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Abstract—This paper presents a hybrid coding collaborative 
ant colony-differential evolution algorithm for solving 
bound constrained mixed integer programming problems. 
In this algorithm, a real number and integer hybrid coding 
strategy is used, and the population evolution is realized by 
colony optimization and differential evolution. It is shown 
by numerical experiments that the proposed algorithm is 
effective. The proposed algorithm is combined with penalty 
function method to solved the general mixed integer 
programming problems. Numerical experiments show that 
the proposed method achieves satisfactory results. 
 
Index Terms—co-evolutionary, hybrid coding, mixed-integer 
programming (MIP), differential evolution (DE), ant colony 
optimization (ACO) 
 

I.  INTRODUCTION 

We consider the general mixed-integer programming 
problem (MIP) as follows: 
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where  the  function  f (x,y), gi (x,y), and hj (x,y)  are all 
real continuous functions, x  is nc -dimensional real 
variable, y is nI -dimensional integer variable, Lx and 

Ly are the upper bounds of x , y  respectively , Ux and 
Uy are the lower bound of x , y  respectively. 
MIP exists widely in many areas, such as machinery, 

chemical industry, resource management, production 

scheduling, military affairs and so on. Many 
combinatorial optimization problems also belong to MIP, 
e.g. knapsack problem TSP, site selection, distribution 
problem etc. MIP is generally recognized as a NP hard 
problem. Some methods to solve the MIP are proposed 
by domestic and foreign scholars, which can be roughly 
divided into two categories. One is a deterministic 
method, including branch and bound method [1, 15, 16], 
outer-approximation algorithm (OA) [2], Dantzig-Wolf 
decomposition(GBD) [5], cutting plane method [17] and 
so on. These deterministic methods are effective to 
middle-scale and small-scale MIP. The other is a random 
method which has drawn wide attention recently, 
including Genetic Algorithms (GA) [4], differential 
evolution (DE) [5-8], and so on [18,19]. Although these 
random methods have acquired favorable results, their 
convergence has not been proved. In this paper, we pay 
our attention to the bound constrained mixed-integer 
programming problem (BCMIP) as follows: 
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A hybrid coding DE and ACO co-evolutionary 
algorithm HC-DE-ACO is proposed to solve the BCMIP. 
During the iteration process, the hybrid coding is applied 
to each individual coding, which includes the real coding 
part and the integer coding part. The real coding part is 
evolved by DE and the integer coding part is evolved by 
ACO. The entire population is co-evolved by ACO and 
DE. MIP is changed to BCMIP with semi-penalty 
function which can be solved by the HC-PSO-ACO too. 

This article is organized as follows. Section II briefly 
reviews DE and ACO algorithms. Section III presents the 
Co-Evolutionary HC-DE-ACO Algorithm. Numerical test 
results and application are provided in Section IV. 
Conclusions are drawn in Section V. 
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II.  THE BASIC PRINCIPLES OF DE AND ACO 

A.  The Basic DE 
Differential evolution (DE) [9,10] is a simple heuristic 

search method, introduced by (Storn and Price 1995), 
which is known for its remarkable performance  in 
continuous numerical problems.  

For an optimization problem min ( )F x , DE starts from 
an initial population which contains of N  candidate 
solutions   . i  is the index of individual, t  is generation 
number. Any random quantity        is generated according 
to equation (6) and (7). In the mutation operation, 

1, 2, 3 {1,2,..., }r r r N∈ are randomly chosen and different 
from each other and also different from the current index 
i , [0, 2]F ∈ is scaling factor. We have 
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i best r rv x F x x= + −                     (3) 

In crossover operation, the new vector 
t

1 2y [ , ,..., ]t t t
i i i iDy y y= is co-produced by random vector 

1 2[ , ,..., ]i i i iDv v v v=  and target vector 1 2[ , ,..., ]i i i iDx x x x= . 
 , if rand ( )  CR or 

              = rand ( )
 =

   , if rand ( ) > CR and

              rand ( )  

ij

t
ij

ij

v b j

j r i
y

x b j

j r i

≤⎧
⎪
⎪
⎨
⎪
⎪ ≠⎩               (4) 

where [1, ]j D∈ ,  rand ( )b j  is the thi independent 
random number uniformly distributed in the range of 
[0,1].  rand ( )r i  is a randomly chosen index from the set 
[1, 2, ..., D ] ，which ensures that there is at least one 
parameter from       to      . CR [ 0, 1 ]∈  is called 
crossover probability that controls the diversity of the 
populations. 

The selection operation decides whether the trial vector 
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where ( )xφ  denotes fitness function.  

B.  The Basic ACO 
Ant Colony Optimization is first proposed by Italian 

scholar M.Dorigo et al. in 1990s [11]. After extensive 
research, people found that the ants’ individuals exchange 
and pass information by the substance called pheromones 
(pheromone). So that ants can collaborate to complete 
complex tasks. Following is a brief introduction of the ant 
colony algorithm [12, 13]. 

We suppose the number of ants is m , every simple ant 
has some factors as follows: it chooses the next city by 
the distance between the cites and the probability 
function with the variable describing the strength of the 
pheromone on each edge  (        represents the strength of 
the pheromone on edge ( , )e i j  at time t ); an ant musts 
move on the legal routes: it is not permitted to move to 

the visited cities unless the whole route has been 
completed, and a taboo table is used to control this 
condition ( tabuk denotes the -k th  ant’s  taboo  table and  
the tabuk(s) denotes  the -s th element of the taboo table). 
When an ant finished a circle, the pheromone will be left 
in the visited edges. The pheromone in each edge is equal 
initially.  Set                   ( C is a constant ). Ant k  shift its 
direction by the strength of each path’s pheromone in the 
course of its moving,         represents the probability that 
ant k  transfers from position i  to position j  at time t . 

In formula (6),                                                 represents 
the ant k ’ allowed-choose cities in the next step. It is 
different from the actual ant colony, artificial ant colony    
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system has memory function,         ( 1,2,..., )k m=  is used 
to  record  the  ant  k ’s  visited  cities,  and            is 
dynamically   adjusted   in  the  process  of  evolution. 
 represents   the   visibility   of   edge ( , )i j ,   and  we   get  

by a heuristic algorithm, where,     represents 
the distance between city i  and city j . α  represents the 
relative importance of the trajectory and β represents the 
relative importance of the visibility. ρ represents the 
persistence of the trajectory, while 1 ρ− can be seen as 
the attenuation of the trajectory, which simulates the 
phenomena that the previous pheromone gradually 
disappear as the time goes on. After the ants finishing a 
whole circle, the amount of the pheromone is adjusted as 
follows: 

( ) ( ) .ij ij ijt n tτ ρτ τ+ = + Δ                       (7) 
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where       represents the amount of pheromone on path 
ij which ant k remains in this circle,     represents the 
incremental amount of the pheromone on path ij . For the 
update formula of        , three different models have been 
given by M. Dorigo [13], which are respectively called 
ant-cycle system, ant-quantity system and ant-density 
system.  

In the ant-cycle system, we have : 
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where       represents the whole route’s length that ant k  
has been visited in one circle. Q  represents the strength 
of pheromone, which is taken as a constant. 

In the ant-quantity system, we have: 
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where    represents the distance between i and j . Q  
represents the strength of  the pheromone, which is taken 
as a constant. 

In the ant-density system, we have  

,
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The model (10) and the model (11) have strong local 
search ability due to the utilization of  the local 
information, while model (9) has strong global search 
ability due to the utilization of  the global information. 
Therefore, TSP is usually solved by the model (9). 

III.  HC-DE-ACO ALGORITHM 

The feasible region of BCMIP is a super-rectangle 
denoted as {( , ) : ,  }L U L Ux y x x x y y yΩ= ≤ ≤ ≤ ≤ , which 
can be divided  into  two  super-rectangles represented  as  

and                           respectively.            
we have                     , where the former super-rectangle’s 
dimension is  nc  , the later one is nI  . Since ( , )f x y  is a 
consequent function, the BCMIP can be equally written 
as follows: 

min[min ( , )]
x yx y

f x y
∈Ω ∈Ω

             (12) 

We combine DE and ACO to solve formula (12). Each 
single feasible point                                                                     
in its feasible region Ω of BCMIP is taken as an 
individual, each individual is expressed by hybrid coding, 
that is x  is expressed by real coding, while y  is 
expressed by integer coding. The entire population is co-
evolved by PSO and ACO, the real coding is evolved by 
DE algorithm, while the integer coding is evolved by 
ACO algorithm. The hybrid coding HC-DE-ACO co-
evolutionary algorithm will be specifically described in 
following.  

                           represents the number of possible 
values of     .      has     nodes, each value of the variable 
composes   a   solution   space [13].  For   example,  when   

takes the                   node, we will have the 
corresponding solution space as follows: 

1 2 1 1 2 2( , ,..., )=( -1, -1, , -1)L L L
m m ny y y y m y m y m+ + +   (13)                      

where m  variables are selected to make the previous 
problem become a m  decision-making problem. We 
suppose that there are     nodes in level i , initially all ants 
are in the first level, the probability that a ant selects the 
-i th  node in level j  is as follow: 
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      can be seen as the attractive strength of the -i th  node 
in level j . We have the update equation as follows: 

new old Q= +ij ij f
τ ρτ                             (15) 

where we set the mount of ants is 30 viz. 30m = , the 
attenuation coefficient of attract strength is 0.1 viz.  

0.1ρ = ,and Q 10= . f represents the objective function. 
The HC-DE-ACO algorithm will be described in detail 

below. The algorithm has two evolutionary cycles. In the 
outside circle, the evolution of the real part uses 
differential evolution while in the inner loop the 
evolution of the integer part is the ant colony 
optimization by collaborative evolution.  

The basic framework of HC-DE-ACO algorithm is as 
follows: 

Step1. Initialize the population size N  and the 
maximum number of iteration maxT . 

Step2.  Randomly produce original population.  
    Step3.  Calculate the fitness value of each individual in 
the initial population, and record the current optimal 
solution and the optimal value. 

Step4.  Fix the best          real individual generated by 
the ant colony optimization and produce the 
corresponding real individual by differential evolution. 

Step5. Fix the best   individual generated by 
differential evolution and produce the corresponding 
integer individual by the ant colony optimization. The 
each real individual and the corresponding integer 
individual are combined to produces new evolutionary 
population individuals. 

Step6. Compute each individual fitness value of the 
new evolutionary population. Update the current best 
solution and the optimal value. 

Step7.  If maxt T> , reserve the obtained value of the 
integer variable, evolve real values by DE, update the 
current best optimal solution by combining the reserved 
value of integer values, and output the global optimal 
solution and global optimal value. Otherwise, go to Step4. 
 

 
TABLE I-1 

COMPARISON OF CALCULATED RESULTS  

( )kf x  Meaning 

k  *( )kf x            Nfe  

1 6.9413908E-11   333304 

2 1.0000722E+00      37992 

3 9.9377519E-07      50144 

4 6.9756512E-07     26241 

5 6.9756512E-07    71906 

6 9.6768219E-07     12411 

7 3.0143892E-07     26782 

8 7.7798657E-07     18112 

9 6.6047082E-07     20073 
10 8.7374176E-07     65252 
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IV.  NUMERICAL EXPERIMENTS 

In order to compare conveniently, this paper takes ten 
BCMIPs as test functions which have a variety of 
properties in multi-extreme and non-convexity. These 
functions are described in literature [8]. 

To verify the validity of the HC-DE-ACO algorithm 
for BCMIP, we carried out our numerical experiments 
under Matlab 7 environment. The experimental results of  
HC-DE-ACO are compared with that of MIHDE [8] and 
MIDE [14]. The dimension of each BCMIP used as test 
function is 40. 

Let              ,               , =0.5F , 0.6CR =  in MIHDE [8] 
and MIDE [14], =0.5F in HC-DE-ACO, Population 
scale 10Np = in MIDE [14], Population scale 3Np = in 
MIHDE [8] and HC-DE-ACO. VTR is up to the excellent 
value. If we seek that the optimal value less than or equal 
to the VTR, we think that the problem is solved.             is 
the k  function,               is the global optimal value of the 
k  function and Nfe is the number of the function’s 
calculations. 

In Table I, we can see that for Test functions 1, 2, 5, 6, 
7, 8, and 9，HC-DE-ACO is better in the convergent 
accuracy than the other two algorithms. For the test 
functions 3, 4, and 10, the HC-DE-ACO gets higher value 
in the convergent precision as well. And HC-DE-ACO is 
higher in computational time than MIHDE, that can be 
accepted. Thus HC-DE-ACO is feasible for BCMIP. 

 
TABLE I-2 

COMPARISON OF CALCULATED RESULTS  

MIDE   （ 10NP = ) HC-DE-ACO  （ 3NP = ) 

*( )kf x             Nfe  *( )kf x         Nfe  

5.7760000E+03   >200000
0 4.7349564E-040     64829 

1.0000000E+03    1191 1.0000000E+000    49772 

3.4281849e+04   >2000000 5.3421475E-008     55984 

1.1640583E-01   >2000000 8.4114134E-008     39655 

4.0984231E-01   >2000000 0.0000000E+000    20833 

9.8174770E-03   >2000000 1.1779085E-032     37907 

1.4137167E+00  >2000000 1.1779085E-032     38001 

6.0000000E-01   >2000000 1.3497838E-032     55324 

2.5000000E+00  >2000000 1.3497838E-032     38453 

2.7075000E-01   >2000000 2.7846542E-008     87206 

 
Finally, we transformed the general mixed-integer 

programming problem (MIP) into the following half 
penalty function bound constrained mixed integer 
programming problem: 
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where α and β  are large enough normal number (taken 
to be 810 ). We solve the problem (16) by HC-DE-ACO, 
and  the results are compared with the literature [8]. The 
values of other parameters are the same as that of the 
parameters in the previous test.  

From Table II, we can see that, for Problems 1, 3, and 
5, HC-DE-ACO is the same as MIHDE in reaching the 
global minimum, moreover, for Problems 2 and 4, HC-
DE-ACO did not reach a global minimum and its 
convergence precision is below to MIHDE. 
 

TABLE II 
COMPARISON OF CALCULATED RESULTS 

Problem MIHDE HC-DE-ACO Global minimum

1 
2 
3 

2 2 2 
2.124 2.2131 2.124 

1.07654 1.07654 1.07654 
4 99.24520 101.1079 99.24520 
5 3.557463 3.557463 3.557463 

V.  CONCLUSION 

A kind of hybrid coding differential evolution-ant 
colony optimization collaborative algorithm HC-DE-
ACO is proposed. In this algorithm, each individual in the 
population is represented as a hybrid coding combined by 
the real coding and the integer coding. By DE and ACO, 
the real part and the integer part collaboratively evolve 
respectively so as to reach the evolution of the entire 
population. Numerical experiments show that the HC-
DE-ACO algorithm is feasible and effective. 

By the combination of HC-DE-ACO algorithm and 
penalty method, the mixed integer programming problem 
(MIP) is solved and satisfactory results are achieved. 

APPENDIX  

Problem 1[8] 

{ }

2

min   ( , ) 2 ,
s.t.   1.25 0,
       1.6 0,  

       0 1.6,
        0,1 .

f x y x y
x y

x y
x

y
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− − ≤⎪⎪ + − ≤⎨
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                      (17) 

Its global minimum is 2 and global optimal solution is 
0.5,1（ ）. 
Problem 2[8] 

20cN = 20IN =

( )kf x
*( )kf x
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{ }

1 2

1 2

1 2

1

min   ( , ) 2 ,
s.t.   2exp( ) 0,
       0,  
       0.5 1.4,
        0,1 .

f x y x x y
x x

x x y
x

y

⎧ = + −
⎪

− − =⎪
⎪ − + + ≤⎨
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Its global minimum is 2.124 and global optimal 
solution is 1.375,  0.375,  1（ ）. 

Problem 3[8] 

{ }

2
1

2 1

2

1

1

2

min   ( , ) 0.7 5( 0.5) 0.8,
s.t.  exp( 0.2) 0,
       1.1 1 0,
       1.2 0.2 0,  
       0.2 1,
      2.22554 1,
       0,1 .

f x y y x
x x

x y
x y

x
x

y
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⎪ − ≤ ≤ −
⎪
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(19) 

Its global minimum is 1.07654and global optimal 
solution is 0.94194, -2.1,1（ ）.  

Problem 4[8] 

[ ]
[ ]

1 2 3 4 5

1 2

6 1 4

7 2 5

6 7

1 2 3

6 1 7 2

4 1

min   ( , ) 7.5 5.5 5 7 6 ,
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       0.9 1 exp( 0.5 ) =0,
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f x y y y x x x
y y
x x x

x x x
x x
x x x
x y x y
x y
x

= + + + +
− =
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− − −
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5 2

1 1

2 2
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       20 0,
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       0, 0,1 .

y
x y
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      (20) 

Its global minimum is 99. 245209 and global optimal 
solution is 13.362272,3,514237,0,1,0（ ）. 

Problem 5[8] 

2 2 2
1 2 3

2 2 2
4 1 2 3

1 2 3 1 2 3
2 2 2 2

1 2 3 3

1 1

2 2

3 3

4 1

min   ( , ) ( 1) ( 1) ( 1) ,

s.t.  ln(1 ) ( 1) ( 2) ( 3) ,
      + 5 0,

      5.5 0,
      + 1.2 0,
      + 1.8 0,
      + 2.5 0,
      + 1.

f x y y y y

y x x x
y y y x x x

x x x y
y x
y x
y x
y x

= − + − + −

− + + − + − + −

+ + + + − ≤

+ + + − ≤

− ≤
− ≤
− ≤

−

{ }

2 2
2 2

2 2
3 3

2 2
2 3

2 0,  

      + 1.64 0,

      + 4.25 0,

      + 4.64 0,
      0,
      0,1 .

y x

y x

y x
x
y

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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⎨
⎪ ≤⎪
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(21) 

Its global minimum is 3.557463 and global optimal 
solution is 0.2,1.280624,1.954483,1,0,0,1（ ）. 
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