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Abstract—In this paper, a List Simulated Anneal (LSA) 
algorithm is proposed for the DAG tasks scheduling on the 
Network-on-chip to simultaneously optimize makespan, 
load balance and average link load. A task list is first creat-
ed for the DAG tasks, and the task-to-processor assignment 
is performed using Best Fit rule. Then the generated sched-
ule is further optimized using LSA. In LSA, the task execu-
tion order is determined by the task list, and the task map-
ping solution is optimized using simulated annealing. By 
conducting series of simulation, the performance of our 
proposal is validated. Comparing to the list Best Fit and list 
random mapping algorithm, our LSA has 9% and 25.4% 
shorter makespan, 31.1% and 79.4% better load balance 
and 18% smaller average link load.  
 
Index Terms—DAG, task scheduling, Network-on-Chip, list 
schedule, best fit, simulated annealing 
 

I.  INTRODUCTION 

The task scheduling problem on Multiprocessor has 
proved to be NP-hard [1]. To solve this complex problem, 
many heuristics are proposed, such as list scheduling heu-
ristics [2] and meta-heuristics [3]. List scheduling main-
tains a task list which is created based on the task priori-
ties, and assigns task to processor using certain rules, 
such as First Fit, Best Fit and Next Fit [4]. In another way, 
meta-heuristics randomly search the solution space for 
the optimal schedule, such as Genetic Algorithm [5], Par-
ticle Swarm Optimization [6], and Simulated Annealing 
(SA) [7]. 

Simulated annealing is a generic probabilistic algo-
rithm for global optimization which is inspired from the 
metallurgic process of heating and cooling down the ma-
terial so that the atoms of material progress to the equilib-
rium state. SA simulates this process to explorer the 
search space. 

In this paper, we combine the list schedule heuristics 
and SA meta-heuristics, and propose a List Simulated 
Anneal (LSA) algorithm for the DAG tasks scheduling on 
the Network-on-chip. Our proposal draws advantages 

from both heuristics, and performs optimization simulta-
neously on makespan, load balance and average link load. 

The rest of this paper is organized as follow: Section II 
summarizes the related work; the problem is formulated 
in Section III; our proposal is elaborated in Section IV; 
Section V gives the comparative simulation results; and 
Section VI concludes the paper. 

II. RELATED WORKS 

List heuristic and meta-heuristic for task scheduling for 
multicore system has been widely researched. For list 
scheduling, [8] proposes a communication-aware list 
scheduling algorithm for the NoC-based MPNoC. In [9], 
a contention-aware list scheduling algorithm is proposed 
for the dynamic reconfigurable NoC system. Reference 
[10] implements a Best Fit Decreasing heuristic for task 
scheduling in NoC. List scheduling is popular for its 
straightforward implementation and relatively low com-
putational requirement. However in most situations, the 
result of list scheduling can be further optimized. 

For the meta-heuristics methods, a genetic algorithm is 
proposed in [5] for the task scheduling in multiprocessor 
system. Reference [6] proposes a modified particle 
swarm optimization with load-balance to schedule heter-
ogeneous tasks on to heterogeneous processors. In [7], a 
simulated annealing task scheduling algorithm is pro-
posed for Voltage-Frequency islands applied NoC-based 
MPSoC. The meta-heuristics can effectively explore the 
solution space for the optima, however if combined with 
list schedule, the efficiency of searching as well as the 
probability of finding a better solution is greatly in-
creased. 

In this paper, we combine list schedule and simulated 
annealing, and propose a list simulated annealing sched-
uling algorithm to simultaneously optimize make-span, 
load balance and average link load. 
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III. PROBLEM FORMULATION 

A. Task Model 
In this paper, tasks are modeled using Directed Acyclic 

Graphs (DAGs). A DAG ( , )G V E=  is an acyclic 
graph where V is the set of nodes which represent the 
tasks and E is the set of edges in which an element ije  
denotes the communication from task i to task j. The edge 
reflects the precedent relation between two tasks. If there 
is an edge ije  between task i and task j, then task i is 
called a predecessor of task j, and correspondingly, the 
task j is called a successor of task i. The node with no 
predecessor is the entry node, and the node with no suc-
cessor is the exit node.  

Each node iv  and edge ije
 
is associated with a weight, 

denoted as iC  and ijT  respectively. Weight iC  is the 
computational load required by a Processing Element (PE) 
to execute task i; and ijT  is the data transmission load 

between task i and task j. In our work, both iC  and ijT  
are converted to an amount of time (cycles). 

The Computation-Communication Ratio (CCR) [11] of 
a DAG is then defined using iC  and ijT . CCR is defined 
as the total computation time of a DAG divided by it total 
data transmission time, as given in (1). 

i ij

i ij
v V e E

CCR C T
∈ ∈

= ∑ ∑                     (1) 

In DAG, a path is a sequence of nodes and edges lying 
in the route. The length of a path is calculated by adding 
up all the computation time of each node and the trans-
mission time of each edge on the path. The top distance 
of node iv  is the length of the longest path from entry 
node to it.  

 
Figure 1. An example DAG tasks with 8 nodes. 

 Fig. 1 shows an example of a DAG with 8 tasks, and 
the top distance of the task is calculated and annotated in 
the figure.  

B. Network-on-Chip Hardware 
The target hardware is a 2D mesh NoC-based MPSoC, 

as illustrated in Fig. 2. Each PE is connected to a router, 
and routers are interconnected with each other through bi-
direction links. Data is transferred through NoC in the 
form of packets. 

PEs are homogenous processor cores with local data 
cache. If two consequential tasks are scheduled to the 
same PE, the successor task reads the predecessor’s data 
directly from the data cache of the PE without routing in 
NoC. 

 
Figure 2. A 4×4 2D mesh NoC-based MPSoC 

The microstructure of a NoC router is shown in Fig. 3. 
The router has five Inports and Outports corresponding to 
five directions of East, West, North, South and Local. The 
decoder in the Inport scans the first flit of the FIFO for 
any incoming packet. If decoder detects the head flit of a 
packet, it performs XY routing algorithm and send re-
quest signal to the arbiter of the corresponding Outport. If 
the arbiter receives multiple request signals, contention 
are solved using Round-Robin arbitration. The granted 
Inport then forwards the packet to the downstream router. 
Wormhole routing is adopted to minimize the buffer re-
quirement as well as the packet latency [12]. The back 
pressure mechanism is also employed to further reduce 
end-to-end delay [13].  

IV. PROPOSED ALGORITHM 

In this section, a list simulated annealing algorithm is 
proposed for DAG tasks scheduling on the NoC. A task 
list is first created, and a schedule solution is obtained by 
applying Best Fit (BF) algorithm. The generated schedule 
is then employed as the initial solution of Simulated An-
nealing (SA), and optimized by the cooling down process. 
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Figure 3. Microstructure of NoC node. 

A. List schedule 
The target DAG is processed by a list schedule algo-

rithm to generate an initial schedule solution for the SA. 
The execution sequence of tasks is defined by a task list 
which is produced according to the top distance of tasks, 
and the task-to-processor assignment is performed using 
BF. 

Task list generation: The top distance of each task in 
the target DAG is calculated using the method mentioned 
in Section III. Then the tasks are sorted based on their top 
distance values, and inserted to the task list. The task with 
the smallest top distance is placed at the head of the list. 
For the example DAG in Fig. 1, the task list is: task 0, 
task 2, task 1, task 3, task 4, task 6, task 5, and task 7. 

Task list generated by top distance ensures that the 
precedent condition of tasks is met. For any task i with 
predecessor task j and successor task k, it is obviously 
that the top distance of task i is greater than that of task j, 
and smaller than task k’s top distance. In the generated 
task list, task j is scheduled prior to the task i, and only 
when task i finishes, task k is scheduled. 

Best Fit scheduling: Tasks read from the list are then 
allocated to processor using the BF rule. For a to-be-
scheduled task i, the BF algorithm calculates the Estimat-
ed Finish Time (EFT) of each PE, which is the time that 
each PE finishes current task running on it, and EFT is 
regarded as the earliest starting time that each PE can 
provide for the target task. BF chooses the PE with the 
best (earliest) EFT, and schedules task i to that PE. 

Although BF scheduling is focusing solely on the 
makespan, its output schedule provides a good start point 
for the further optimization. The pseudocode of the list 
scheduling is shown in Fig.4. 

B.  List Simulated Annealing Scheduling  
In this subsection, a list simulated annealing algorithm 

is proposed to further optimize the schedule generated by 
list best fit algorithm presented before. Like the algorithm  

1.      
2.    calculate      ;
3.
4. sort        ;
5.      
6.        
7.  

each task in DAG
the top distance of each task

tasks into task list according to top distance
each task in task list

each processor

FOR DO

 END FOR

 FOR DO
FOR DO

       calculate ;
8.     
9.     schedule        
         ;
10.

EFT

current task to the processor with the
smallest EFT

END FOR

 END FOR

 

Figure 4. Pseudo code of list scheduling. 

in previous subsection, the execution order of tasks is 
determined by the task list which guarantees the prece-
dent condition of tasks, and SA is used to find optimal 
task-to-processor allocation solution. 

Solution representation: In the SA, schedule solution 
is represented by the symbol S. For a schedule problem 
with n_tsk tasks scheduling to n_pe PEs, a symbol is ex-
pressed as: 

1 2{ , ,  ... , }n_peS s s s= ,                         (2) 

where an element is k= , {1,  ... , _ }k n pe∈  denotes 
that the i-th task is scheduled to the k-th PE. 

Evaluation of schedule solution: In our proposal, three 
metrics are monitored to evaluate the performance of a 
symbol (schedule), and they are: Makespan (M), Load 
Balance (B) [14] and Average Link Load (L) [15].  

The Makespan, also called the schedule length, is the 
time span for the NoC to finish all the tasks in a DAG. 

The Load Balance metric is defined as follow: 

1
2 2

1

_

( ( ( ) ) )_ _ _
n_pe

n

ave loadLB
load on pe n ave load

=

=
−∑

            

(3) 

The Load Balance measures the inverse coefficient of 
variant of the total workload on each processor. The larg-
er B value suggests better balanced schedule. 

The last metric, Average Link Load, monitors the traf-
fic load on each link, and is defined to be the average 
value of traffic loads on all links. A better schedule is 
supposed to minimize the L metric. 

( ) ( )

            ( )

ref i i ref
M B

ref ref

i ref
L

ref

M M B B
E w w

M B

L L
w

L

− −
= +

−
+

       (4) 

The evaluation result of a symbol i is given in (4), 
which is based on the global weighted sum method in 
multi-objective optimization [16]. All three metric are 
normalized to a reference symbol which in our proposal 
is the schedule generated by list scheduling. The final 
evaluation result is the weight sum of the improvement of 
three metrics. 
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( )

( )
( )

1.  Initialize , , ,   ;
2.  
3.      Cooling ;
4.      1   
5.         NeighborMove ;

6.         Evaluate , _ ;
7.           

best best

new

new new

new best

T S E S and E

T T
n L

S S

E S task list
E E

=

=

=

=

>

WHILE TRUE DO

 FOR TO DO
 

 
 IF THEN DO

( )

8.             Update( , );
9.              Update( , );

   
    Accept_worse ,  

12.                  Update( , );
13.           

10.    
11.   

14.

  

  

  

  

 

best best

best new

S E
S E

E E T
S E

−

 

 
 IF THEN 

ELSE
DO

 ENDIF
    

 DO

END 
15.   
16.     Terminal_condition() 
17.          
18.  
19. 

IF
 END FOR
IF THEN DO

BREAK;
   END IF
END WHILE

 

Figure 5. Psedocode of SA 

When evaluation is needed, the SA symbol along with 
the task list is send to the evaluation process for the as-
sessment of the metrics, and then the process returns the 
evaluation score. 

Cooling down process: SA starts with a high tempera-
ture level, then gradually cooling down to a lower tem-
perature level. At each level, SA repeats certain number 
of neighbor searches, in which a new symbol is generated 
by randomly change the value of a random element from 
the original symbol.  

Better moves of the neighbor searching are always ac-
cepted, and the original symbol is updated. A worse move 
is also accepted under a certain probability to prevent 
algorithm from local optima. The probability of accepting 
a worse move decreases as the temperature decreases.  

The temperature cooling function is given in (5), where 

0T  is the initial temperature, i is the ordinal number of 

current iteration, _ ( _ 1)L n tsk n pe= ⋅ − [17] is the 
number of iteration per temperature level, and the cooling 
factor q is a constant. The cooling function forces the 
temperature to cooling from level to level. 

     0( )
i
LCooling T T q
⎢ ⎥
⎢ ⎥⎣ ⎦= ⋅                             (5) 

The worse move acceptance function is defined as (6), 
where function random() returns a random number of 
interval (0,1), and 0E  is the performance score of the 

reference symbol 0S  . 
Fig. 5 shows the pseudocode of the SA algorithm, and 

Line 4 to line 15 in the code shows the L iterations of the 
neighbor searching in the cooling down process.  

     

0

_ ( , )
11,     ()

1 ( )

0,     .

best new

best new

Accept worse E E T

random E EExp
E T

others

−

⎧ <⎪ −⎪ += ⎨ ⋅⎪
⎪⎩         

(6) 

 

V. SIMULATION & RESULTS 

A. Simulation Setup 
To evaluate the performance of our proposal, we im-

plement the list SA (LSA) scheduling algorithm in C++, 
and simulate the produced schedules under a SystemC 
based cycle-accurate NoC simulator which is modified 
from the work in [18]. The list BF (LBF) as well as the 
list random mapping (LRM) scheduling is also imple-
mented and simulated as reference. 

The NoC is a 4×4 2D mesh structure with XY routing 
algorithm. Wormhole switching is adopted, and Round-
Robin arbitration is enforced to solve contentions. 

For the LSA, the algorithm terminates after 50 temper-
ature level, and the cooling factor q=0.95. The weight 
coefficients in the evaluation are 0.7Mw = , 

0.15Bw =  and 0.15Lw = . 

B. Task Generation 
In our simulation, both random DAG and the real-

world application DAG are used for evaluation the per-
formance of our schedule algorithm. 

The 20 random DAGs are generated using TGFF 3.1 
[19]. The detail information of each DAG is shown in 
Table I. The task number (n_tsk) varies from 52 to 101 
which covers various of DAG sizes. Tasks’ computation 
time is randomly generated from 40~160 cycles. CCR is 
set to 3, 2, 1.5 and 1.2 to simulate light, medium, heavy 
and extreme heavy communication load. The series_w 
and series_l are the parameters required by the new algo-
rithm of TGFF 3.1. The series_w and series_l parameter 
are given as a tuple (average, multiplier), and set the 
width/length of series chains.  

Two real world applications, solving Laplace Equation 
(LE) using Gauss-Seidel algorithm in [20] and Molecular 
Dynamics Code (MDC) in [21] are also simulated in our 
experiment. 

C.  Simulation Results 
The simulation results of List Simulated Annealing 

(LSA), List Best Fit (LBF) and List Random Mapping 
(LRM) scheduling algorithm under our NoC simulator is 
illustrated in Fig. 6.  

Fig. 6 (a) shows the results of makespan. The first 
thing to notice is that the makespan does not regularly 
expand as the number of tasks grows. This is because the 
makespan is more sensitive to the length of the critical 
path, which is the longest path exists in the DAG, than 
the number of tasks. For example, tg1 has 63 tasks, and 
tg17 has 101 tasks. However the makespan of tg1 is 52% 
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TABLE I.  
DETAILS OF RANDOM GENERATED TASK GRAPHS 

 
(a) Makespan 

(b) Load balance 

 
(c) Average link load 

Figure 6. Simulation results of LSA, LBF and LRM. 

 

Task Graph tg1 tg2 tg3 tg4 tg5 tg6 tg7 tg8 tg9 tg10 

tsk_num 63 58 59 52 75 71 67 71 80 79 

CCR 3 2 1.5 1.2 3 2 1.5 1.2 3 2 

series_w 4,2 4,2 4,2 4,3 4,2 4,2 4,2 4,2 5,2 5,2 

series_l 3,2 3,2 3,2 3,2 3,2 3,2 3,2 3,2 4,2 4,2 

Task Graph tg11 tg12 tg13 tg14 tg15 tg16 tg17 tg18 tg19 tg20 

tsk_num 77 77 91 91 93 92 101 97 96 97 

CCR 1.5 1.2 3 2 1.5 1.2 3 2 1.5 1.2 

series_w 5,2 5,2 5,2 5,2 5,2 5,2 6,2 6,2 6,2 6,2 

series_l 4,2 4,2 4,2 4,2 4,2 4,2 5,2 5,2 5,2 5,2 
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larger than the makespan of tg17, for the critical path of 
tg1 (1557 cycles) is larger than that of tg17 (1226 cycles).  

From Fig. 6 (a) we observe that the makespan of LSA 
is always smaller than the makespan of LBF and LRM. 
The average makespan of LSA is 91% of LBF and 74.6% 
of LRM. We also observe that in  some situations, the 
makespan results of LSA is very close to that of LBF, 
that is because the schedule produced by LBF is already 
near-optima. 

Fig. 6 (b) shows the load balance results, and all the re-
sults are normalized to the LSA equivalent. Notice that in 
some situations, the load balance of LSA is identical to 
that of LBF. The explanation to this phenomenon is that 
two or more processors swap all their tasks during the 
cooling down process of LSA. Besides these situations, 
LSA still outperforms LBF by 33.1% and LRM by 79.4%. 

The average link load results are illustrated in Fig. 6 
(c). Obviously, LSA remarkably reduces the average link 
load on NoC. The average link load of LSA is 57.9% and 
56.3% smaller than that of LBF and LRM. 

Moreover, we measure the end-to-end routing delay of 
each packet, and the overall average end-to-end delay of 
three schedule algorithm is shown in Fig. 7. Although it 
is not a optimization goal in our proposal, as presented in 
the figure, the average end-to-end delay of LBF and LRM 
are of the same level, and the routing delay of LSA is 
18% shorter than that of LBF and LRM. This is because 
both makespan and average link load optimization favors 
the schedule with shorter routing delay. 

 
Figure 7. Average End-to-End Delay 

VI. CONCLUSION 

A list simulated annealing scheduling algorithm is pro-
posed in this paper for the DAG tasks scheduling on the 
NoC. The proposal combines list schedule and simulated 
annealing to optimize makespan, load balance and aver-
age link load. Through series of simulations, the perfor-
mance of our proposal is validated. 
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