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Abstract—This note makes effort at the problem of robust 
adaptive control for a class of nonlinear MIMO systems 
with unknown time-delays. A concise adaptive neural 
control scheme is developed by using the Backstepping 
method, the Lyapunov-Krasovskii functional and a novel 
“MLN” technique. Unlike the existing literatures, the actual 
control laws are only composed of the state variables, the 
reference signals and their derivatives, independent of the 
designed virtual controls and the other intermediate 
variables. In addition, only n (the number of system outputs) 
neural networks are introduced to compensate the nonlinear 
uncertainties of the whole system. Thus, the outstanding 
advantage of the proposed scheme is that the control law 
with a concise structure is model-independent and easy to 
implement in practical engineering, due to less 
computational burden. The corresponding scheme 
guarantees uniform ultimate boundedness of all the signals 
in the closed-loop system, and the tracking errors can 
converge to a arbitrary small neighborhood of zero. Finally, 
a simulation example illustrates the effectiveness of the 
proposed scheme.  
 
Index Terms—robust adaptive control, neural networks, 
MIMO systems, time delays 
 

I.  INTRODUCTION 

Recently, the development of adaptive neural control 
algorithms for uncertain nonlinear systems has been a 
focus of engineering interest as well as theoretical 
significance. Many positive results have shown that semi-
global uniform ultimate boundedness (SGUUB) of the 
closed-loop adaptive control system can be achieved and 
the output of the system is proven to converge to a small 
neighborhood of the desired trajectory, refer to [1-3] and 
the references therein for details. In [4], direct adaptive 
neural network (NN) control was proposed for a class of 
affine nonlinear systems with unknown nonlinearities. 
The scheme could avoid the controller singularity 
problem completely, by using a special property of the 
affine term. With the help of the Lyapunov-Krasovskii 
thermo, the control scheme was extended to control 
uncertain nonlinear systems with unknown time delays 
[5]. The extensively significant results on adaptive neural 
control also have been reported in [6, 7]. 

For multi-input multi-output (MIMO) nonlinear 
systems, the control task is very difficult due to the state 

and input interconnections among various subsystems, 
which often severely limits system performance, even 
leading instability. Therefore, there exist relatively few 
research results available for nonlinear MIMO systems 
[8-10], comparing with the vast amount of results on 
control design for single-input, single-output (SISO) 
systems. In these results, the tracking control of nonlinear 
MIMO systems was addressed. Unlike the other 
literatures, this algorithm introduced NNs to approximate 
and compensate for both unknown functions and the 
uncertain time-delay function bounds, and simulation 
results have illustrated the effectness of the corresponding 
scheme. However, the aforementioned algorithm suffered 
from two major problems as expounded in [11]: the first 
one is the well known “explosion of complexity”, which 
is inherent in the conventional backstepping technique 
[12]. It is caused by the repeated differentiations of 
virtual controls, which is impossible to implement in 
practice and leads to a complicated algorithm with heavy 
computational burden, especially for the high-order 
nonlinear system. The second problem is the so-called 
“curse of dimensionality”, i.e., to satisfy the 
approximation requirement of high-order uncertain 
nonlinear system, the number of NNs and that of 
parameters to be updated online in the previous adaptive 
schemes is very large. In order to solve these problems, 
the dynamic surface control (DSC) technique [6, 13] and 
the minimal learning parameters (MLP) algorithm [14, 15] 
were extended to NNs-based adaptive control for 
nonlinear MIMO system in [16-18]. 

It is worth noting that the impact of the above 
problems has been minimized by the merit of the DSC 
technique and MLP algorithm, whereas not been solved 
absolutely. In these algorithms, there exist some 
intermediate control variables and dynamic surface of 
first order to be computed online, especially for the high-
order system. This still require large computing time, 
even become unacceptably in the real-time control 
engineering. In addition, one concerned that only one 
online-learning parameter is induced to compensate the 
whole nonlinear uncertainties of the subsystem (for 
MIMO system). In this technique note, motivated by the 
above-mentioned observations, a novel kind of concise 
adaptive neural control scheme, which is performed by 
using the Lyapunov-Krasovskii functional, is developed 

JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014 65

© 2014 ACADEMY PUBLISHER
doi:10.4304/jcp.9.1.65-71



for a class of nonlinear MIMO systems with unknown 
time delays. The nonlinear uncertainties and unknown 
state time delays at each step are delivered to the next 
step, without being compensated as in the conventional 
adaptive neural control. In the sequel, the uncertainties of 
the whole system are dealt with by introducing a radial-
basis-function (RBF) NNs in the final step. 

The main contributions of this note can be summarized 
as follows: 1) In the proposed scheme, the problems of 
“explosion of complexity” and “curse of dimensionality” 
are solved from the root causes, different from DSC and 
MLP. The number of online learning NNs is reduced to 
only n, which is equal to the number of the systems outs 
and independent of the system orders. The intermediate 
controls would not appear in the control scheme. That 
will lead to a much simpler controller with less 
computational burden. 2) The adaptive law proposed in 
this note is merely dependent on the state variables, the 
reference signals and their mth order derivatives. With the 
special property and structure of our algorithm, the 
potential controller singularity problem existing in may 
adaptive control algorithm is avoided. 

II.  PROBLEM FORMULATION 

In this note, we solve the adaptive control problem of 
the following nonlinear MIMO system with unknown 
time delays. 

 

, , , , , , 1 , ,

, , 1 , 1 ,

,1

( ) ( ) ( ),   

1,2, , 1

( , ) ( , ) ( )

,   1,2, ,

j j j j j j j j

j j j j

j i j i j i j i j i j i j i j i

j j

j m j m j j m j j j m

j j

x f x g x x h x

i m

x f X u g X u u h X

y x j n

τ

τ

+

− −

= + +⎧
⎪

= −⎪
⎨ = + +⎪
⎪ = =⎩

 (1) 

where, T T T
1[ ,  , ] n m

nX x x R ×= ∈ with T
,1 ,[ ,  , ]

jj j j mx x x=  
denotes the matrix of state variables, T

1[ ,  , ] n
ny y y R= ∈ is 

the system output. T
, ,1 ,[ ,  , ] j

j j

i
j i j j ix x x R= ∈ , T

1[ , ]j ju u u= . 

, , ,( )
j j jj i j i j ix x tτ τ= − with 

jjiτ as unknown time delays of the 
states. T

, ,1 ,[ , , ]
j jj i j j ix x xτ τ τ= , 

1

T T T
1, ,[ , , ]

nm n mX x xτ τ τ= are the 
vector of delayed state variables. , ( )

jj if ⋅ , , ( )
jj ig ⋅  and , ( )

jj ih ⋅  
are all unknown nonlinear continuous functions. For 

,[ ,  0]
jj it τ∈ − , , ( )

jj ix t are assumed to be smooth and bounded. 
Remark1: Comparing with [9], e.g. the control gain 
function , ( )

jj mg ⋅ includes all state variables and the inputs 
of the previous subsystems. Obviously, the plant (1) 
describes a class of nonlinear MIMO systems with more 
general form. 

The following assumptions on system (1) are 
introduced. 
Assumption1: The unknown virtual control gain 
functions are confined within a certain range such that  
 , ,0 ( )

j jj j i j ig g g< ≤ ⋅ ≤ < ∞  (2) 
where jg and , jj ig are the positive constant lower and 
upper bound parameters. 
Remark2: Assumption is reasonable for , ( )

jj ig ⋅  being 
away from zero is the controllable condition of (1), which 
is made in current literatures. It should be mentioned that 

jg and , jj ig are only required for analytical purpose, which 
is not necessarily known in the proposed scheme. 
Assumption2: The reference signals ( ),  djy t  1, ,j n=  and 
their time derivatives up to the thjm  order are continuous 
and bounded. 
Assumption3: The unknown smooth function , ,( )

j jj i j ih xτ  
satisfies the following inequality: 
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1
( ) ( )

j
j

j j

i
j i

j i j i j l j l
l

h x Q xτ τ
=
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where ,
, ( )jj i

j lQ ⋅  are the positive functions for 1,l =  , ji . 
The control objective is to develop a novel concise 

adaptive neural tracking controller such that 1) all states 
of the uncertain nonlinear MIMO system (1) are SGUUB, 
and 2) the tracking error j j djz y y= −  can be rendered 
arbitrary small. 

In this note, RBF NNs are introduced to compensate 
all the systems uncertainties. As pointed out in [9, 16], 
universal approximation results indicate that, given a 
desired level of accuracy δ , approximation to that level 
of accuracy can be guaranteed by making l sufficiently 
large. Therefore, the NNs T ( )W S Z  can approximate any 
given real continuous function ( )f Z  with (0) 0f = , which 
is written as (4). 
 T( ) ( ) ( ),   Z q

Zf Z W S Z Z Rδ= + ∀ ∈Ω ⊂  (4) 
where, 1l > is the number of the NN nodes. ( )Zδ is the 
approximation error with unknown upper bound 
δ . T

1 2[ , , , ]lW w w w= is the weight vector, 
T

1 2( ) [ ( ), ( ), , ( )]lS Z s Z s Z s Z= is a vector of RBF basic 
functions with the form of Gaussian functions defined by 
(5). T

,1 ,2 ,[ , , , ]i i i i qμ μ μ μ= is the center of the receptive fields, 
η is the width of the Gaussian function, and ζ is gain 
coefficient. 

 
T

2

( ) ( )( ) exp ,   1,2, ,
2
i i

i
Z Zs Z i lμ μζ

η
⎡ ⎤− −

= − =⎢ ⎥
⎣ ⎦

 (5) 

In order to design the novel adaptive law, Lemma1 
will be explored. 
Lemma1: [19, 20] Consider the RBF NNs described in 
(4), let 1: min

2 i j i jφ μ μ≠= − . Then one may take an upper 

bound of ( )S Z  as (6). 

 1 2 2 *

0
( ) 3 ( 2) exp( 2 ) :q

k

S Z q k k Sφ η
∞

−

=

≤ + − =∑  (6) 

The limited value *S  is independent of Z  and l . 

III.  DESIGN OF CONCISE ADAPTIVE NEURAL CONTROL 

In this section, we develop a concise adaptive neural 
controller for uncertain nonlinear MIMO system (1) with 
Assumptions 1-3. The backstepping design procedure 
contains ( ,  ),jj m  1, ,j n= steps. At each step, the 
Lyapunov- Krasovskii functional is constructed to 
compensate for the unknown time delays, and the 
nonlinear functions , ( )j i ⋅F and , ( )j iF ⋅  shall be induced to 
described the nonlinear uncertainties, which is component 
in an intermediate control function ,j iα  being delivered to 
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the next step. In the , jj m step, the RBF NNs is exploited 
to approximate the uncertainties of the whole jth 
subsystem, and the actual control ju is derived.  

To illustrate the design synthesis, the notion (7) is 
useful, with the properties of relationship as (8). 
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Throughout this note, ⋅  is Euclidean norm of a vector; 
max ( )λ ⋅ denotes the largest eigenvalue of a square matrix. 

( )⋅̂ is the estimate of ( )⋅ , and the estimate error ( ) ( ) ( )ˆ⋅ = ⋅ − ⋅ . 
For notation simplicity, let , , ( ),j i j if f= ⋅  , , ( ),j i j ig g= ⋅  

, , ( )j i j ih h= ⋅ where 1, , ,   1, , jj n i m= = . 

A.  Controller Design 
The following coordinate transformation (9) is useful 

to design concise adaptive laws. 

 ,1 ,1

, , ,

,   1,2, , ,   1,2, ,j j dj
j

j i j i j i

z x y
j n i m

z x α

= −⎧⎪ = =⎨ = −⎪⎩
 (9) 

Furthermore, ,j iα is the intermediate control laws at 
each step and is chosen as follows: 

,2 ,1 ,1 ,1 ,1

1
( ) ( ) ( 1)

, 1 , , 1, , 1 , ,
1

( ,  )

[ ] ( ,  )

j j j dj j j dj
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α

α
−

− −
+ − + −

=
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⎩

∑
 (10) 

where, , 0j ik > are design parameters, 1,
j

i pK −  have been 
defined in (7). , ( )j iF ⋅ denotes the previous i nonlinear 
uncertainties of the jth subsystem, which will be specified 
in each step.  

Using the similar operation, the desired control laws *
ju  

are derived. 
1

( ) ( ) ( 1)*
, , 1, , 1 , ,

1
[ ] ( ,  )

j
j j j
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m m p mj
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=
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(11) 
Step (j, 1 (1 ≤ j ≤ n)). For the first differential equation of 
the jth subsystem, one has 
 ,1 ,1 ,1 ,1 ,1 ,2 ,1 ,1( ) ( ) ( )j j j j j j j j djz f x g x x h x yτ= + + −  (12) 

With Assumption 3, completing the square gives 
 2 ,1 2

,1 ,1 ,1 ,1 ,1 ,1
1 1( ) [ ( )]
2 2

j
j j j j j jz h x z Q xτ τ≤ +  (13) 

To deal with the delay term in (12), consider the 
Lyapunov-Krasovskii functional as follows (14). 
 2
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1
2j j UjV z V= +  (14) 
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V Q x s s
τ−

⎡ ⎤= ⎣ ⎦∫  

Take time derivative of (14) alone (12), (13), it is easy 
to obtain (15).  
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j j jU Q x= . As 

pointed out in (8), 21 tanh ( )z
z η

is well defined at 0z = and 

can be approximated by a RBF NNs.  
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Thus, substituting (10) into (15) results in 
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The second error variable 2z shall be presented. 
 ,2 ,2 1,1 ,1 ,1( ) ( )j

j j dj j dj jz x y K x y= − + − + ⋅F  (18) 
where ,1 ,1 ,1( ) ( ,  )j j j djF x y⋅ =F . 
Step (j, i (for i=2, …, mj-1)). A similar procedure is 
employed recursively for each step (j, i). The (i)th error 
variable ,j iz is 
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where, ( 2)
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− − −⋅ =F F is constructed to represent 

the nonlinear uncertainties of the previous (j,i-1) 
differential equations. 
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With Assumption 3, the inequalities (21) can be 
obtained. 

2 , 2
, , , , , ,

1 1

1 1
, 1

, 1, , , ,
1 1 ,

1 1 1
, 12 2 2 2 , 2

, 1, , , ,
1 1 1 1 1 1,

1 1( ) [ ( )]
2 2

1 1[ ] [ ] [ ( )]
2 2

i i
j i

j i j i j i j i j k j k
k k

i i
j ij

j i i p j i p j i j p
p p j p

p p pi i i
j ij j p

j i i p j i j k j k
p k p k p kj p

z h x z Q x

z K h z h
x

z K z Q x
x

τ τ

τ

= =

− −
−

− −
= =

− − −
−

−
= = = = = =

≤ +

∂
+

∂

∂
≤ + +

∂

∑ ∑

∑ ∑

∑∑ ∑∑ ∑∑

F

F

 (21) 

Consider the Lyapunov-Krasovskii functional (22), 
whose time derivative alone (10), (20), (23) is derived in 
(24). 
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Substituting (10) into (25), the inequality below can be 
obtained easily. 
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Now, considering (8) derives the following (27), which 
is very useful for the design procedure. 
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It follows from (9), (10), (19) and (27) that  
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where ( 1)
, , , , , 1 ,( ) ( , ) ( ) ( )i

j i j i j i dj j i j i j ix y k F−
−⋅ = = ⋅ + ⋅F F F . 

Step (j, mj). In this step, the desired actual control (11) is 
firstly derived by the similar operation in step (j, i), then a 
RBF NNs is induced to compensate the sum of the 
unknown nonlinear terms.  

Different from the step (j, i), the unknown functions 
, , ,( ),  ( ),  ( )

j j jj m j m j mf g h⋅ ⋅ ⋅ contain all state variables and the 
inputs of the previous subsystems. Thus, we select the 
Lyapunov-Krasovskii functional 2

, , ,
1
2j j jj m j m Uj mV z V= + . Using 

the desired actual control (11), the corresponding time 
derivative is 
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(30) 
Substituting , , ,j j jj m j m j mz x α= − into (11), we obtain (31) 

by (27). 
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According to (4) and Lemma1, a RBF NNs ,
ˆ ( )

jj m ⋅F  
with input vector ( 1) ( 1 ) 1T T T T

1[ ,  ,  ]j jm n m j m
j j djZ X u y − × + − + ×

−= ∈Ω , where 
( 1 ) 1jn m j m× + − + ×Ω is a compact set, is introduced to approximate 

the , ( )
jj m ⋅F with jW being ideal constant weights. 

Considering Lemma1, we choose the following actual 
control law (32), the weights online learning law is 
designed as (33). 

 ( ) ( ) T
, , 1
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m
m m pj

j dj m p j m p dj j j j
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 ˆ ˆ[ ( ) ]j j j j j jW S Z Wσ= Γ −  (33) 
where T 0j jΓ = Γ > , 0jσ > are the design matrixes. 

C.  Stability Analysis 
In this section, we state the main result in this note as 

follows. 
Theorem1. Consider the closed-loop system consisting 
of the nonlinear MIMO time-delay system (1) satisfying 
Assumption 1-3, the controller (32) and the concise 
adaptive law (33). For all initial conditions satisfying 

T 1
, ,

1 1 1

1+ 2
2

j

j

mn n

j i j m j j j
j i j

V g W W−

= = =

Γ ≤ Δ∑∑ ∑ , with any 0Δ > , one can 

tune the controller parameters ,1 ,, ,  
jj j m jk k Γ  and jσ such 

that all the signals in the system are semi-global 
uniformly ultimately bounded (SGUUB).  
Proof: Consider the following Lyapunov function 
candidate. 
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2 2
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Form Young’s inequality, it is worth mentioning that  
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Based on (17), (26), (29), and (35), the time derivative 
of (34) is 
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Letting, 
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with 0jα being positive constant, (36) finally becomes 
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[1 2 tanh ( )]
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Thus, by (37) the SGUUB stability follows 
immediately from the same line used in the proof of 
Theorem1 in [9, 16]. The proof is completed. 
Remark3: It can be observed from (32) and (33) that the 
proposed control scheme is concise and with less 
computational burden. Different from the current 
literatures, the actual control law and the adaptive law are 
constructed only by the state variables, the reference 
signals and their derivatives, independent of the designed 
virtual control and the other intermediate variables. Only 
n(equal to the number of system outputs) neural networks 
are introduced to compensate for the sum of all the 
uncertainties, regardless of the number of system orders. 
Thus, the problems “explosion of complexity” and “curse 
of dimensionality” are circumvented from the root causes. 
That is a novel “minimum learning networks (MLN)” 
technique. 

IV.  SIMULATION EXAMPLE 

In this section, a simulation example is presented to 
illustrate the effectiveness of the proposed control scheme. 
For comparison, we consider the following uncertain 
nonlinear MIMO time-delay system, which has been 
employed in [16]. 

 

2 2
1,1 1,1 1,1 1,2 1,1

1,2 1,1 1,2 2,1 2,2

2 2
1,1 2,2 1 1,2

2,1 2,1 2,2 2,1

2,2 1,2 2,1 2,2 1,1 1

2
1 2,1 2,2 1,1 2 1,1 2,2

(1 sin ( ))

(1 sin ( ) 0.5cos ( ))

( )

(2 sin ( ) sin( ))

x x x x x
x x x x x

x x u x
x x x x
x x x x x u

u x x x u x x

τ

τ

τ

τ τ

⎧ = − + + +
⎪

= + +⎪
⎪ + + + +⎪
⎨

= − + +

= + −

+ + − − +⎩

⎪
⎪
⎪
⎪

 (38) 

where , , ,( )j i j i j ix x tτ τ= − , for 1,2,  1,2j i= = , and 

1,1 1,2 1,2 1,22,  1.5,  0.5,  1τ τ τ τ= = = = . 
The reference signals are assumed to be (39). In the 

simulation, letting the signals ( ) ,  0,1,2i
djy i = pass through a 

first order tilter ( ) ( ) ( ) 5,  i i i t
i rj rj dj iy y y eτ τ −+ = =  0.001+ , the ( )i

rjy is for 
the control design. 
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y t t t
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According to the control scheme in this note, the 
concise adaptive neural controller and the adaptive laws 
are as follows. 

T
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2 1 1 1[ , , , ]r rZ X u y y=

(40) 

In this simulation, the initial condition is  
1,1 0 1,2 0 2,1 0 2,2 0( ) 0.5,  ( ) 0.1,  ( ) 0.3,  ( ) 0.15x t x t x t x t= = = = − . The 

corresponding control parameters are taken as 
1,1 1,2 2,1 2,2 1 230,  20,  diag{1.0},  diag{0.5},  k k k k= = = = Γ = Γ =

1 20.5,  0.2σ σ= = . The RBF NNs in (40) includes 25 nodes, 
with centers pμ spaced in 6[ 2.5,  2.5]×− for 1u  and 

7[ 2.5,  2.5]×− for 2u , and widths 5η = . 
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Figure 1.  (a) The first reference signal 1dy (solid line) and the 

subsystem output 1y (dashed line); (b) The second reference signal 

2dy (solid line) and the subsystem output 2y (dashed line). 

 
Simulation results are shown in Figs. 1-3. Fig. 1(a) and 

1(b) present the response curves of system outputs 
1 2,  y y and the reference signals 1 2,  d dy y . Fig.2 show that the 

control efforts of the concise adaptive controllers are in a 
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reasonable range. Fig. 3 illustrates the L2 norms of the 
NNs weights adaptation. Comparing with the results [16], 
the results illustrate the control performance of the 
proposed scheme. 
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Figure 2.  (a) The control 1u of the first subsystem; (b) the control 

2u of the second subsystem. 
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Figure 3.  L2 norms of the NNs weights adaptation: 1

ˆ|| ||W (solid line) 

and 2
ˆ|| ||W (dashed line). 

 
 

V.  CONCLUSION 

In this note, the tracking control problem of uncertain 
nonlinear MIMO system with unknown time delays is 
addressed. A novel concise adaptive neural control 
scheme is developed with the “MLN” technique, which 
obtain some advantages: a concise structure and ease to 
implementation in control engineering, due to its 
computational burden. Both the problems of “explosion 
of complexity” and the “curse of dimensionality” are 
circumvented from the root causes, which are ever-
presented in the current literatures on approximation-
based adaptive control. 
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