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Abstract—This paper addresses an adaptive fuzzy controller 
design for a class of nonlinear system. The nonlinear system 
is in the framework of strict-feedback form. The system 
funtions are unknown, and external disturbances meet the 
triangular bound assumption. Takagi-Sugeno (T-S) type 
fuzzy logic systems are used to approximate the uncertain 
nonlinear functions. The control objective is to steering the 
system’s output to track a given signal. The closed-loop 
control system is proven to be uniformly ultimately bounded, 
and the tracking error converge to a neighborhood of zero 
through choosing appropriate parameters. Compensated 
tracking errors, not tracking errors, are employed to 
construct the controller, such that the proposed design 
avoids the repeated differential of virtual control law 
completely. Furthermore, the adaptive law is in the sense of 
minimal parameterization. Namely, the number of adaptive 
law is equal to the order of the nonlinear system. The 
simulation results show the effectiveness and usage of the 
proposed strategy. 
 
Index Terms—adaptive control, backstepping control, fuzzy 
system, tracking error, uncertain nonlinear system 
 

I.  INTRODUCTION 

In recent years, adaptive control for uncertain 
nonlinear systems has received much attention, and many 
significant developments were achieved [1-2]. As a 
breakthrough in nonlinear control, adaptive backsteping 
control approach was introduced to achieve global 
stability [2]. Backstepping is a powerful tool for the 
controller design for nonlinear systems in or 
transformable to the parameter strict-feedback form, 
where nx∈ℜ  is the state, u∈ℜ  is the control input, and 

pθ ∈ℜ  is an unknown constant vector. The adaptive 
backstepping approach utilizes stabilizing functions iα  
and tuning functions iτ  for 1, ,i n= . Calculation of 
these quantities require the partial derivatives 1i jxα −∂ ∂  
and 1 liα θ−∂ ∂ . 

However, these schemes can only suitable for the 

systems with known dynamic models, or with the 
unknown parameters appearing linearly with respect to 
known nonlinear functions. Furthermore, conventional 
adaptive control methodology cannot incorporate human 
operators’ experiences, which are in the form of linguistic 
descriptions. Fortunately, fuzzy logic can use not only the 
sensor’s digital data, but also the operator’s language 
information. Hence, fuzzy systems can be applied to 
those systems which are ill-defined or too complex to 
have a mathematical model. 

Therefore, analytical studies of nonlinear control, 
using fuzzy logic system [3], have become the popular 
tool to tackle the uncertainties in a dynamical system (see 
[4-8] and references therein). The adaptive fuzzy 
controller design [6] is proposed for a class of affine-type 
nonlinear system. Controller with H∞  tracking 
performance was studied in [9] for canonical strict-
feedback system. The authors in [11] gave the adaptive 
backsteping design when not all the states are available. 
However, the backstepping approach brings out the 
problem of “explosion of terms” in [9]-[12]. This 
problem is caused by the repeated differentiations of 
virtual input. This problem also appears in the other 
designs which use other kinds of approximator to 
construct the unknown system dynamics, such as wavelet 
[13] and neural networks [14]. To overcome the problem 
of explosion of complexity inherent in adaptive fuzzy 
backstepping design, the authors in [15] proposed a 
command filter backstepping (CFB) control design 
method. The methodology therein is useful for the system 
with exactly known dynamics. 

Motivated by the aforementioned observations, in this 
paper, compensated-tracking-error-based adaptive fuzzy 
backstepping control approach is proposed for a class of 
strict-feedback nonlinear system. The system dynamics 
are completely unknown. Takagi-Sugeno (T-S) fuzzy 
logic systems are used to model the unknown nonlinear 
system functions. The boundedness of all the signals in 
the closed-loop system is guaranteed. Compensated 
tracking errors are used to formulate the adaptive fuzzy 
controller. The proposed design avoids the repeated 
differential of virtual control law efficiently. Hence, the 
proposed controller is of simple structure. Furthermore, 
compared to the approach in [8], the adaptive law is in 
the sense of minimal parameterization. That is, the 
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number of adaptive law is equal to the order of the system. 
Finally, simulation researches are carried out. 

II. PROBLEM STATEMENT AND PRELIMINARIES 

This section will present some descriptions of problem 
formulations and some useful preliminaries. 

A. Problem Statement 
Consider a class of n-th order single-input-single-

output nonlinear system in strict-feedback form as 
follows 

 

1 2 1 1

2 3 1 2 2

1 1 1 1 1

1

( ) ,
( , ) ,

( , , ) ,
( , , ) ,1 ,

n n n n n

n n n n

x x f x d
x x f x x d

x x f x x d
x u f x x d i n

− − − −

= + +⎧
⎪ = + +⎪⎪
⎨
⎪ = + +⎪

= + + ≤ ≤⎪⎩

 (1) 

where 1[ , ], n
nx x x= ∈ℜ is the state vector with initial 

condition 0(0)x x= , the first state 1x  is considered as the 
scalar output, and u  is the scalar control signal. The 
functions 1( , , ) : i

i if x x ℜ →ℜ  are assumed to be 
unknown and satisfy the following assumption. External 
disturbances id  are unknown smooth functions that 
satisfy the following growth conditions. 

Assumption 1 (Triangular bounds): There exist (not 
necessarily known) parameter values * 0iψ ≥  and smooth 
functions 1( , , )i ip x x , such that for all 

nx∈ℜ and t +∈ℜ , 

 *
1( , ) ( , ),1 1.i i i ix t p x x i nφΔ ≤ ≤ ≤ −  (2) 

Our objective is trajectory tracking. Therefore, we 
assume there is a desired trajectory 1 ( ) :cx t +ℜ →ℜ . 
Specific assumptions related to this desired trajectory will 
be stated in subsequent sections. The objective of the 
control design are to specify a control signal ( )u t  to steer 

( )x t from any initial conditions to track the reference 
input 1 ( )cx t , to achieve boundedness of all signals and 
states defined in the control law, and to achieve 
boundedness for the system states ( )ix t  from 2, , .i n=  

B. Useful Lemmas 
To proceed, the following simple lemmas play an 

important role in the manipulations of our main results on 
adaptive fuzzy controller design. 

Lemma 1 (Young’s inequality): [10] For scalar time 
functions ( )x t ∈ℜ  and ( )y t ∈ℜ , it holds that 

 2 212xy x yω
ω

≤ +  (3) 

for any 0ω > . 
Lemma 4 IF there exists 

 
2ABu

A B ε
=

+
 (4) 

where u  is control input, , 0, ,A B A B≠ ∈ℜ , and 0ε > , 
then Au A B ε+ ≤  will always holds. 

Proof: Substitute (4) into the left side of the inequality, 
and we have 

 
2A B A B

Au A B
A B A B

ε ε ε
ε

ε ε
+

+ ≤ ≤ ≤
+ +

 (5) 

C. Descriptions of T-S Fuzzy System 
Generally, fuzzy logic system consists of four parts: 

the knowledge base, the fuzzifier, the fuzzy inference 
engine, and the defuzzifier. The knowledge base contain 
a group of IF-THEN rules. Especially, T-S fuzzy rules 
[16] are a set of linguistic statements in the following 
form 

 jR : IF 1x is 1
jF and 2x is 2

jF and and nx  is j
nF , 

 THEN 0 1 1 , 1,2, , ,j j j
j n ny a a x a x j K= + + + =  

where ix  are the input variables, , 0,1, ,j
ia i n=  are the 

unknown constants to be adapted, jy  is the output 
variable of the fuzzy system, and j

iF  are fuzzy sets 
associated with membership functions ( )j

i
iF

xμ . Together 
with singleton fuzzifier and center-average defuzzifier, 
and product inference, the crisp output of T-S fuzzy 
system can be expressed as follows 

 1 1

1

1 1

( )
( ) ( ) ,

( )

i

j

K n
j

j F i K
j i

j jK n
jj

F i
j i

y x
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μ

= =

=

= =

⎡ ⎤
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⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∏
∑

∑ ∏
 (6) 

where 

 0 1 1
j j j

j n ny a a x a x= + + , (7) 
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=
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∏

∑ ∏
, (8) 

which is called fuzzy basis function. From universal 
approximation theorem [16], it is well known that T-S 
fuzzy logic system (6) is capable of uniformly 
approximating any well-defined nonlinear function over a 
compact set cU  to any degree of accuracy with triangular 
or Gaussian membership function. Due to their 
approximation capability, we can assume that the 
nonlinear system in (1) can be approximated by the above 
T-S fuzzy logic systems. Next, similar to the process in 
[16], (6) can be easily written as 

 0 1( ) ( ) ( )z zy x x A x A xζ ζ δ= + + , (9) 

where 
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 [ ]1 2( ) ( ), ( ), ( )Kx x x xζ ζ ζ ζ= , 

 [ ]T
1 2, , , nX x x x= , 

 
T0 1 2

0 0 0, , , K
zA a a a⎡ ⎤= ⎣ ⎦ , 

 

1 1 1
1 2
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1 1 2

1 2

n

n
z

K K K
n

a a a
a a a

A

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

III. ADAPTIVE FUZZY CONTROLLER DESIGN BASED ON 
COMPENSATED TRACKING ERROR 

In this section, we will incorporate backstepping 
method into the adaptive fuzzy control design for nth-
order system, which is described by the equation (1). The 
detailed design procedure is described in the following 
steps. 

Step 1: Firstly, we define two tracking errors for the 
state 1x respectively as follows 

 1 1 1cx x x= − , (10) 

 1 1 1x x ζ= − , (11) 

where 1cx  is the desired trajectory, 1x is tracking error, 
and 1x  is compensated tracking error. Because 1 1( )f x is 
an unknown continuous function, we will construct T-S 
fuzzy system with input vector 1x to approximate the 
system function 1 1( )f x . Then, similar to section II-C, 

1 1( )f x can be expressed as 

 ( )

1 1 1 1 1 1
0 1

1 1 1 1 1 1 1 1

1 0 1
1 1 1 1 1 1 1 1 1

1
1 1 1 1 1

( ) ( )
     ( ) ( )

     ( ) ( )

         ( ) ,

z

z z

z z z c

z

f x x A
x A x A x

x A x x A A x

x A

ζ δ

ζ ζ δ

ζ ζ

ζ ξ δ

= +

= + +

= + +

+ +

 (12) 

where 0 1
1 1 1, ,z z zA A A  are matrices with unknown elements, 

1ξ  will be defined later. Then, we obtain 

 1
1 2 1 1 1 1 1( ) ,zx x x A xζ= + +Ω  (13) 

where 1Ω  is an introduced variable for simplicity and 
will be discussed as follows 

 

0 1 1
1 1 1 1 1 1 1 1 1 1 1

*
1 1 1 1

0 1 1
1 1 1 1 1 1 1 1 1

*
1 1 1 1 1

1 1 1

( )( ) ( )

      ( )

   ( ) ( )

      ( )

   ( ),

z z c z

c

z z c z

c

x A A x x A

p x x

x A A x x A

p x x

x

ζ ζ ξ δ

φ

ζ ζ ξ

δ ψ

ϑψ

Ω = + + +

+ −

≤ + +

+ + +

≤

 (14) 

where 1cϑ  is a constant only for analytic purpose, the 
accurate value of which is not necessarily known, *

1δ  is 
the bound of approximation error, and 

 
{ }0 * *

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

max , , , ,

( ) 1 ( ) ( ) + ( ) ,
c cA c x c x p

x x x x
ϑ ϑϑ δ

ψ ζ φ ζ ξ

= + ⋅ +

= + + ⋅
 (15) 

where •  stands for Euclidean norm of vectors and 
induced norm of matrices. Next, we define 

 0
1 1 1 2 2( )c ck x xξ ξ= − + − , (16) 

 0
2 1 2cx α ξ= − , (17) 

where 2ξ will be define in Step 2, the signal 0
2cx  is 

filtered to produce the command signal 2cx and its 
derivative 2cx , 1α  is virtual control input which will be 
discussed later, 1k  is a positive constant and chosen by 
designer. Such a filter will be defined later. By use of (16) 
and (17), the dynamics of the compensated tracking 
errors are described by 

 1 1 1x x ξ= − 1
1 1 1 1 1 2 1 1 1( ) .x A x x kζ α ξ= +Ω + + +  (18) 

Choose Lyapunov candidate function as follows 

 2 1 2
1 1 1 1

1 1 ,
2 2

V x ς−= + Γ  (19) 

where *
1 1 1̂ς ς ς= − , and 1Γ  are positive constant, which 

will be chosen by designer. Note that, we use 
compensated tracking error, not tracking error in the 
conventional schemes, to formulate Lyapunov candidate 
function in our design. Essentially, we use compensated 
tracking errors to remove the repeated differentiation of 
virtual control laws. Then, the derivative of the Lyapunov 
candidate is given as follows. 

1 1
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1= ( )V x x A x x x x x x kζ α ξ ς ς−+ Ω + + + + Γ  (20) 

We discuss some items in the above formulae. From 
Young’s inequality in Lemma 1, we have 

( ) ( )

1
1 1 1 1 1 1 1

2 22 T T *1 1
1 1 1 1 1 1 1 1 1 1 1
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2
1 ( ) ( ) ( )  

2 2
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w
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w
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w
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ς ζ ζ ς ψ
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≤ + +

≤ +

+ + +

 (21) 

We use the following virtual control law 

2 2
T 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1

1

11 1

( )
(

ˆˆ1 ˆ ( ) ( )
ˆ )2

k x
w x

x x x
x

xς ϑ ψα ς ζ ζ
ς ψ ε

= − − −
+

 (22) 
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with adaptive law 

 
2 T

1 1 1 1 1 1 1 1 1 1
1

0
1 1 1

1ˆ ( ) ( ) ( )
2

ˆ      ( )

x x x x x
w

ς ζ ζ ψ

σ ς ς

⎡
= Γ +⎢

⎣
⎤− − ⎦

 (23) 

where 1 0σ ≥ , 1 0ε ≥ , 0
1ς  are design constants. 

Furthermore, by completing squares, there exists the 
following inequality 

 ( ) ( ) ( )2 20 2 0 * 0
1 1 1 1 1 1 1 1

1 1 1ˆ ˆ
2 2 2

ς ς ς ς ς ς ς ς− ≤ − − − + −  (24) 

Then, substituting (21)-(23) into (18) yields 

1

2 2 2 * 01 1 1
1 1 1 1 1 1 1 1 2+ ( )

2 2 2
wV k x x x xσ σς ς ς ε≤ − + − − + +  (25) 

We introduce 

{ }1 1 1 1 1: min 2 , ,c k w σ= − Γ  ( )2* 01
1 1 1 1: ,

2
σϖ ς ς ε= − +  (26) 

then V  can be further written as follows 

 ( )1 1 1 1 1 1 1 2, .V c V x x xς ϖ≤ − + +  (27) 

Step i ( 2 1i n≤ ≤ − ): Similar to Step 1, we define two 
tracking errors for the state ix  respectively as follows 

 ,i i icx x x= −  (28) 

 ,i i ix x ξ= −  (29) 

where icx  is the desired trajectory, ix  is tracking error, 
and ix  is compensated tracking error. Then we use T-S 
fuzzy system to approximate unknown function ( )i if x . 
The dynamics of tracking errors can be expressed as 
follows 

 1
1 .i i i i i ix x A xζ+= + +Ω  (30) 

Next, we define 

 0
( 1) ( 1)( ),i i i i c i ck x xξ ξ + += − + −  (31) 

 0
( 1) ( 1) ,i c i ix α ξ+ += −  (32) 

where the signal 0
( 1)i cx +  is filtered to produce the 

command signal ( 1)i cx +  and its derivative ( 1)i cx + , iα  is 
virtual control input which will be discussed later, ik  is a 
positive constant and chosen by designer. Then we obtain 

 1 .i

m
i i i i i i i i ix c A x x kϑζ α ξ+= +Ω + + +  (33) 

Choose Lyapunov candidate function 

 2 1 2
1

1 1 ,
2 2i i i i iV V x ς−

−= + + Γ  (34) 

where * ˆi i iς ς ς= − , iΓ  is positive constant and chosen by 
designer. The derivative of iV  is given as follows 
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1 ˆ      .
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i i i
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−

= + + Ω + + +

+Γ
 (35) 

We use the following virtual control law 
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−
+
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 (36) 

where 

 ( ) ( ) ( )( ) 1 ,i i i i i i i i ix x x xψ ζ φ ζ ξ= + + + ⋅  (37) 

 
( ) ( ) ( )

( )

1

1

2
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1ˆ
2

ˆ      .

T
i i i i i i i i i i

i

i i i

x x x x x
w

ς ζ ζ ψ
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⎡
= Γ +⎢

⎣
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 (38) 

From (36)-(38), we obtain 

 ( ) 1, ,i i i i i i i iV cV x x xς ϖ += − + +  (39) 

where 

 { }1: min 2 , ,2 ,i i i i i ic k w cσ −= − Γ  (40) 

 ( )
1 2* 0

1

: ,
2

i
i

i s i i i
s

σϖ ϖ ς ς ε
−

=

= + − +∑  (41) 

Step n: We define two tracking errors for the state nx  
respectively as follows 

 ,n n ncx x x= −  (42) 

 ,n n nx x ξ= −  (43) 

The unknown function ( )n nf x  is approximated by T-S 
fuzzy system. Then, we obtain 

 ( ) 1 .n n n n n n nx u x A x kζ ξ= + +Ω +  (44) 

Next, we define 

 ,n n nx x ξ= −  (45) 

 ( )0 .n n n c ck u uξ ξ= − + −  (46) 

Furthermore, note that 0 .c cu u u= =  Then, we obtain 

 .m
n n n n n nx u c A x kϑζ ξ= + +Ω +  (47) 

Choose Lyapunov candidate function 

 2 1 2
1

1 1 ,
2 2n n n n nV V x ς−

−= + + Γ  (48) 

where * ˆn n nς ς ς= − , nΓ  is positive constant and chosen by 
designer. The derivative of nV  is given as follows 

1 1
1 ˆ .n n n n n n n n n n n n n n nV V x A x x x u x kζ ξ ς ς−
−= + + Ω + + + Γ  (49) 
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We use the following control law 

 
( ) ( )T
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+
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where 

 ( ) ( ) ( )( ) 1 ,n n n n n n n n nx x x xψ ζ φ ζ ξ= + + + ⋅  (51) 

 
( ) ( ) ( )

( )

2 T

0

1ˆ
2

ˆ        

n n n n n n n n n n
n
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x x x x x
w

ς ζ ζ ψ
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⎡
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⎣
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We introduce 

 { }1: min 2 , ,2n n n n nC k w cσ −= − Γ  (53) 

 ( )
1 2* 0

1

: ,
2

n
n

i n n n
i

M σϖ ς ς ε
−

=

= + − +∑  (54) 

then, nV  will be rewritten into 

 ( )ˆ, .n n n nV CV x Mς≤ − +  (55) 

The above equation (61) implies that 

 
( ) ( ) ( )

( )

0
0

0 0

e

       ,    .

C t t
n n

n

CV t V t
M

CV t t t
M

− −≤ +

≤ + ∀ ≥
 (56) 

As a result, all ix  and iς  belong to the compact set 

( ) ( ) ( )0, .i i n n
Mx V t V t
C

ς⎧ ⎫≤ +⎨ ⎬
⎩ ⎭

 Namely, all the signals, i.e. 

ix  and iς  in the closed-loop system are bounded. From 
(31), it is concluded that ( ) ( )

0
1 1i c i cx x+ +−  can be made 

arbitrarily small by well-defined command filter. Then, 
compensated tracking error iξ  is bounded. When 

( ) ( )
0

1 1i c i cx x+ +−  approaches zero, then 0iξ →  and 

i ix x→ .Therefore, ix  is bounded, since ix  is bounded. 
Namely, the tracking errors ix  are UUB. Furthermore, 
appropriate choice of design parameters will make the 
ultimate error bound arbitrarily small. 

IV. SIMULATION EXAMPLE 

To illustrate the fuzzy adaptive control procedures, we 
consider the second-order nonlinear system 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

10.5
1 2 1 2 1 1

2
2 1 2 1 1 2

e  ,

sin ,  ,

xx t x t x x t f x

x t u t x x u t f x x

−⎧ = + = +⎪
⎨

= + = +⎪⎩
 (57) 

where ( )1 1f x  and ( )1 1 2,f x x  are unknown nonlinear 
functions. The control objective is to guarantee that all 

the signals in the closed-loop system are bounded, and 
the output follows reference signal ( )1 sin 2cx t= . 
Choose membership functions of ( )1x t  and ( )2x t  as 
follows 

 ( ) ( )
1

2
1

1

3
exp , 1,2, ,5

16
lF

x l
x lμ

⎡ ⎤− +
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2

2
2

2

3
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16
lF

x l
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⎡ ⎤− +
= − =⎢ ⎥
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 (59) 

where the membership functions of ( )1x t  and ( )2x t  are 
of the same structures, l denotes the number of 
membership functions. In this example, we use totally 5 
rules to construct T-S fuzzy system for the unknown parts, 
namely, ( )1 1f x  and ( )1 1 2,f x x . 

From the membership functions of ( )1x t  and ( )2x t , 
we define the fuzzy basis functions for unknown 
nonlinear functions ( )1 1f x  and ( )1 1 2,f x x  as follows 
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where 1,2, ,5.j =  We use the virtual control law 
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with parameter adaptation laws 
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and the following control law 
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with parameter adaptation laws 
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Fig. 1. Trajectories of x1 and x1c 

 
Fig. 2. Control input 

 
Fig. 3. Adaptive law: 1̂ς  

 
Fig. 4. Adaptive law: 2ς̂  
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2
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2
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Tx x x x xς ζ ζ ψ

ς

⎡= +⎢⎣
− − ⎤⎦

 (65) 

We use the following command filter 

 0
2 2

20( ) ( ) .
20c cx t x t

s
⎡ ⎤= ⎣ ⎦+

 (66) 

Simulation results in Fig. 1-4 show the effectiveness of 
the proposed adaptive control design. Fig. 1 shows that 
the tracking error converges to a small neighborhood 
around zero. Fig. 2 shows that the boundness of control 
input. The enlarged part, namely, the time response of the 
beginning5 seconds, shows that the control input is quite 
smooth without heavy chattering. Fig. 3-4 show the time 
histories of adaptive parameters 1̂ς  and 2ς̂ .From the 
figures, it can be concluded that all the signals in the 
closed-loop is UUB. 

V. CONCLUSIONS 

In this paper, adaptive tracking fuzzy control scheme is 
proposed for a class of nonlinear system in strict-
feedback form. The system dynamics are completely 
unknown, and external disturbances satisfy triangular 
bounds. The proposed algorithm can guarantee the 
boundedness of all the signals in the closed-loop system. 
Compensated tracking errors, not tracking errors, are used 
to construct the controller. The proposed design avoids 
the repeated differential of virtual control law completely, 
which make the controller structure quite simple and easy 
to implement. Furthermore, the adaptive law achieves 
minimal parameterization. Numerical example is used to 
demonstrate the effectiveness of the control algorithm. 

ACKNOWLEDGMENT 

This work is supported in part by National Natural 
Science Foundation of China under Grant No. 51109020 
& 50979009, National 973 Projects of China under Grant 
No. 2009CB320800, and the Fundamental Research 
Funds for the Central Universities No. 2011JC022. 

REFERENCES 

[1] P. A. Ioannou, J. Sun, Robust Adaptive Control. Prentice 
Hall, 1995. 

[2] M. Krstić, I. Kanellakopoulos, and P. Kokotović, 
Nonlinear and Adaptive Control Design. John Wiley & 
Sons, 1995. 

[3] T. Takagi, and M. Sugeno, “Fuzzy Identification of 
Systems and its Applications to Modelling and Control,” 
IEEE Transactions on Systems, Man and Cybernetics, vol. 
15, pp. 116–132, January 1985. 

[4] Y. S. Yang, J. S. Ren, “Adaptive Fuzzy Robust Tracking 
Controller Design via Small Gain Approach and its 
Application,” IEEE Transactions on Fuzzy Systems, vol. 11, 
pp. 783–795, November 2003. 

[5] J. Ren, X, Zhang, “Adaptive Fuzzy Controller Design for 
Strict-Feedback Nonlinear System Using Compensated 
Tracking Errors,” International Conference on Fuzzy 

JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014 83

© 2014 ACADEMY PUBLISHER



Systems and Knowledge Discovery (FSKD), July 2011, 
Shanghai, China, pp. 489–493. 

[6] J. Ren, X, Zhang, Fuzzy-Approximator-Based Adaptive 
Tracking Controller Design for a Class of Nonlinear 
System, International Conference on Intelligent Control 
and Information Processing (ICICIP), August 2010, 
Dalian, China, pp. 160–164. 

[7] F. C. Teng, A. Lotfi, and A. C. Tsoi, “Novel Fuzzy Logic 
Controllers with Self-Tuning Capability,” Journal of 
Computers, vol. 3, 9–16, November 2008. 

[8] Y. Wu, M. Zhu, Z. Zuo, and Z. Zheng, “Adaptive 
Trajectory Tracking Control of a High Altitude Unmanned 
Airship,” Journal of Computers, vol. 7, 2781–2787, 
November 2012. 

[9] W. Y. Wang, M. L. Chan, T. T. Lee, and C.H. Liu, 
“Adaptive Fuzzy Control for Strict-Feedback Canonical 
Nonlinear Systems with H∞Tracking Performance,” IEEE 
Transactions on Systems, Man and Cybernetics, vol. 30, pp. 
878–885, November 2000. 

[10] J.T. Spooner, M. Maggiore, R. Ordonez, and K.M. Passino, 
Stable Adapitve Control and Estimation for Nonlinear 
Systems: Neural and Fuzzy Approximator Techniques. 
John Wiley & Sons, 2002. 

[11] W. Chen, and Z. Zhang, “Globally Stable Adaptive 
Backstepping Fuzzy Control for Output-Feedback Systems 
with Unknown High-Frequency Gain Sign,” Fuzzy Sets 
and Systems, vol. 161, pp. 821–836, 2010. 

[12] S. S. Zhou, G. Feng, and C. B. Feng, “Robust Control for a 
Class of Uncertain Nonlinear Systems: Adaptive Fuzzy 
Approach Based on Backstepping,” Fuzzy Sets and 
Systems, vol. 151, pp. 1–20, 2005. 

[13] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet Adaptive 
Backstepping Control for a Class of Nonlinear Systems,” 

IEEE Transactions on Neural Networks, vol. 17, pp. 1175–
1183, October 2006. 

[14] M. M. Polycarpou, and M. Mears, “Stable Adaptive 
Tracking Of Uncertain Systems Using Nonlinearly 
Parameterized On-line Approximators,” International 
Journal of Control, vol. 70, pp. 363–384, 1998. 

[15] W. Dong, and J. A. Farrell, M. M. Polycarpou, V. Djapic, 
and M. Sharma, “Command Filtered Adaptive 
Backstepping, IEEE Transactions on Control Systems 
Technology,” vol. 20, pp. 566–580, May 2012. 

[16] L. X. Wang, Adaptive Fuzzy Systems and Control: Design 
and Stability Analysis. Prentice Hall, 1994. 

 
 
 
Junsheng Ren is currently a professor at Dalian Maritime 
University, and has been lecturing on graduate course Marine 
Cybernetics. He achieved his PhD degree in Communication 
and Transportation Engineering from the same university in 
2004. He has authored or coauthored more than 40 journal and 
conference papers in the recent years. His current research 
interests include ship's maneuverability prediction, machine 
learning and their applications in marine cybernetics. 
 
Xianku Zhang is born in 1968 in Liaoyang county in P. R. 
China. He is currently a professor in Dalian Maritime 
University, and achieved his PhD degree from the same 
university in 1998. He has published 7 books, such as Ship 
Motion Control, Control System Modeling and Digital 
Simulation, Visual Basic Engineering Applications and etc. he 
also has written more than 80 journal papers. His research 
interests include ship motion control, robust control and applied 
computer technology. 

 
 

 

84 JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014

© 2014 ACADEMY PUBLISHER


