. As is shown in Fig. 1, residuals of attack users 
are larger than those of the most genuine users. 
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Figure 1. Mean of residuals for each user 

Definition 2. (Breakdown point). Breakdown point is 
the smallest proportion of outliers that an estimate will 
bear, denoted byε ∗ . 

In robust estimate, the breakdown point is usually used 
as a metric to measure the anti-interference ability for 
multiple outliers. The higher the breakdown point is, the 
better the anti-interference ability is. 

Definition 3. (LMedS-estimator). Let eui be the 
residual of user u U∈ to item i I∈ , then 
LMedS-estimator is to minimize the median of squared 
residuals, that is the solving of model parameters 

,∗ ∗q p : 
2

0
arg min (, )

ui
uir

med e
>

∗ ∗ =q p          (6) 

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 309

© 2014 ACADEMY PUBLISHER



where ( )med ⋅  is a median calculation function. 

By the Huber method [22], we can get the breakdown 
point of LMedS-estimator [ ]( / 2 2) /N f Nε ∗ = − + , 
where N is the number of ratings in rating matrix. The 
breakdown point of LMedS-estimator all depends on N, 
since f is much less than N. When N → ∞ , the 
LMedS-estimator has the largest breakdown point 

50%ε ∗ = . Therefore, the anti-interference ability of 
LMedS-estimator for multiple outliers is well. 

Since LMedS-estimator is to minimize the scatter of 
the residuals and it converges like 1 3n− , this slow rate of 
convergence can be improved by introducing 
RLS-estimator. Therefore, the two estimators can be 
combined and applied to matrix factorization model. 

Definition 4. (RLS-estimator). Let eui be the residual 
of user u U∈ to item i I∈ , then RLS-estimator is to 
minimize the sum of reweighted squared residual, that is 
the solving of model parameters ,∗ ∗q p : 

2

0
arg mi ), n (

ui

ui ui
r

w e e
>

∗ ∗ = ×∑q p        (7) 

where w(eui) is a weight function constructed by 
LMedS-estimator in this paper. 

The efficiency of LMedS-estimator is low when the 
noises of data is Gaussian distribution, so the scale factor 
S should be defined before the construction of weight 
function. The expression is given by: 

22
1 (1 ) ( )ui

k
S k med e

N f
= × + ×

−
       (8) 

where N is the number of ratings in the rating matrix, k1 is 
an asymptotic correction factor by which 
LMedS-estimator can have the same efficiency as the 
least squares estimator when the noises of data is 
Gaussian distribution, k2 is the correction coefficient 
which makes the estimator approximately unbiased. In 
this paper, we set k1=1.4286, k2=5. 

We can define the weight function w(eui) based on 
LMedS-estimator and scale factor S, the expression is 
given by: 

1,

0
(

,
)

i

ui

ue hS
otherwise

w e
⎧ ≤⎪= ⎨
⎪⎩

         (9) 

where h is a constant. 

B. The LMedSMF Algorithm 
The core idea of LMedSMF algorithm is as follows. 
1) Factorize the rating matrix, and realize the 

initialization of feature matrix P and Q, R=QTP. 
2) Calculate the residual between real rating and 

prediction, ui uie r= − ×T
i uq p , define the scale factor S, 

and then define the weight function w(eui) by S to get the 
reweighted squared residual. 

3) Construct the objective function of RLS-estimator 

by w(eui), calculate parameters of the model by stochastic 
gradient descent, which will obtain the feature matrix P 
and Q. 

4) Generate recommendation for the target user, 
ˆ = TR Q P . 

Based on the above steps, the description of 
LMedSMF algorithm is described as follows. 
Algorithm: LMedSMF 
Input: rating matrix R, the set of users U, the set 
of items I, the number of hidden categories f. 
Output: the feature matrix for user, item P, Q. 
1 Initialize the feature matrix ( , , )1 mP = p p , 

( , , )= 1 nQ q q  
2 repeat 
3  for each u U∈  do 
4   for i I∈  do 
5    if 0uir ≠  then 
6     ui uie r← − ×T

i uq p  
7     2( )uimedian med e←  

8     2
1 (1 )

k
S k median

N f
← × + ×

−
 

9      if uie hS ≤  then 

10       ( ) 1uiw e ←  
11      else 
12       ( ) 0uiw e ←  
13      end if 
14      for k=1 to f do 
15       ( )ui uiw e eγ← + × × ×ik ik ukq q p  
16       ( )ui uiw e eγ← + × × ×uk uk ikp p q  

17      end for 
18    end if 
19   end for 
20  end for 
21 until P, Q no longer changes 
22 return P, Q 

C. Time Complexity Analysis of LMedSMF Algorithm 
The first stage of LMedSMF algorithm (Step 1) is to 

initialize the feature matrix P, Q. At this stage, the time 
complexity of calculating the mean of all ratings is 
O(n×m), the time complexity of initializing the feature 
matrix P and Q is O(f×n) and O(f×m) respectively. 
Therefore, the time complexity for the first stage is 
O(n×m)+O(f×n)+O(f×m). Since n and m belong to the 
same order of magnitude, and f is far less than n and m, 
the first stage’s time complexity can be simplified into 
O(n×m). The second stage of LMedSMF algorithm (Steps 
2-22) is to train the prediction model. At this stage, the 
time complexity of median calculation is O(n×m), the 
time complexity of parameter estimate is O(loops×f×n×m) 
(suppose the iterations is loops). So the time complexity 
for the second stage is O(loops×f×n×m)+O(n×m). As f 
and loops are far less than n and m, the second stage’s 
time complexity can be simplified into O(n×m). Thus the 
time complexity of LMedSMF algorithm is O(n×m). 
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VI  EXPERIMENTAL EVALUATION 

A. Experiment Data and Settings 
To evaluate the performance of LMedSMF algorithm, 

we select two different-scale MovieLens datasets as the 
experimental data in this paper. 

1) MovieLens 100K dataset. This dataset contains of 
100,000 ratings from 943 users on 1,682 movies. Movies 
are rated on a scale of one to five, and each user has rated 
at least 20 movies. 

2) MovieLens 10M dataset. This dataset contains of 
10,000,054 ratings from 71,567 users on 10,681 movies. 
Movies are rated on a scale of one to five, and each user 
has rated at least 20 movies. 

The two datasets are all divided randomly in a ratio 
80:20 into training and test sets. Attack profiles are all 
target the same item that is selected at random, and the 
attack profiles are generated with various attack types at 
various filler sizes across various attack sizes for push 
attacks, respectively. 

B. Evaluation Metrics 
The root mean squared error (RMSE) and prediction 

shift (PS) are used to measure the performance of the 
proposed algorithm. 

RMSE is commonly used in recommender systems as 
the measurement of accuracy, and it is defined as follows: 

2
,

ˆ
E

1

(
R S

)
M ui uiu U i I

U

r r
∈ ∈

−
=

−
∑

        (10) 

PS measures the effectiveness of attacks by the 
differences between predictions before and after attacks, 
and it can be defined as follows: 

,
ˆ ˆ( )

PS ui uiu U i I
r r

U
∈ ∈

′ −
=
∑

         (11) 

where PS denotes the prediction shift for user u on item i, 
ûir′  and ûir  are predictions after and before attacks 

respectively. 

C. Experimental Results and Analysis on the MovieLens 
100K dataset 

To evaluate the performance of LMedSMF algorithm, 
we conduct experiments on the MovieLens 100K dataset 
and compare LMedSMF with M-estimator based matrix 
factorization (MMF) and LTS-estimator based matrix 
factorization (LTSMF) in terms of accuracy and 
prediction shift metrics. TABLE I, TABLE II and TABLE 
III show the comparison of RMSE and PS for three 
algorithms with various attack types at various filler sizes 
across various attack sizes.

TABLE I. 
COMPARISON OF RMSE AND PS ON THE MOVIELENS 100K DATASET FOR THREE ALGORITHMS WITH AVERAGE ATTACK  

Attack size 1% 2% 5% 10% 20% 
Filler size 1% 3% 1% 3% 1% 3% 1% 3% 1% 3% 

MMF 
RMSE 0.9571 0.9577 0.9583 0.9573 0.9568 0.9568 0.9574 0.9555 0.9561 0.9551

PS 0.7999 0.7183 1.2864 1.0380 1.6708 1.1809 1.8204 1.3095 1.8029 1.4524

LTSMF 
RMSE 0.9538 0.9546 0.9532 0.9539 0.9533 0.9524 0.9533 0.9524 0.9514 0.9515

PS 0.7875 0.6245 1.1431 0.9229 1.4122 1.0545 1.5807 1.1916 1.5658 1.3480

LMedSMF 
RMSE 0.9506 0.9514 0.9507 0.9500 0.9509 0.9507 0.9512 0.9502 0.9495 0.9498

PS 0.7076 0.5651 1.0406 0.8366 1.3259 1.0355 1.4117 1.1013 1.3861 1.2617

TABLE II. 
COMPARISON OF RMSE AND PS ON THE MOVIELENS 100K DATASET FOR THREE ALGORITHMS WITH AOP ATTACK 

Attack size 1% 2% 5% 10% 20% 
Filler size 1% 3% 1% 3% 1% 3% 1% 3% 1% 3% 

MMF 
RMSE 0.9584 0.9587 0.9581 0.9587 0.9592 0.9587 0.9586 0.9596 0.9587 0.9596

PS 0.7430 0.7184 1.1040 1.0210 1.5622 1.3788 1.6526 1.4529 1.6749 1.5300

LTSMF 
RMSE 0.9536 0.9548 0.9544 0.9531 0.9538 0.9537 0.9537 0.9549 0.9551 0.9540

PS 0.7389 0.6677 1.0348 0.9522 1.3465 1.2080 1.5199 1.3692 1.5914 1.4539

LMedSMF 
RMSE 0.9518 0.9515 0.9522 0.9518 0.9517 0.9515 0.9515 0.9528 0.9521 0.9528

PS 0.7137 0.6109 0.9920 0.8763 1.2687 1.1726 1.3373 1.2568 1.3846 1.3367

TABLE III. 
COMPARISON OF RMSE AND PS ON THE MOVIELENS 100K DATASET FOR THREE ALGORITHMS WITH RANDOM ATTACK 

Attack size 1% 2% 5% 10% 20% 
Filler size 1% 3% 1% 3% 1% 3% 1% 3% 1% 3% 

MMF 
RMSE 0.9568 0.9576 0.9579 0.9572 0.9572 0.9562 0.9579 0.9538 0.9549 0.9525

PS 0.7660 0.7242 1.1334 0.7789 1.5060 1.0228 1.4685 1.0669 1.5115 1.1594

LTSMF 
RMSE 0.9536 0.9528 0.9528 0.9513 0.9528 0.9513 0.9525 0.9497 0.9517 0.9495

PS 0.7392 0.6520 1.0102 0.6649 1.2627 0.8676 1.3368 0.9346 1.3679 1.1140

LMedSMF 
RMSE 0.9499 0.9505 0.9508 0.9498 0.9503 0.9500 0.9498 0.9477 0.9481 0.9478

PS 0.6829 0.5740 0.9371 0.6313 1.1156 0.8105 1.1327 0.9211 1.2428 1.0568
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As shown in TABLE I, TABLE II and TABLE III, the 
RMSE of MMF is the largest, LTSMF’s comes the 
second, and the RMSE of LMedSMF is the smallest. 
Therefore, the accuracy of LMedSMF algorithm is better 
than that of MMF and LTSMF. 

From the comparison of PS in TABLE I, TABLE II 
and TABLE III, it can be seen that MMF exhibits a poor 
performance on robustness, LTSMF works better than 
MMF, and LMedSMF shows the best robustness. With 
the increase of attack size, PS of the three algorithms 
increases gradually, but the growth of PS for LMedSMF 
is the slowest. Take the PS in TABLE I for example, 
when the attack size is 2% and filler size is 1%, the 
robustness of LMedSMF is improved by 10% and 24% 
respectively compared with LTSMF and MMF. For the 
same attack type and attack size, the general trend of PS 
for the three algorithms is approximately the same at 

filler size 1% and 3%, but the superiority of LMedSMF is 
still obvious. Take the PS in TABLE II for example, when 
the attack size is 2% and filler size is 3%, the robustness 
of LMedSMF algorithm is improved by 8% and 15% 
respectively compared with LTSMF and MMF. 

D. Experimental Results and Analysis on the MovieLens 
10M dataset 

To further evaluate the performance of LMedSMF 
algorithm, we also conduct experiments on the 
MovieLens 10M dataset and compare LMedSMF with 
MMF and LTSMF in terms of accuracy and prediction 
shift metrics. TABLE IV, TABLE V and TABLE VI show 
the comparison of RMSE and PS for three algorithms 
with various attack types at various filler sizes across 
various attack sizes. 

TABLE IV. 
COMPARISON OF RMSE AND PS ON THE MOVIELENS 10M DATASET FOR THREE ALGORITHMS WITH AVERAGE ATTACK 

Attack size 0.1% 0.2% 0.5% 1% 2% 
Filler size 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 

MMF 
RMSE 0.9510 0.9502 0.9505 0.9506 0.9509 0.9501 0.9520 0.9523 0.9523 0.9505

PS 0.5871 0.5514 0.7432 0.7252 1.2579 1.2621 1.6304 1.6804 1.8913 1.9064

LTSMF 
RMSE 0.9493 0.9470 0.9497 0.9479 0.9479 0.9479 0.9478 0.9473 0.9475 0.9476

PS 0.5756 0.5655 0.7588 0.7008 1.3593 1.2934 1.6860 1.6738 1.8318 1.8879

LMedSMF 
RMSE 0.9424 0.9415 0.9415 0.9428 0.9431 0.9429 0.9417 0.9427 0.9429 0.9433

PS 0.5486 0.5265 0.5850 0.6288 0.9068 0.8879 1.2758 1.3668 1.7946 1.8345

TABLE V. 
COMPARISON OF RMSE AND PS ON THE MOVIELENS 10M DATASET FOR THREE ALGORITHMS WITH AOP ATTACK 

Attack size 0.1% 0.2% 0.5% 1% 2% 
Filler size 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 

MMF 
RMSE 0.9503 0.9502 0.9508 0.9516 0.9506 0.9506 0.9531 0.9532 0.9565 0.9550

PS 0.5596 0.5692 0.7386 0.7696 1.2486 1.2549 1.7496 1.8395 1.9719 0.9532

LTSMF 
RMSE 0.9475 0.9482 0.9467 0.9480 0.9489 0.9487 0.9486 0.9486 0.9509 0.9503

PS 0.5523 0.5527 0.7187 0.7183 1.2796 1.2561 1.7515 1.7400 1.9694 1.9544

LMedSMF 
RMSE 0.9412 0.9425 0.9412 0.9415 0.9417 0.9421 0.9431 0.9436 0.9442 0.9435

PS 0.5507 0.5438 0.6160 0.6295 0.8436 0.9579 1.3061 1.2336 1.7693 1.8079

TABLE VI. 
COMPARISON OF RMSE AND PS ON THE MOVIELENS 10M DATASET FOR THREE ALGORITHMS WITH RANDOM ATTACK 

Attack size 0.1% 0.2% 0.5% 1% 2% 
Filler size 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 0.5% 0.8% 

MMF 
RMSE 0.9516 0.9510 0.9514 0.9511 0.9499 0.9513 0.9518 0.9503 0.9511 0.9524

PS 0.5545 0.5525 0.6907 0.6819 1.1396 1.0109 1.4671 1.3931 1.5146 1.5306

LTSMF 
RMSE 0.9470 0.9477 0.9478 0.9485 0.9485 0.9480 0.9477 0.9491 0.9487 0.9494

PS 0.5686 0.5483 0.6481 0.6652 1.1249 0.9782 1.3710 1.2991 1.5857 1.5158

LMedSMF 
RMSE 0.9411 0.9416 0.9424 0.9428 0.9417 0.9418 0.9423 0.9427 0.9432 0.9443

PS 0.5136 0.5195 0.5874 0.5845 0.7829 0.8162 1.0953 1.0925 1.4755 1.4092

As shown in TABLE IV, TABLE V and TABLE VI, the 
RMSE values of the three algorithms are smaller than 
those of in TABLE I, TABLE II and TABLE III. In 
addition, the accuracy of LMedSMF algorithm is still 
better than that of MMF and LTSMF. 

From the comparison of PS in TABLE IV, TABLE V 
and TABLE VI, it can be seen that the robustness of 
LMedSMF has improved significantly compared with 
MMF and LTSMF. Take the PS in TABLE IV for 

example, when the attack size is 1% and filler size is 
0.8%, the robustness of LMedSMF is improved by 31% 
and 32% respectively compared with LTSMF and MMF. 

The experimental results on two different-scale 
MoviLens datasets show that the robustness and accuracy 
of LMedSMF algprithm outperform MMF and LTSMF. 
The reason is that we introduce the LMedS-estimator and 
combine it with RLS-estimator, which can trim attack 
profiles more accurately compared with LTS-estimator 
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and M-estimator. 

E. The Influence of Parameter on PS 
To illustrate the influence of parameter h (see Equation 

9) on prediction shift of LMedSMF algorithm, we 
conduct experiments on the MovieLens 100K dataset 
with various attack types at 2% attack size and 1% filler 
size, and experiments on the MovieLens 10M dataset 
with various attack types at 0.2% attack size and 0.5% 
filler size. The prediction shift curves with different h 
under average attack, AoP attack, and random attack are 
depicted in Fig. 2 and Fig. 3 respectively. 
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Figure 2. The prediction shift curves with different h on the 

MovieLens 100K dataset 
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Figure 3. The prediction shift curves with different h on the 

MovieLens 10M dataset 

As is shown in Fig. 2, when h is greater than 1 and less 
than 2.5, with the increase of h, the prediction shift of 
LMedSMF under three attack types reduces gradually. 
But when h is greater than 2.5, the prediction shift 
increases gradually. When h is equal to 2.5, the smallest 
prediction shift will be obtained, that is to say the weight 
function w(eui) will achieve the best effect when h=2.5. 
Similarly, the prediction shift of LMedSMF in Fig. 3 is 
also the smallest when h=2.5. Therefore, we set h to 2.5. 

V  CONCLUSIONS AND FUTURE WORK 

In this paper we propose a robust collaborative 
recommendation algorithm based on least median squares 
estimator. We introduce the LMedS-estimator and 
RLS-estimator to realize the robust estimate of feature 
matrix P and Q. Compared with the existing robust 
recommendation algorithms, LMedSMF is a more 
accurate and comprehensive method which minimizes the 
influence of shilling attacks. Furthermore, the LMedSMF 

algorithm has both MMF’s and LTSMF’s advantages, 
which can effectively improve the robustness of 
algorithm. In our future work, we will focus on 
improving the accuracy of LMedSMF algorithm. 
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