
A List Simulated Annealing Algorithm for Task
Scheduling on Network-on-Chip

Song Chai
School of Communication and Information Engineering,

University of Electronic Science and Technology of China, Chengdu, China
Email: s.tschai@gmail.com

Yubai Li, Jian Wang and Chang Wu

School of Communication and Information Engineering,
University of Electronic Science and Technology of China, Chengdu, China

Email: {ybli, wangjian3630, changwu}@uestc.edu.cn

Abstract—In this paper, a List Simulated Anneal (LSA)
algorithm is proposed for the DAG tasks scheduling on the
Network-on-chip to simultaneously optimize makespan,
load balance and average link load. A task list is first creat-
ed for the DAG tasks, and the task-to-processor assignment
is performed using Best Fit rule. Then the generated sched-
ule is further optimized using LSA. In LSA, the task execu-
tion order is determined by the task list, and the task map-
ping solution is optimized using simulated annealing. By
conducting series of simulation, the performance of our
proposal is validated. Comparing to the list Best Fit and list
random mapping algorithm, our LSA has 9% and 25.4%
shorter makespan, 31.1% and 79.4% better load balance
and 18% smaller average link load.

Index Terms—DAG, task scheduling, Network-on-Chip, list
schedule, best fit, simulated annealing

I. INTRODUCTION

The task scheduling problem on Multiprocessor has
proved to be NP-hard [1]. To solve this complex problem,
many heuristics are proposed, such as list scheduling heu-
ristics [2] and meta-heuristics [3]. List scheduling main-
tains a task list which is created based on the task priori-
ties, and assigns task to processor using certain rules,
such as First Fit, Best Fit and Next Fit [4]. In another way,
meta-heuristics randomly search the solution space for
the optimal schedule, such as Genetic Algorithm [5], Par-
ticle Swarm Optimization [6], and Simulated Annealing
(SA) [7].

Simulated annealing is a generic probabilistic algo-
rithm for global optimization which is inspired from the
metallurgic process of heating and cooling down the ma-
terial so that the atoms of material progress to the equilib-
rium state. SA simulates this process to explorer the
search space.

In this paper, we combine the list schedule heuristics
and SA meta-heuristics, and propose a List Simulated
Anneal (LSA) algorithm for the DAG tasks scheduling on
the Network-on-chip. Our proposal draws advantages

from both heuristics, and performs optimization simulta-
neously on makespan, load balance and average link load.

The rest of this paper is organized as follow: Section II
summarizes the related work; the problem is formulated
in Section III; our proposal is elaborated in Section IV;
Section V gives the comparative simulation results; and
Section VI concludes the paper.

II. RELATED WORKS

List heuristic and meta-heuristic for task scheduling for
multicore system has been widely researched. For list
scheduling, [8] proposes a communication-aware list
scheduling algorithm for the NoC-based MPNoC. In [9],
a contention-aware list scheduling algorithm is proposed
for the dynamic reconfigurable NoC system. Reference
[10] implements a Best Fit Decreasing heuristic for task
scheduling in NoC. List scheduling is popular for its
straightforward implementation and relatively low com-
putational requirement. However in most situations, the
result of list scheduling can be further optimized.

For the meta-heuristics methods, a genetic algorithm is
proposed in [5] for the task scheduling in multiprocessor
system. Reference [6] proposes a modified particle
swarm optimization with load-balance to schedule heter-
ogeneous tasks on to heterogeneous processors. In [7], a
simulated annealing task scheduling algorithm is pro-
posed for Voltage-Frequency islands applied NoC-based
MPSoC. The meta-heuristics can effectively explore the
solution space for the optima, however if combined with
list schedule, the efficiency of searching as well as the
probability of finding a better solution is greatly in-
creased.

In this paper, we combine list schedule and simulated
annealing, and propose a list simulated annealing sched-
uling algorithm to simultaneously optimize make-span,
load balance and average link load.

176 JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.1.176-182

III. PROBLEM FORMULATION

A. Task Model
In this paper, tasks are modeled using Directed Acyclic

Graphs (DAGs). A DAG (,)G V E= is an acyclic
graph where V is the set of nodes which represent the
tasks and E is the set of edges in which an element ije
denotes the communication from task i to task j. The edge
reflects the precedent relation between two tasks. If there
is an edge ije between task i and task j, then task i is
called a predecessor of task j, and correspondingly, the
task j is called a successor of task i. The node with no
predecessor is the entry node, and the node with no suc-
cessor is the exit node.

Each node iv and edge ije

is associated with a weight,

denoted as iC and ijT respectively. Weight iC is the
computational load required by a Processing Element (PE)
to execute task i; and ijT is the data transmission load

between task i and task j. In our work, both iC and ijT
are converted to an amount of time (cycles).

The Computation-Communication Ratio (CCR) [11] of
a DAG is then defined using iC and ijT . CCR is defined
as the total computation time of a DAG divided by it total
data transmission time, as given in (1).

i ij

i ij
v V e E

CCR C T
∈ ∈

= ∑ ∑ (1)

In DAG, a path is a sequence of nodes and edges lying
in the route. The length of a path is calculated by adding
up all the computation time of each node and the trans-
mission time of each edge on the path. The top distance
of node iv is the length of the longest path from entry
node to it.

Figure 1. An example DAG tasks with 8 nodes.

 Fig. 1 shows an example of a DAG with 8 tasks, and
the top distance of the task is calculated and annotated in
the figure.

B. Network-on-Chip Hardware
The target hardware is a 2D mesh NoC-based MPSoC,

as illustrated in Fig. 2. Each PE is connected to a router,
and routers are interconnected with each other through bi-
direction links. Data is transferred through NoC in the
form of packets.

PEs are homogenous processor cores with local data
cache. If two consequential tasks are scheduled to the
same PE, the successor task reads the predecessor’s data
directly from the data cache of the PE without routing in
NoC.

Figure 2. A 4×4 2D mesh NoC-based MPSoC

The microstructure of a NoC router is shown in Fig. 3.
The router has five Inports and Outports corresponding to
five directions of East, West, North, South and Local. The
decoder in the Inport scans the first flit of the FIFO for
any incoming packet. If decoder detects the head flit of a
packet, it performs XY routing algorithm and send re-
quest signal to the arbiter of the corresponding Outport. If
the arbiter receives multiple request signals, contention
are solved using Round-Robin arbitration. The granted
Inport then forwards the packet to the downstream router.
Wormhole routing is adopted to minimize the buffer re-
quirement as well as the packet latency [12]. The back
pressure mechanism is also employed to further reduce
end-to-end delay [13].

IV. PROPOSED ALGORITHM

In this section, a list simulated annealing algorithm is
proposed for DAG tasks scheduling on the NoC. A task
list is first created, and a schedule solution is obtained by
applying Best Fit (BF) algorithm. The generated schedule
is then employed as the initial solution of Simulated An-
nealing (SA), and optimized by the cooling down process.

JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014 177

© 2014 ACADEMY PUBLISHER

Figure 3. Microstructure of NoC node.

A. List schedule
The target DAG is processed by a list schedule algo-

rithm to generate an initial schedule solution for the SA.
The execution sequence of tasks is defined by a task list
which is produced according to the top distance of tasks,
and the task-to-processor assignment is performed using
BF.

Task list generation: The top distance of each task in
the target DAG is calculated using the method mentioned
in Section III. Then the tasks are sorted based on their top
distance values, and inserted to the task list. The task with
the smallest top distance is placed at the head of the list.
For the example DAG in Fig. 1, the task list is: task 0,
task 2, task 1, task 3, task 4, task 6, task 5, and task 7.

Task list generated by top distance ensures that the
precedent condition of tasks is met. For any task i with
predecessor task j and successor task k, it is obviously
that the top distance of task i is greater than that of task j,
and smaller than task k’s top distance. In the generated
task list, task j is scheduled prior to the task i, and only
when task i finishes, task k is scheduled.

Best Fit scheduling: Tasks read from the list are then
allocated to processor using the BF rule. For a to-be-
scheduled task i, the BF algorithm calculates the Estimat-
ed Finish Time (EFT) of each PE, which is the time that
each PE finishes current task running on it, and EFT is
regarded as the earliest starting time that each PE can
provide for the target task. BF chooses the PE with the
best (earliest) EFT, and schedules task i to that PE.

Although BF scheduling is focusing solely on the
makespan, its output schedule provides a good start point
for the further optimization. The pseudocode of the list
scheduling is shown in Fig.4.

B. List Simulated Annealing Scheduling
In this subsection, a list simulated annealing algorithm

is proposed to further optimize the schedule generated by
list best fit algorithm presented before. Like the algorithm

1.
2. calculate ;
3.
4. sort ;
5.
6.
7.

each task in DAG
the top distance of each task

tasks into task list according to top distance
each task in task list

each processor

FOR DO

 END FOR

 FOR DO
FOR DO

 calculate ;
8.
9. schedule
 ;
10.

EFT

current task to the processor with the
smallest EFT

END FOR

 END FOR

Figure 4. Pseudo code of list scheduling.

in previous subsection, the execution order of tasks is
determined by the task list which guarantees the prece-
dent condition of tasks, and SA is used to find optimal
task-to-processor allocation solution.

Solution representation: In the SA, schedule solution
is represented by the symbol S. For a schedule problem
with n_tsk tasks scheduling to n_pe PEs, a symbol is ex-
pressed as:

1 2{ , , ... , }n_peS s s s= , (2)

where an element is k= , {1, ... , _ }k n pe∈ denotes
that the i-th task is scheduled to the k-th PE.

Evaluation of schedule solution: In our proposal, three
metrics are monitored to evaluate the performance of a
symbol (schedule), and they are: Makespan (M), Load
Balance (B) [14] and Average Link Load (L) [15].

The Makespan, also called the schedule length, is the
time span for the NoC to finish all the tasks in a DAG.

The Load Balance metric is defined as follow:

1
2 2

1

_

((()))_ _ _
n_pe

n

ave loadLB
load on pe n ave load

=

=
−∑

(3)

The Load Balance measures the inverse coefficient of
variant of the total workload on each processor. The larg-
er B value suggests better balanced schedule.

The last metric, Average Link Load, monitors the traf-
fic load on each link, and is defined to be the average
value of traffic loads on all links. A better schedule is
supposed to minimize the L metric.

() ()

 ()

ref i i ref
M B

ref ref

i ref
L

ref

M M B B
E w w

M B

L L
w

L

− −
= +

−
+

 (4)

The evaluation result of a symbol i is given in (4),
which is based on the global weighted sum method in
multi-objective optimization [16]. All three metric are
normalized to a reference symbol which in our proposal
is the schedule generated by list scheduling. The final
evaluation result is the weight sum of the improvement of
three metrics.

178 JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

()

()
()

1. Initialize , , , ;
2.
3. Cooling ;
4. 1
5. NeighborMove ;

6. Evaluate , _ ;
7.

best best

new

new new

new best

T S E S and E

T T
n L

S S

E S task list
E E

=

=

=

=

>

WHILE TRUE DO

 FOR TO DO

 IF THEN DO

()

8. Update(,);
9. Update(,);

 Accept_worse ,

12. Update(,);
13.

10.
11.

14.

best best

best new

S E
S E

E E T
S E

−

 IF THEN

ELSE
DO

 ENDIF

 DO

END
15.
16. Terminal_condition()
17.
18.
19.

IF
 END FOR
IF THEN DO

BREAK;
 END IF
END WHILE

Figure 5. Psedocode of SA

When evaluation is needed, the SA symbol along with
the task list is send to the evaluation process for the as-
sessment of the metrics, and then the process returns the
evaluation score.

Cooling down process: SA starts with a high tempera-
ture level, then gradually cooling down to a lower tem-
perature level. At each level, SA repeats certain number
of neighbor searches, in which a new symbol is generated
by randomly change the value of a random element from
the original symbol.

Better moves of the neighbor searching are always ac-
cepted, and the original symbol is updated. A worse move
is also accepted under a certain probability to prevent
algorithm from local optima. The probability of accepting
a worse move decreases as the temperature decreases.

The temperature cooling function is given in (5), where

0T is the initial temperature, i is the ordinal number of

current iteration, _ (_ 1)L n tsk n pe= ⋅ − [17] is the
number of iteration per temperature level, and the cooling
factor q is a constant. The cooling function forces the
temperature to cooling from level to level.

 0()
i
LCooling T T q
⎢ ⎥
⎢ ⎥⎣ ⎦= ⋅ (5)

The worse move acceptance function is defined as (6),
where function random() returns a random number of
interval (0,1), and 0E is the performance score of the

reference symbol 0S .
Fig. 5 shows the pseudocode of the SA algorithm, and

Line 4 to line 15 in the code shows the L iterations of the
neighbor searching in the cooling down process.

0

_ (,)
11, ()

1 ()

0, .

best new

best new

Accept worse E E T

random E EExp
E T

others

−

⎧ <⎪ −⎪ += ⎨ ⋅⎪
⎪⎩

(6)

V. SIMULATION & RESULTS

A. Simulation Setup
To evaluate the performance of our proposal, we im-

plement the list SA (LSA) scheduling algorithm in C++,
and simulate the produced schedules under a SystemC
based cycle-accurate NoC simulator which is modified
from the work in [18]. The list BF (LBF) as well as the
list random mapping (LRM) scheduling is also imple-
mented and simulated as reference.

The NoC is a 4×4 2D mesh structure with XY routing
algorithm. Wormhole switching is adopted, and Round-
Robin arbitration is enforced to solve contentions.

For the LSA, the algorithm terminates after 50 temper-
ature level, and the cooling factor q=0.95. The weight
coefficients in the evaluation are 0.7Mw = ,

0.15Bw = and 0.15Lw = .

B. Task Generation
In our simulation, both random DAG and the real-

world application DAG are used for evaluation the per-
formance of our schedule algorithm.

The 20 random DAGs are generated using TGFF 3.1
[19]. The detail information of each DAG is shown in
Table I. The task number (n_tsk) varies from 52 to 101
which covers various of DAG sizes. Tasks’ computation
time is randomly generated from 40~160 cycles. CCR is
set to 3, 2, 1.5 and 1.2 to simulate light, medium, heavy
and extreme heavy communication load. The series_w
and series_l are the parameters required by the new algo-
rithm of TGFF 3.1. The series_w and series_l parameter
are given as a tuple (average, multiplier), and set the
width/length of series chains.

Two real world applications, solving Laplace Equation
(LE) using Gauss-Seidel algorithm in [20] and Molecular
Dynamics Code (MDC) in [21] are also simulated in our
experiment.

C. Simulation Results
The simulation results of List Simulated Annealing

(LSA), List Best Fit (LBF) and List Random Mapping
(LRM) scheduling algorithm under our NoC simulator is
illustrated in Fig. 6.

Fig. 6 (a) shows the results of makespan. The first
thing to notice is that the makespan does not regularly
expand as the number of tasks grows. This is because the
makespan is more sensitive to the length of the critical
path, which is the longest path exists in the DAG, than
the number of tasks. For example, tg1 has 63 tasks, and
tg17 has 101 tasks. However the makespan of tg1 is 52%

JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014 179

© 2014 ACADEMY PUBLISHER

TABLE I.
DETAILS OF RANDOM GENERATED TASK GRAPHS

(a) Makespan

(b) Load balance

(c) Average link load

Figure 6. Simulation results of LSA, LBF and LRM.

Task Graph tg1 tg2 tg3 tg4 tg5 tg6 tg7 tg8 tg9 tg10

tsk_num 63 58 59 52 75 71 67 71 80 79

CCR 3 2 1.5 1.2 3 2 1.5 1.2 3 2

series_w 4,2 4,2 4,2 4,3 4,2 4,2 4,2 4,2 5,2 5,2

series_l 3,2 3,2 3,2 3,2 3,2 3,2 3,2 3,2 4,2 4,2

Task Graph tg11 tg12 tg13 tg14 tg15 tg16 tg17 tg18 tg19 tg20

tsk_num 77 77 91 91 93 92 101 97 96 97

CCR 1.5 1.2 3 2 1.5 1.2 3 2 1.5 1.2

series_w 5,2 5,2 5,2 5,2 5,2 5,2 6,2 6,2 6,2 6,2

series_l 4,2 4,2 4,2 4,2 4,2 4,2 5,2 5,2 5,2 5,2

180 JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

larger than the makespan of tg17, for the critical path of
tg1 (1557 cycles) is larger than that of tg17 (1226 cycles).

From Fig. 6 (a) we observe that the makespan of LSA
is always smaller than the makespan of LBF and LRM.
The average makespan of LSA is 91% of LBF and 74.6%
of LRM. We also observe that in some situations, the
makespan results of LSA is very close to that of LBF,
that is because the schedule produced by LBF is already
near-optima.

Fig. 6 (b) shows the load balance results, and all the re-
sults are normalized to the LSA equivalent. Notice that in
some situations, the load balance of LSA is identical to
that of LBF. The explanation to this phenomenon is that
two or more processors swap all their tasks during the
cooling down process of LSA. Besides these situations,
LSA still outperforms LBF by 33.1% and LRM by 79.4%.

The average link load results are illustrated in Fig. 6
(c). Obviously, LSA remarkably reduces the average link
load on NoC. The average link load of LSA is 57.9% and
56.3% smaller than that of LBF and LRM.

Moreover, we measure the end-to-end routing delay of
each packet, and the overall average end-to-end delay of
three schedule algorithm is shown in Fig. 7. Although it
is not a optimization goal in our proposal, as presented in
the figure, the average end-to-end delay of LBF and LRM
are of the same level, and the routing delay of LSA is
18% shorter than that of LBF and LRM. This is because
both makespan and average link load optimization favors
the schedule with shorter routing delay.

Figure 7. Average End-to-End Delay

VI. CONCLUSION

A list simulated annealing scheduling algorithm is pro-
posed in this paper for the DAG tasks scheduling on the
NoC. The proposal combines list schedule and simulated
annealing to optimize makespan, load balance and aver-
age link load. Through series of simulations, the perfor-
mance of our proposal is validated.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China [61201005], the Fundamental
Research Funds for the Central Universities
[No.ZYGX2011J006] and the National Major Projects
[2011ZX03003-003-04].

REFERENCES

[1] M. Bambagini, G. Buttazzo, and S. Hendseth, "Exploiting
Uni-Processor Schedulabilty Analysis for Partitioned Task
Allocation on Multi-Processors with Precedence Con-
straints," RTSOPS 2012, p. 17, 2012.

[2] H. Arabnejad and J. G. Barbosa, "Performance evaluation
of list based scheduling on heterogeneous systems," in Eu-
ro-Par 2011: Parallel Processing Workshops, 2012, pp.
440-449.

[3] S. Mandloi and H. Gupta, "A Review of Resource Alloca-
tion and Task scheduling for Computational Grids based
on Meta-heuristic Function," IJRCCT, vol. 2, pp. 099-102,
2013.

[4] I. Lupu, P. Courbin, L. George, and J. Goossens, "Multi-
criteria evaluation of partitioning schemes for real-time
systems," in Emerging Technologies and Factory Automa-
tion (ETFA), 2010 IEEE Conference on, 2010, pp. 1-8.

[5] S. Gupta, G. Agarwal, and V. Kumar, "Task scheduling in
multiprocessor system using genetic algorithm," in Ma-
chine Learning and Computing (ICMLC), 2010 Second In-
ternational Conference on, 2010, pp. 267-271.

[6] S. Sivanandam and P. Visalakshi, "Dynamic task schedul-
ing with load balancing using parallel orthogonal particle
swarm optimisation," International Journal of Bio-Inspired
Computation, vol. 1, pp. 276-286, 2009.

[7] S. Ninomiya, K. Sakanushi, Y. Takeuchi, and M. Imai,
"Task Allocation and Scheduling for Voltage-Frequency
Islands Applied NoC-based MPSoC Considering Network
Congestion," in Embedded Multicore Socs (MCSoC), 2012
IEEE 6th International Symposium on, 2012, pp. 107-112.

[8] H. Yu, Y. Ha, and B. Veeravalli, "Communication-aware
application mapping and scheduling for NoC-based
MPSoCs," in Circuits and Systems (ISCAS), Proceedings
of 2010 IEEE International Symposium on, 2010, pp.
3232-3235.

[9] M. Tagel, P. Ellervee, T. Hollstein, and G. Jervan, "Con-
tention aware scheduling for NoC-based real-time sys-
tems," in NORCHIP, 2011, 2011, pp. 1-4.

[10] É. Cota, A. de Morais Amory, and M. S. Lubaszewski,
"NoC Reuse for SoC Modular Testing," in Reliability,
Availability and Serviceability of Networks-on-Chip, ed:
Springer, 2012, pp. 59-83.

[11] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang,
"Communication-aware heuristics for run-time task map-
ping on NoC-based MPSoC platforms," Journal of Systems
Architecture, vol. 56, pp. 242-255, 2010.

[12] F. Samman, T. Hollstein, and M. Glesner, "New theory for
deadlock-free multicast routing in wormhole-switched vir-
tual-channelless networks-on-chip," Parallel and Distrib-
uted Systems, IEEE Transactions on, vol. 22, pp. 544-557,
2011.

[13] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "QNoC:
QoS architecture and design process for network on chip,"
Journal of Systems Architecture, vol. 50, pp. 105-128,
2004.

[14] Y. Fang, F. Wang, and J. Ge, "A task scheduling algorithm
based on load balancing in cloud computing," in Web In-
formation Systems and Mining, ed: Springer, 2010, pp.
271-277.

[15] N. Nikitin, S. Chatterjee, J. Cortadella, M. Kishinevsky,
and U. Ogras, "Physical-aware link allocation and route as-
signment for chip multiprocessing," in Networks-on-Chip
(NOCS), 2010 Fourth ACM/IEEE International Symposi-
um on, 2010, pp. 125-134.

JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014 181

© 2014 ACADEMY PUBLISHER

[16] R. T. Marler and J. S. Arora, "Survey of multi-objective
optimization methods for engineering," Structural and
multidisciplinary optimization, vol. 26, pp. 369-395, 2004.

[17] H. Orsila, E. Salminen, and T. D. Hämäläinen, "Best prac-
tices for simulated annealing in multiprocessor task distri-
bution problems," Simulated Annealing, pp. 321-342, 2008.

[18] S. Chai, C. Wu, Y. Li, and Z. Yang, "A NoC simulation
and verification platform based on systemC," in Computer
Science and Software Engineering, 2008 International
Conference on, 2008, pp. 423-426.

[19] R. P. Dick, D. L. Rhodes, and W. Wolf, "TGFF: task
graphs for free," in Proceedings of the 6th international
workshop on Hardware/software codesign, 1998, pp. 97-
101.

[20] M.-Y. Wu and D. D. Gajski, "Hypertool: A programming
aid for message-passing systems," Parallel and Distributed
Systems, IEEE Transactions on, vol. 1, pp. 330-343, 1990.

[21] S. Kim and J. Browne, "A general approach to mapping of
parallel computation upon multiprocessor architectures," in
International Conference on Parallel Processing, 1988, p.
8.

182 JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER

