
A Systematic Approach to Adaptive
Dimensioning of Data Centers

Wenhong Tiana
a School of Computer Science and Engineering

University of Electronic Science and Technology of China
Chengdu 611731, China

Email: tian wenhong@uestc.edu.cn

Abstract— Cloud data centers (CDCs) provide key infras-
tructure for Cloud computing. Accurately allocating com-
puting resources is very important for the CDCs to function
efficiently. Current allocation of resources in CDCs is mostly
dedicated and static. However, workloads for Cloud appli-
cations are highly variable which cause poor application
performance, poor resource utilization or both. In this
paper, considering both blocking and delay probability by
applying queuing theories to model different scenarios,
systematic adaptive dimensioning methods for CDCs are
developed so that right amount of computing resources are
allocated for variable workloads to meet quality of service
requirements in different situations. Both single CDC and
multiple CDCs with and without delay are considered. The
proposed methods can be applied to dimension data centers
efficiently and dynamically.

Keywords: Cloud computing; Cloud Data Centers
(CDCs); Adaptive Dimensioning Methods.

I. INTRODUCTION

Cloud Computing refers to the applications delivered
as services over the Internet, the hardware and sys-
tems software in the data centers that provide those
services [1] [3]. Cloud data centers (CDCs) consist of
both clustering of servers and networking infrastructure.
Driven by the economics of large number of low-cost
servers with clustering, the reliability and availability of
the Cloud system as a whole are improved significantly
in distributed computing. Current CDCs, for instance,
Google’s, Amazon.com’s, and Microsoft’s, now being
built to contain more than 100,000 servers. Google [2]
introduces one of CDC architecture: which consists of
multiple clusters distributed worldwide. Each cluster has
around a few thousand machines, and the geographically
distributed setup protects the system against catastrophic
data center failures (like those arising from earthquakes
and large-scale power failures). The servers on each side
of a rack interconnect via a 100-Mbps Ethernet switch
that has one or two gigabit uplinks to a core gigabit
switch which connects all racks together. In Amazon.com
[7], the virtual machine providing the equivalent of a
system with a 1.7Ghz x86 processor, 1.75GB of RAM,
160GB of local disk, and 250Mb/s of network bandwidth,

Manuscript received Feb. 12, 2013; revised June 14, 2013; accepted
July 4, 2013. c© 2005 IEEE.

This work is supported the National Natural Science Foundation of
China (NSFC) Grant 61150110486.

is called an computing “instance”, other configuration
of virtual machines with different computing powers are
called different instances. Measuring computing power
in a Cloud is introduced in [17] as Cloud equivalence.
In this paper, computing resources of the CDCs are
considered such as for virtual computing lab [26] and
other research applications. Assuming that an application
each time requests one or more computing instances such
as in VCL [26] [27] and Amazon.com’s EC2 [31], this is
called full server utility model [19]. Gu et al. [9] present
a scheduling strategy on load balancing of VM resources
based on genetic algorithm, it claims to achieve load bal-
ancing and reduce or avoid dynamic migration according
to historical data and current state of the system. Xu
et al. [28] develop heterogeneous computing resources
tool called HCCloud to help use computing resources
in a more efficient, scalable and flexible way. You et
al. [29] design an automatic resource allocation strategy
based on market Mechanism (ARAS-M), implemented
on Xen, and experiment results show that ARAS-M can
approximately achieve the equi- librium state between
demand and supply. Tian [24] proposes three ways to
improve the efficiency of virtual cloud lab by applying
queueing model. Tian [25] provides preliminary results
of related adaptive dimensioning methods for Cloud data
centers; we extend it in this paper. The traffic of the
customer requests is highly variable depending on the
time of the day. Figure 1 from [19] shows a log-transform
results of requests arrival rates from a trace. One example
is given in [1] as follows: “When Animoto online made its
service available via Facebook, it experienced a demand
surge that resulted in growing from 50 servers to 3500
servers in three days. Even if the average utilization of
each server was low, no one could have foreseen that
resource needs would suddenly double every 12 hours for
3 days. After the peak subsided, traffic fell to a level that
was well below the peak. ” Overprovisioning and under-
provisioning are two coexisting extremes in provisioning
data centers. Taking SETI@home project [12] [30] as
another example, there are six largest time zones in terms
of hosts. Hosts are number of servers or machines for cus-
tomers applications. These time zones in corresponding
to Central Europe (17,000 hosts), Eastern North America
(11,003 hosts), Central North America (6,077 hosts)),
Western North America (4,900 hosts), Western Europe

266 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.2.266-274

(4280 hosts), and Eastern Asia (2396 hosts). New hosts
added per day and average new hosts per day are shown
in Figure 2 and Figure 3 respectively. It can be seen
that customer requests (hosts) are highly variable. We
need to develop adaptive dimensioning methods so that
right amount of computing resources can be allocated for
variable workload to avoid overprovisioning or under-
provisioning. An architecture and server migration

Figure 1. An Example of Requests Arrival Rate from [19]

Figure 2. New Hosts For SETI@home [30]

Figure 3. Average New Hosts For SETI@home [30]

approaches have been introduced in [19] where both
online and offline server migration strategies are discussed
and evaluated. Liu et al. [18] propose an architecture
of self-adaptive configuration optimization system which
supports dynamic reconfiguration when workloads change
using genetic algorithm. An integer linear programming

BR: border router

AR: access router

LB: load balancer

A: rack of servers

DIP:direct IP

address

VIP:virtual IP

address

Figure 4. A New Architecture for Data Center [10]

(ILP) approach is provided in [6] to solve the resilient
grid/cloud dimensioning problem using failure-dependent
backup routes. Next generation architecture for data cen-
ters is proposed in [10] and reprinted in Figure 4. In
the architecture, layer 2 networks connect all the servers
inside a data center and requests are distributed over pools
of servers. To increase the total capacity of the CDCs,
three layered structure of internetworking is proposed
in [10] and reprinted in Figure 5. There are n1 = 144

Figure 5. Three layered structure for Data Center [10]

ingress-egress switches, shown in light gray. Each ingress-
egress switch connects, through a 10-Gbps port , to every
intermediate switch, of which there are n2 = 72, shown
in dark gray. Each 10G bps port can connect 10 servers
with 1Gbps bandwidth. It can be computed that the total
number of servers 144x72x10=103,680 (or 1,036,800 if
each server’s bandwidth is 100Mbps). All the servers
in the CDCs can be automatically started up or shut
down using power concentrators. For this kind of fully
connected meshed architecture in a CDC, it is reasonable
to model the system as a multi-server queue. Current

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 267

© 2014 ACADEMY PUBLISHER

CDC architectures are manually configured and cannot
automatically adapt to time-varying workloads, they re-
sult in poor resource utilization when workload is low
(overprovisioning) or significant performance degradation
when loads exceed capacity (under-provisioning) as dis-
cussed in [19]. To overcome overprovisioning and under-
provisioning problems, adaptive dimensioning methods
are developed in this paper. The paper is organized as
follows. In section II, methods for adaptive dimensioning
of single Cloud data center are proposed. Method for
multiple federated Cloud data centers is discussed in
section III. Finally, the conclusions are given in section
IV.

II. SINGLE CLOUD DATA CENTER (CLOUD)

In this section, models and dimensioning methods for
single Cloud data center are discussed on the basis of
blocking and non-blocking models.

A. Dimensioning with Blocking Models

Assuming that individual requests constituting the
workload are independent to each other; tasks are sched-
uled in a first-in-first-out manner without preemption;
but the incoming requests that find all servers busy are
blocked and depart from the system. Erlang loss model
can be applied in this case.

1) Erlang Loss Model with Poisson Arrivals for Single
Class of Customers (requests): In this case, a CDC with
server cluster can be modeled as a M/G/C/C queue, i.e.,
requests arrivals follow Poisson process and service time
distribution can be general and there are total C servers
in a CDC. Provisioning optimal total number of servers
is one of practical ways to meet the blocking probability
and other QoS requirements. In this section, we describe
how to calculate the minimum number of servers C of the
blocking model so that the maximum blocking probability
is less than a pre-specified value ε for a given load. Erlang
loss formula is given by:

B(N, ρ) =
ρN/N !∑N
i=0 ρ

i/i!
(1)

where ρ is the offered load to the system, for example
measured by the number of requests per seconds. This
minimum value of C can be calculated iteratively using
equation (1). However, when the required capacity C is
very large, this iterative approach becomes CPU intensive
since its time complexity is O(log2(N/ε)N). A recursive
formula for equation (1) is as follow:

B(N, ρ) =
ρB(N − 1, ρ)

N + 1 + ρB(N − 1, ρ)
, B(0, ρ) = 1. (2)

It is a long-standing conjecture that the optimal number
of servers is of the form ρ+K

√
ρ for Erlang loss model

where K is a constant depending on the offered load and
blocking probability. This approximation yields very ac-
curate results. Indeed, based on extensive sensitivity tests,
the actual optimum and approximate values rarely deviate
by more than one server, or by more than one percent,

TABLE I.
THE REQUIRED NUMBER OF SERVERS C VS. OFFERED LOAD (ρ)

ρ Method C ρ Method C

0.14 Exa 2 100 Exa 118
0.14 Asm 2 100 Asm 118

1 Exa 5 200 Exa 222
1 Asm 5 200 Asm 222
3 Exa 8 500 Exa 527
3 Asm 8 500 Asm 527
10 Exa 18 1000 Exa 1030
10 Asm 18 1000 Asm 1030
40 Exa 53 2000 Exa 2030
40 Asm 53 2000 Asm 2030

whichever is greater. In this paper, single class traffic is
considered for a CDC. Then asymptotic expression for
the optimum value of C is obtained as follow:

N = ρ+ ψ(ε
√
ρ)
√
ρ (3)

where ε is the blocking probability requirement, ρ is the
offered load (workload) to the system and ψ(x) is the
unique solution of the following differential equation

ψ′(x) =
−1

(ψ(x) + x)x)
, ψ(

√
2/π) = 0 (4)

In [22], equation (4) is solved to obtain

x−1e−0.5ψ(x)2 −
√

2πerf(0.51/2ψ(x))− x
√

0.5π = 0
(5)

where erf(.) function is defined as follow:

erf(x) =
2√
π

∫ x

0

exp(−t2)dt (6)

Given x, equation (4) can be easily solved numerically
for ψ(x). Applied to equation (3), the requested total
number of servers can be obtained.Table I shows the
minimum required number of servers for a Erlang loss
queue, so that the blocking probability ε is less than 0.01.
The offered load ρ was varied. For each value of ρ, the
minimum required servers is computed using equation (3)
(labelled as ‘Asm’) and also using Erlang loss formula
(exact solution labeled as ‘Exa’) which can be obtained
using equation (2) iteratively. Through many numerical
examples, that the minimum capacity C obtained using
equation (3) is observed to be very closed to the exact
solution.

2) Erlang Loss Model with Poisson Arrivals for Multi-
ple Classes of Customers: Let us assume that the system
has a total C identical servers, and each can provide
service to any class of arrivals. Let n=(n1, n2, ..., nR)
where nr is the number of class r customers in the system,
and let b=(b1, b2, ..., bR). The total number of busy servers
in state C is

bnT = b1n1 + b2n2 + ...+ bRnR. (7)

The set of all possible states of the system can be
described as

Sb = {n : bnT ≤ C}. (8)

268 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

It is well known that the multi-class Erlang loss system
has a product-form solution.

P (n) =
R∏
i=1

ρnii
ni!

G−1(Ω),∀n ∈ Ω (9)

where

G(Ω) =
∑
n∈Ω

R∏
i=1

ρnii
ni!

(10)

The class-i has offered load ρi = λi/µi. The challenge in
this model is to obtain the blocking probability for each
class. Computing the blocking probabilities by directly
enumerating all possible states of the system requires
an O(CR) amount of time. The direct method is com-
putationally cumbersome and grows exponentially fast
even for relatively small systems. Several methods have
been presented in the literature to avoid the exponential
complexity of the computations. One of the most powerful
methods for obtaining the blocking probabilities was pub-
lished independently by Kaufman (1981) [14] and Roberts
(1981) [20]. The Kaufman-Roberts method is a recursive
algorithm that has a linear complexity, O(CR), and it is
considered as a fast method. The recursive formula is as
follows:

w(K) =
1

K

R∑
r=1

ρrbrw(K − br),K = 1, 2, ..., C. (11)

where w(x)=0 if x < 0, w(0)=1 and ρr = λr/µr. Then,
the blocking probability of class r arrivals is given by:

BPr =

∑C
j=C−(br−1) w(j)∑C

j=0 w(j)
, r = 1, 2, ..., R. (12)

It is interesting to know that this formula can be applied
to the single class model, as a fast way of obtaining the
blocking probability. Given the blocking probabilities, the
average number of class r customers in the system is

E[Qr] = ρr(1−BPr), r = 1, 2, ..., R. (13)

3) Blocking Model with General Arrival Processes for
Single Class of Customers: Mt/G/N/N queue model
can be applied for general arrivals which may be time
varying. A solution similar to Erlang loss model is pro-
vided in [11]:

N = bρt + ψ(
ε

b

√
b2ρt)

√
b2ρt (14)

where time-varying ρt is the offered load to the sys-
tem and b is the bandwidth (servers) required by
each request. A few examples are also introduced in
[11]. Let us take one example from [11], arrival rate
λ(t)=40+10sin(2πt/80), requesting b=5 units of band-
width (similar to servers in CDCs) and desiring no more
than 1 percent blocking. Taking every 10 minutes as a
measurement and provisioning interval. Figure 6 shows
the dimensioning results for eight periods of measure-
ment. Decisions of adaptive provisioning are made at the
end of each measurement interval to meet the blocking
probability of requirement.

Figure 6. Eight Periods Provisioning Example from [11]

4) Blocking Model with General Arrival Processes
for Multiple Classes of Customers: Similar to Poisson
arrival processes for multiple classes of customers, the
total number of servers in general arrival case can be
dimensioned using following equation:

C =

R∑
i=1

biρi(t)+ψ(min
1≤i≤R

εi
bi

√√√√ R∑
i=1

biρi(t))

√√√√ R∑
i=1

biρi(t)

(15)
where time-varying ρi(t) is the offered load to class-i,
εi and bi is respectively the blocking probability and the
number of servers requests for class-i.

B. Dimensioning with Nonblocking Models

Assuming that individual requests constituting the
workload are independent to each other; tasks are sched-
uled in a first-in-first-out manner without preemption;
there are a large number of servers so that requests rarely
incur blocking or non-blocking. Then delay models can
be applied in this case.

1) Erlang Delay Model: Erlang delay model M/M/C
can be applied in this case, where each server represents
a server in a CDC, requests who come and find all servers
busy will be put into an infinite queue to wait before being
served. For example, if the total number of servers in a
CDC is 256, then the Erlang delay model will consist of
256 servers. A customer in this queuing system represents
an on-demand request for computing resources, those
customers who find all servers are busy when coming
will wait in a queue as long as necessary for a server to
become available. In this model, it is well known that the
probability of delay (the fraction of customers who will
find all C servers busy and must wait in the queue) is
given by the famous Erlang Delay (or Erlang C) formula
as shown in equation (16) where C is the number of
servers and ρ=λ τ is the total offered load in erlangs,

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 269

© 2014 ACADEMY PUBLISHER

λ is the arrival rate and τ is the average service time:

D(C,A) =

AC

C!(1−A)∑C−1
k=0

Ak

k! + AC

C!(1−A)

(16)

where A=ρ/C if ρ≤ C; A=1 if ρ=1. And for large C,
computing D(C,A) directly is very expensive or can
cause computer overflow. Notice that there is a recursive
formula for Erlang B and a recursive formula based on
Erlang B (equation (2)) can be used for Erlang C as
follows:

D(C,A) =
B(C,A)

1−A(1−B(C,A))
(17)

It is obvious that the larger C is, the smaller delay
will be. However, we cannot design the CDC to have
as many servers as possible because of finance and
space limitation. We can compute a few examples and
find that D(0.9, 1)=0.9, D(9, 10)=0.67, D(90, 100)=0.22
and D(900, 1000)=0.0006. In all above cases, the server
utilization is 0.9. It shows that large systems are more
efficient than small ones. The following equation can be
used to predict how long the customers (requests) will
have to wait:

w = D(C,A)
1

1−A
τ

C
(18)

This holds true even when service is not first come first
service (FIFO), for example, LIFO (Last in First out) or
service in random order. This is because that interchang-
ing statistically identical customers waiting in the queue
does not change the number of customers or the amount
of work waiting to be served, see Cooper [5] for more
detailed explanations. Tian and Perros [23] introduced one
way to dimension the data center with job priorities and
QoS constraints using single server queuing model. Based
on Erlang delay model itself, it is possible to dimension
the system to meet QoS requirements. Jennings et al [13]
introduced the following formula for dimensioning Erlang
delay model:

C = ρ+ zα
√
ρ (19)

where ρ is the mean offered load to the system. After
some computation and simplification, zα satisfies

Pr(N(0, 1) > zα) = α =
1√
2π

∫ ∞
zα

exp(−u2/2)du

(20)
where N(0, 1) is the standard normal distribution and α
is the delay probability of the system. Given α, zα can
be computed explicitly so that the required number of
servers C can be found easily from equation (19). It is
shown in [13] that using equation (19) for dimensioning
of Erlang delay model can meet given delay requirement
with appropriate number of servers. Equation (19) and
(20) can be easily used to find the appropriate number of
servers. In Table II, the probability of delay as a function
of the offered load in the Erlang delay queue M/M/C is
shown, where C is chosen to satisfy Equation (20) with
α=0.005 (zα=2.576). C(Asm) is obtained using equation
(19) while C(Ite) is obtained applying equation (16)
iteratively.

TABLE II.
THE REQUIRED NUMBER OF SERVERS C VS. OFFERED LOAD (ρ)

ρ ρ+ zα
√
ρ C(Asm) C(Ite)

1 4.1 5 5
10 18.6 20 21

100 126.3 127 128
200 236.9 237 239
500 558.1 559 560
1000 1082.1 1083 1084
2000 2115.7 2116 2119

2) Nonblocking model with General Arrivals and Ser-
vices: In this case, requests arrival process and service
process can be general.
(1) Considering delay probability. In this case the total
number of servers can be found using the following
equation:

C = ρt + zα
√
ρt (21)

where ρt is the mean time-varying offered load to the
system.
(2) Considering response time. A CDC with server cluster
can be modelled as a G/C/C system which has a mean
response time R under heavy traffic given by [16]

R =
1

µ̄
+

σ2
a +

σ2
b

C2

2t(1− U)
(22)

where σ2
a and σ2

b are the variance of inter-arrival and
service times, respectively, and t is the mean inter-arrival
time, µ̄ is the mean service rate and U is the average
CPU utilization in the previous measurement interval. U
can be obtained by taking average over all servers’ CPU
utilization. It can be seen that the number of servers C
is related to six variables (R,U ,µ̄,t,σ2

a,σ2
b). Solving the

equation for C, we have

C =

√
σ2
b

2t(1− U)(R− 1
µ̄))− σ2

a

(23)

Given (R, U , µ̄, t, σ2
a, σ2

b), the required number of
servers for the next interval can be computed using
above equation. Normally, the quality of service (QoS)
requirements may include U and R. And µ̄,t,σ2

a, σ2
b can be

measured. For example, given U=0.5, t=0.2, σ2
a=0.2 and

σ2
b=100, the total number of required servers is changing

with the required response time R, results are shown in
Figure 7.

C. Optimized Capacity Provisioning and Bounds

For the given arrival rate and blocking probability
requirement of each class, we may use an iterative
approach (based on fixed point algorithm) to optimize
the total capacity. We are to find the number of total
servers required for a CDC to meet the acceptable level
of blocking (known as grade-of-service). The optimization
problem is to find a minimum total number C for given
offered load and acceptable blocking

ε : min{C|max blocking probability ≤ ε}. (24)

270 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

Figure 7. A Dimensioning Example for Non-blocking Model

When needed capacity is very large, iterative approach
based on fixed point algorithm will be expensive with
time complexity at least O(CR). It is a long-standing
conjecture the optimal number of bandwidth (servers) is
of form servers=ρ+K

√
ρ for single class traffic where K

is a constant depending on the offered load and blocking
probability. In Grassmann [8], he stated that “Extensive
sensitivity testing revealed that this approximation yields
very accurate results. Indeed, the actual optimum and the
approximation rarely deviate by more than one server,
or by more than one percent, whichever is greater.”
For multiclass traffic, similar result was introduced by
Hampshire et al. in [10]:

C =

R∑
i=1

biρi + ψ(min
1≤i≤R

εi
bi

√√√√ R∑
i=1

biρi)

√√√√ R∑
i=1

biρi (25)

where εi is the grade of service (blocking probability)
requirement for class-i traffic and ψ(x) is the unique
solution to the equation (5). Given x, equation (5) can
be solved easily with complexity O(1), i.e., we can get
ψ(x) easily given x. Applied to equation (25), we obtain
the request total capacity. Because of the asymptotic rule,
satisfying the requirements provides more than enough
servers for all the other classes. Through many numerical
examples, we observed that the total servers obtained
using equation (25) is very closed to exact solution. This
approach is a very accurate provisioning solution with
complexity O(1). Also from Ross [20], we know that the
blocking probability of each class is proportional to its
servers (bandwidth) requirement when total capacity is
very large, i.e.,

BPk ≈ bkα, k = 1, 2, . . . , R (26)

where α is a constant for given total capacity and offered
loads. If we know Qos requirement of the dominant Qos
classes, we can know the blocking probabilities of other
classes, so we can find total arrival rates for each class
easily and then use equation(25) for provisioning. Observ-
ing that the asymptotic rule of thumb and the blocking
probabilities relationship among different classes, we can

TABLE III.
8 TYPES OF VIRTUAL MACHINES (VMS) IN AMAZON EC2

MEM CPU (units) Sto VM
1.7 1 (1 cores × 1 units) 160 1-1(1)
7.5 4 (2 cores × 2 units) 850 1-2(2)

15.0 8 (4 cores × 2 units) 1690 1-3(3)
17.1 6.5 (2 cores × 3.25 units) 420 2-1(4)
34.2 13 (4 cores × 3.25 units) 850 2-2(5)
68.4 26 (8 cores × 3.25 units) 1690 2-3(6)
1.7 5 (2 cores × 2.5 units) 350 3-1(7)
7.0 20 (8 cores × 2.5 units) 1690 3-2(8)

TABLE IV.
3 TYPES OF PHYSICAL MACHINES (PMS) SUGGESTED

PM CPU (units) MEM Type
1 16 (4 cores × 4 units) 160 1
2 52 (16 cores × 3.25 units) 850 2
3 40 (16 cores × 2.5 units) 1690 3

find the blocking probability of the dominant Qos classes
by inverting the equation (25) as follows:

εi =
bi

δ
∫∞

0
e−0.5t2+(C−m)t/δdt

(27)

where m (called mean of offered load) and δ (called
standard deviation of offered load) are defined as:

m =

R∑
i=1

biρi; δ =

√√√√ R∑
i=1

b2i ρi (28)

Equation (27) and (28) can help us find the tight bounds
of blocking probabilities given other parameters.

III. MODELING VIRTUAL MACHINES ALLOCATION

Taking the widely used example of Amazon EC2 [31],
we show that a uniform view of different types of virtual
machines (VMs) is possible. Table III shows eight types of
virtual machines from Amazon EC2 online information.
We can therefore form three types of different physical
machines based on compute units. In real Cloud data
center, for example, a physical machine (PM) with 2 ×
68.4GB memory, 16 cores × 3.25 units, 2 × 1690GB
storage can be provided. In this or similar way, and
uniform view of different types of virtual machines is
possibly formed. This kind of classification provides a
uniform view of virtualized resources for heterogeneous
virtualization platforms e.g., Xen, KVM, VMWare, etc.,
and brings great benefits for virtual machine management
and allocation. Customers only need selecting suitable
types of VMs based on their requirements. There are eight
types of VMs in EC2 as shown in Table III, where MEM
is for memory with unit GB and Sto is for hard disk stor-
age with unit GB. Three types of PMs are considered for
heterogeneous case as shown in Table IV. We model the
virtual machine allocation on different types of physical
machines as a multi-class Erlang loss model (MELM).
In the MELM model (As descripted in Section II. A),
the capacity of a basic VM request is considered as a
server in service side. For example, VM1-1 is considered

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 271

© 2014 ACADEMY PUBLISHER

TABLE V.
THE BLOCKING PROBABILITY COMPARISON FOR PM TYPE 1

ρ Ana1 Ana2 Ana3 Sim1 Sim2 Sim3
0.1 0.004 0.005 0.021 0.004 0.005 0.021
0.2 0.013 0.018 0.068 0.013 0.018 0.068
0.3 0.025 0.038 0.128 0.025 0.038 0.128
0.4 0.036 0.062 0.190 0.036 0.062 0.190
0.5 0.046 0.088 0.252 0.046 0.088 0.252
0.6 0.055 0.116 0.309 0.055 0.116 0.309
0.7 0.063 0.143 0.363 0.063 0.143 0.362
0.8 0.069 0.170 0.411 0.069 0.170 0.412
0.9 0.075 0.196 0.455 0.075 0.196 0.455
1.0 0.079 0.222 0.495 0.079 0.221 0.495
2.0 0.107 0.420 0.735 0.107 0.423 0.745
3.0 0.144 0.542 0.838 0.147 0.562 0.852
4.0 0.189 0.624 0.892 0.198 0.612 0.886
5.0 0.229 0.683 0.925 0.235 0.713 0.919

TABLE VI.
THE BLOCKING PROBABILITY COMPARISON FOR PM TYPE 2

ρ Ana1 Ana2 Ana3 Sim1 Sim2 Sim3
0.1 0.004 0.005 0.021 0.004 0.005 0.021
0.2 0.014 0.018 0.068 0.014 0.018 0.068
0.3 0.026 0.037 0.128 0.026 0.038 0.127
0.4 0.040 0.063 0.191 0.040 0.063 0.191
0.5 0.055 0.091 0.253 0.054 0.090 0.252
0.6 0.069 0.119 0.312 0.069 0.119 0.311
0.7 0.084 0.148 0.366 0.084 0.147 0.367
0.8 0.098 0.176 0.415 0.098 0.175 0.413
0.9 0.112 0.204 0.460 0.112 0.205 0.461
1.0 0.125 0.231 0.501 0.125 0.232 0.500
2.0 0.242 0.440 0.748 0.239 0.444 0.754
3.0 0.328 0.568 0.853 0.328 0.576 0.858
4.0 0.394 0.651 0.906 0.392 0.638 0.882
5.0 0.446 0.710 0.937 0.453 0.697 0.920

as a request of 1 server from PM type 1, VM1-2 is
considered as a request of 4 servers from PM type 1 since
its requested capacity (CPU, MEM, Sto) is 4 times of
VM1-1. Similarly the number of servers (capacity) can
be determined for other VM types. Firstly we show the
blocking probability tested by both analytical (Ana) and
simulation results (Sim) as shown in Table V and Table
VI, where ρ = λ/µ, is the average total offered load to
each class. The total number of PM-1 and PM-2 is 30
respectively in this case. In Table V, Ana1 represents for
theoretical results of the blocking probability for VM type
1-1 (1) obtained from equation (12), Sim1 is the simulated
results for VM type1-1(1). Similarly Ana2 (Sim2) is for
VM type 1-2 (2) and Ana3 (Sim3) is for VM type1-3 (3).
In Table VI, Ana1 represents for theoretical results of the
blocking probability for VM type 2-1(4) obtained from
equation (12), Sim1 is the simulated results for VM type2-
1 (4). Similarly Ana2 (Sim2) is for VM type 2-2 (5) and
Ana3 (Sim3) is for VM type2-3 (6). Extensive numerical
results show that theoretical and simulation results match
very well. And for capacity provisioning, we can apply
the method introduced in Section II.B. For PM type 3,
similar results are obtained as for PM type 1 and 2, so
that we omit.

IV. A MODEL FOR MULTIPLE FEDERATED CLOUD
DATA CENTERS (CLOUDS)

As introduced in previous sections, each CDC may
be modeled by a multi-server queue. There may be
many CDCs distributed around world for a company
such as Google, Microsoft and SET@HOME. As the
example given in SET@HOME, there are six largest
centers around the world. When the traffic comes to the
data centers, it’s distributed based on the load balancer.
The probability of portion of traffic is assigned to
CDC-i is considered as αi. In reality, the load balancer
distributes the incoming traffic based on the physical
configuration of each CDC and dynamic traffic loading
in each CDC. A model for multiple federated CDCs is
shown in Figure 8 where each CDC is modeled by a
multiple server queue as introduced in previous sections.
“With/no buffer” refers to two cases with or without
buffering. “Federated” refers to all CDCs are connected
to a management node by WAN or LAN and incoming
workloads are distributed among all CDCs using load
balancer. A shared server pool is provided so that more
servers can be added to a CDC when workload is higher
than pre-specified threshold or some servers can be
moved from a CDC to shared server pool when workload
is lower than pre-specified threshold. The performance

Arrival

Requests

CDC #11

2

n

With/no buffer

CDC #2

With/no buffer

Shared Server

pool

With/no buffer
CDC#n

Figure 8. A Model for Multiple Federated Cloud Data Centers

of the multiple CDCs depends on the configuration of
the each CDC. Methods introduced in previous section
can be applied. For example, let us assume that there are
three CDCs and a shared server pool. Using certain time
as a measurement interval, for instance, 10 minutes, the
expected total time spent in each CDC is about 1 minute.
During the 10 minutes interval, if CDC-1 experiences
high workload and the expected total time spent in it is
more than 1 minute, we can use the methods introduced
in section II to find right number of total servers and
allocate additional number of servers from shared server
pool to CDC-1. Similarly if during another 10 minutes,
CDC-2 experiences lower workload than expected and
there are many idle servers in it, then some number

272 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

of servers can be moved to shared server pool after
calculation using methods in previous sections. Adaptive
dimensioning process can be summarized as follows:
Summary of Adaptive Dimensioning Process

set ε for blocking probability or β for delay probability
step 1: choose the appropriate model from section

II
step 2: compute the total number of required servers

in a CDC for current interval
step 3: compare to the number of servers currently

allocated to a CDC
step 4: make a decision to add more servers to a

CDC or move some servers from a CDC to the shared
server pool

step 5: update and take action to allocate or de-
allocate servers

Another benefit of using federated (compared to
isolated) multiple CDCs, is that average total time spent
in the system can be reduced. This because that load
balancer can distribute workloads based on the current
performance of each CDC using measurement in previous
intervals and adaptively adjusts the workload distribution
among all CDCs. One example is shown in [4], where
three federated CDCs are considered. It showed that the
average time spent in the system is reduced by more
than 50% [4].

V. CONCLUSION

In this paper, blocking and non-blocking models for
Cloud data centers are introduced for dimensioning un-
der highly variable workloads. Adaptive dimensioning
methods with numerical examples for each case are
provided so that right amount of computing resources is
allocated for variable workloads to meet quality of service
requirements. In the future, extension to shared server
utility model will be considered where all services are
run concurrently on all servers in a cluster of a CDC and
optimization method is used to determine the fraction of
CPU resources allocated to each service on each server.
Also obtaining more simulation results on federated CDCs
is under study.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees for
their valuable comments and suggestions to improve the
presentation of this paper.

REFERENCES

[1] M.Armbrust, A.Fox, R. Griffith,A.D. Joseph,R.H.
Katz,A.Konwinski,G.Lee,D.A.Patterson, A.Rabkin,I.Stoica,
M.Zaharia, Above the Clouds: A Berkeley View of Cloud
Computing, Technical Report No. UCB/EECS-2009-28.

[2] L.A. Barroso, J. Dean,U.Holzle, Web Search for a Planet:
the Google Cluster Architecture, 2003, IEEE Micro.

[3] G. Boss, et al., Cloud Computing, IBM Corporation white
paper, Oct. 2007.

[4] R.Buyya, R.Ranjan and R.N. Calheiros, Modeling and Sim-
ulation of Scalable Cloud Computing Environments and
the CloudSim Toolkit: Challenges and Opportunities, in the
proceedings of the 7th High Performance Computing and
Simulation (HPCS 2009) Conference, Leipzig, Germany,
June 21-24,2009.

[5] R. B. Cooper, Queueing Theory, in the encyclopedia of
comuter science, 4th edition, Groves Dictionaries, Inc. 2000,
pp.1496-1498.

[6] C. Develder, J. Buysse, M. D. Leenheer, B. Jaumard,
B. DhoedtResilient network dimensioning for optical
grid/clouds using relocation, in the proceedings of 2012 ICC
conference.

[7] S. L. Garfinkel, An Evaluation of Amazon’s Grid Comput-
ing Services: EC2, S3 and SQS,Technical Report TR-08-07,
2008, Harvard University.

[8] Grassmann,W. K.: “Is the Fact That the Emperor Wears
No Clothes a Subject Worthy of Publication?”, Interfaces,
16(1986),pp. 43-46.

[9] J. Gu, J. Hu, T. Zhao, G. Sun, A New Resource Scheduling
Strategy Based on Genetic Algorithm in Cloud Computing
Environment, JOURNAL OF COMPUTERS, VOL. 7, NO.
1, JANUARY 2012, pp. 42-52.

[10] A.Greenberg, P.Lahiri, D. A. Maltz, P. Patel, S. Sengupta,
Towards a Next Generation Data Center Architecture: Scala-
bility and Commoditization, PRESTO’08, August 22, 2008,
Seattle, Washington, USA.

[11] R. C.Hampshire, W.A.Massey, D.Mitra and Q. Wang, Pro-
visioning For Bandwidth Sharing and Exchange, Telecom-
munications Network Design and Management, edited by
G. Anandlingam and S. Raghavan, pp. 207-226, 2003.

[12] B.Javadi, D.Kondo, J.-M.Vincent, D. P. Anderson, Mining
for Statistical Models of Availability in Large-Scale Dis-
tributed Systems: An Empirical Study of SETI@home. 17th
Annual Meeting of the IEEE/ACM International Sympo-
sium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems, Sept 21-23 2009, London.

[13] O.B.Jennings et al., Server Staffing To Meet Time-Varying
Demand, Management Science, pp.1383-1394, 1996.

[14] Kaufman, J.: “Blocking in a Shared Resource Environ-
ment”, IEEE Transactions On Communications, Vol. COM-
29, No. 10, October 1981.

[15] F. Kelly, “Blocking probabilities in large circuit-switched
networks”,Adv. Appl. Prob., vol. 18, pp. 473-505, 1986.

[16] L. Kleinrock, Queueing Systems, Volume II: Computer
Applications, John Wiley & Sons, 1976.

[17] D. Kondo, B.Javadi, P. Malecot, F. Cappello, D. P. An-
derson , Cost-Benefit Analysis of Cloud Computing versus
Desktop Grids, 18th International Heterogeneity in Com-
puting Workshop, May, 2009,Rome.

[18] J. Lu, GQ. Zhang, An Innovative Self-Adaptive Configura-
tion Optimization System in Cloud Computing, in the con-
ference of Dependable, Autonomic and Secure Computing
(DASC), 2011, Page(s): 621 - 627.

[19] S.Ranjan, J.Rolia, H.FU and E.Knightly, QoS-Driven
Server Migration for Internet Data Centers, In Proceedings
of IWQoS 2002.

[20] J.W. Roberts, “A serverice system with heterogeneous user
requirements”, In Performance of Data Communications
Systems and Their Applications, pp. 423-431, 1981.

[21] K.W. Ross, “Multiservice Loss Models for Broadband
Telecommunication Networks” ,Springer-Verlag London
Limited , 1995.

[22] W. Tian and H. G. Perros, Analysis and Provisioning of
a Circuit-switched Link with Variable-Demand Customers,
In the proceedings of the 20th International Teletraffic
Congress, Ottawa, Canada, 17-21 June 2007.

[23] W. Tian, and H. G. Perros, Dimensioning a Virtual Com-
puting Lab with Job Priorities and QoS Constraints, In the
proceedings of 2nd International Conference on the Virtual

JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014 273

© 2014 ACADEMY PUBLISHER

Computing Initiative , pp.103-110, May 2008, Research
Triangle Park, IBM headquarter, NC, USA.

[24] W.Tian, Three Ways to Improve the Efficiency of Vir-
tual/Cloud Computing Lab. In the proceedings of The IEEE
International Conference on Apperceiving Computing and
Intelligence Analysis 2008 (ICACIA’08), Dec. 2008.

[25] W. Tian, Adaptive Dimensioning of Cloud Data Centers,
In the proceedings of DASC’09, the eighth IEEE Interna-
tional Conference on Dependable, Autonomic and Secure
Computing, 2009. pp. 5-10.

[26] M. Vouk, et al., “Powered by VCL” - Using Virtual
Computing Laboratory (VCL) Technology to Power Cloud
Computing, Published in the Prelim. Proceedings of the 2nd
International Conference on Virtual Computing Initiative,
15-16 May 2008, RTP, NC, pp. 1-10.

[27] M. A. Vouk, Cloud Computing - Issues, Research and
Implementations,ITI08, pp.23-26-31, June, 2008.7.

[28] B. Xu, N. Wang, C. Li, A Cloud Computing Infrastructure
on Heterogeneous Computing Resources, JOURNAL OF
COMPUTERS, VOL. 6, NO. 8, AUGUST 2011, pp.1789-
1796.

[29] X. You, J. Wan, X. Xu, C. Jiang, W. Zhang, J. Zhang,
ARAS-M: Automatic Resource Allocation Strategy based
on Market Mechanism in Cloud Computing, JOURNAL OF
COMPUTERS, VOL. 6, NO. 7, JULY 2011,pp.1287-1296.

[30] http:/boincstats.com/stats/project−graph.php?
pr=sah&view=hosts, 2012

[31] Amazon, Amazon Elastic Compute Cloud,
http://aws.amazon.com/ec2/, 2013

ShortBio: Dr. Wenhong Tian has a PhD from Com-
puter Science Department of North Carolina State Uni-
versity. His research interests include dynamic resource
scheduling algorithms and management in Cloud data-
center, dynamic modeling and performance analysis of
communication networks, biocomputing. He published
about 30 journal and conference papers in related areas.

274 JOURNAL OF COMPUTERS, VOL. 9, NO. 2, FEBRUARY 2014

© 2014 ACADEMY PUBLISHER

