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Abstract— This paper proposes a Depth from Defocus (DFD) 
model based on geometric constraints. The two measured 
defocused images match with each other with this method 
including geometric constraints, which bypasses estimation 
of the radiance. These geometric constraints vary with 
different relative position of image plane and image focus. 
The experimental results on the synthetic and real images 
show that this method is accurate and efficient. The 
experimental results on the synthetic images with noise show 
that this method is robust to the images with Salt &Pepper 
and Poisson noise. 
 
Index Terms—depth from defocus, relative spread of point 
spread function, geometric constraints 

I.  INTRODUCTION 

Depth measurement is an important research field in 
computer vision, and it has been one of the key 
techniques in many fields, such as medicine, robotics and 
remote-sensing [1-2]. This paper focuses on the method 
to recover the depth map from multiple defocused images 
(typically two) with different camera parameters (i.e. 
focal length or radius of the lens) from a single viewpoint, 
which is so-called Depth from Defocus (DFD). 
Compared with other image-based depth measurement 
approaches, e.g., Depth from Stereo (DFS) and Depth 
from Motion (DFM), DFD can effectively avoid 
correspondence problems [3]. 

Since the introduction of DFD into depth measurement 
[2], various DFD approaches have been extensively 
researched and greatly developed in recent years. In order 
to obtain effective depth estimation from defocused 
images, the depth and radiance of the scene are 
simultaneously retrieved with earlier approaches. For 
example, some adopted Markov random fields to model 
both depth and radiance, and then minimized energy 
function to retrieve depth and radiance of the scene [4-5]; 
others formulated DFD as the problem of minimization of 
the discrepancy between the measured images and the 
model images [7-10]. These methods above can be 
accurate and effective since the depth and radiance of the 
scene were simultaneously retrieved, but they may not be 
suitable for practical and real-time purposes since they 
were based on minimization techniques, which require 
extensive computations. In order to avoid estimating the 
additional radiance, some operated DFD in the frequency 
domain [11-13]; others formulated them as the 

discriminative learning-based problem [14-15]. However, 
theses methods have some defects in the estimation, for 
example, artifacts due to noise and windowing. 

This paper poses depth estimation as the problem of 
matching the two measured defocused images with each 
other, which has been done by Favaro [16], rather than 
the discrepancy between the measured defocused images 
and the defocused model images. It is not necessary to 
estimate an additional unknown, the radiance. This paper 
derives geometric constraints on the relative spread of 
Point Spread Function (PSF) according to different 
relative position of image plane and image focus, unlike 
the work of Favaro [16], where the method can be 
accurate and effective by the introduction of smoothness 
regularization term and neighborhood regularization term, 
but required extensive computations. In addition to 
accuracy and effectivity, this proposed method is efficient 
owing to these simple geometric constraints proposed. An 
extended enumeration method is proposed to minimize 
the discrepancy with the geometric constraints between 
the two measured defocused images. This method offers 
an advantage of computation and simplicity in the 
implementation (see Section Ⅱ ). In Section Ⅲ , the 
experimental results are shown on the synthetic and real 
defocused images.  

II. FORMALIZATION OF DEPTH FROM DEFOCUS 

A.  Formalized Depth from Defocus 
In this subsection, we introduce the image formation 

model, and how to match the two measured defocused 
images with each other. At last, the relationship between 
depth and relative spread of PSF is given. 

The geometry of the basic image formation process in 
real aperture camera is shown in Fig.1 [17-18]. When the 
object point is in focus, the formula 1 1 1D v F+ = indicates, 
by the lens law, the relationship between object distance 
D , focal length F , and image focus-to-lens distance v ; 
when the object point is not in focus，its image is no 
longer a point but a blurred circle whose radius r is 
described by a blur parameterσ defined as [16] 

0 0
0

1 1 1r v
F v D

σ ρ= − −                                      (1) 
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whereσ is also called the spread of PSF, 0r is the radius of 

lens aperture, 0v is the image plane-to-lens distance, 
and ρ is a camera constant that depends on the sampling 

resolution on the image plane. According to (1), if 0v v< , 

then 01 1 1F D v+< , else 01 1 1F D v+≥ . 

 
Figure 1. Geometry of image formation process in real aperture camera. 

 
A defocused image [ ]2I : 0,1  is described with 

the linear model as 

( ) ( ) ( )I y y, x x xh f dσΩ
= ∫               (2) 

where [ ]: 0,1f Ω is the radiance of the scene, 

hσ denotes the PSF of the camera that depends on camera 

parameters and the depth of scene [ ]2: 0,D ∞ , 

[ ]T
1 2y ,y y= lies on the image plane and   

[ ]T
1 2x ,x x= parameterizes point in 3D space. More 

specifically, the PSF in (2) is often approximated by a 
Gaussian kernel [17]: 

( )
2

2
y x
2

2

1y, x
2

h e σ
σ πσ

−
−

=                               (3) 

Note that other common PSF (e.g. Pillbox function) 
may be chosen besides the Gaussian kernel in (3). 

In DFD, the two measured defocused images 1I  and 

2I are obtained with different camera parameters 
respectively. Notice that, in this paper, the camera 
parameters (the radius of lens aperture and focal length) 
are invariant except for image plane-to-lens distances, 
which are denoted by 1v and 2v in different camera 

parameters respectively. Correspondingly, 1σ  and 2σ  
denote the spreads of PSF in the two measured defocused 
images 1I and 2I  respectively.  

Generally, the problem of DFD can be formulated as 
the minimization of the discrepancy between the 
measured defocused images and the defocused model 
images in (2) [5-8]. However, this requires the estimation 
of an additional unknown, the radiance. To avoid 
estimating the radiance, this paper follows the work of 
Favaro [16] that one defocused image is blurred with a 

kernel to match with the other defocused image. The idea 
is to further blur with a kernel one defocused image until 
it matches the other.  

When { }2 2
1 2y y :σ σ∈ Σ = > , the defocused 

image 2I is blurred with a kernel until it matches the 

defocused image 1I , the approximation model is written 
by 

( ) ( ) ( )
( ) ( )

11

2

I y y, x x x

y, y I y y

h f d

h d
σ

σΔ

= ∫
∫

                      (4) 

When { }2 2
1 2y y :c σ σ∈ Σ = < , the defocused image 

1I is blurred with a kernel until it matches the defocused 

image 2I , the approximation model is written by
  

( ) ( ) ( )
( ) ( )

22

1

I y y, x x x

y, y I y y

h f d

h d
σ

σΔ

= ∫
∫

                      (5) 

where (4) holds in { }2 2
1 2y :σ σΣ = > , (5) holds in the 

complementary domain { }2 2
1 2y :c σ σΣ = < , and the 

relative spread σΔ is defined as 2 2
1 2σ σ σΔ = − for 

all y∈Σ and as 2 2
2 1σ σ σΔ = − −  for all y c∈Σ .  

To simplify the notation, we define 

 
( ) ( ) ( )
( ) ( ) ( )

1 2

2 1

Î y y, y I y y

Î y y, y I y y

h d

h d
σ

σ

Δ

Δ

=

=
∫
∫

                   (6) 

The discrepancy between one measured defocused 
image and the defocused model image obtained by the 
other measured defocused image is denoted by  

( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )

( )( )( ) ( ) ( )

1 1 2 2

1 1

2 2

ˆ ˆI y I y y+ I y I y y

ˆ            y I y I y y

ˆ+ 1 y I y I y y

cd d

H d

H d

σ

σ

σ

Σ Σ
Φ Δ = − −

= Δ −

− Δ −

∫ ∫
∫
∫

    (7) 

where H denotes the Heaviside function. The function (7) 
is minimized with extended enumeration method. In this 
paper, the camera parameters (the radius of lens aperture 
and focal length) are invariant except for image plane-to-
lens distances. Therefore, the estimation of depth D can 
be obtained from the relative spread σΔ  via  

( )

( ) ( )

1

1 2 1 2

1 2
2 2

0 1 2

1 1 1y
F

y y
1

D
v v v v

v v
r v v

σ σ
ρ

−
= − −⎡ ⎤⎣ ⎦ + +

Δ Δ +× + ⋅
−      (8) 

More details on the formula (8) are reported in [19]. 
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Figure2. Geometry of image formation at different position relationship of distance of image focus v , the first image plane
1

v , the second image plane 

2
v and the focal length F . (a) Geometry of image formation, if 1F v v< < . (b) Geometry of image formation, if

2
2v v F< < . (c) Geometry of 

image formation, if ( )1 1 2 / 2v v v v< < + . (d) Geometry of image formation, if ( )1 2 22v v v v+ < < . 

    

  B. Geometric constraints on  relative spread of PSF                                                                                                              
In order to obtain effective depth estimation and 

improve the efficiency of searching algorithm, this paper 
discusses a series of constraints on σΔ according to 
different relative position of image plane and image focus. 
According to convex imaging law, if camera acquires the 
images that are inverted, reduced and real, the 
relationship between v and F satisfies F < v < 2F. 
Therefore, different position relationship between 
distance of image focus v , the first image plane 1v , the 
second image plane 2v and the focal length F determines 
the geometric constraints of the relative spread of PSF, 
which can be stated as the following. 
(ⅰ ) As is shown in Fig.2(a), the distance of image 
focus v satisfies 1F v v< < , so the constraint of the relative 
spread of PSF is denoted by 

( )2
1 22 2 1 2 1 2

0
1 2

2
2 2 1 2 2

0 2
1 2 1

2

1

v vv v v vr
v v F F

v v vr
v v v

ρ

σ σ ρ

⎡ ⎤+− +⎛ ⎞ −⎢ ⎥⎜ ⎟+ ⎝ ⎠⎢ ⎥⎣ ⎦
⎛ ⎞−< Δ Δ < −⎜ ⎟+ ⎝ ⎠

     (9) 

(ⅱ ) As is shown in Fig.2(b), the distance of image 
focus v satisfies 2 2v v F< < , so the constraint of the 
relative spread of PSF is denoted by 

( )

2
2 2 1 2 1

0 2
1 2 2

2
1 22 2 1 2 1 2

0
1 2

1

2

v v vr
v v v

v vv v v vr
v v F F

ρ σ σ

ρ

⎛ ⎞− − < Δ Δ <⎜ ⎟+ ⎝ ⎠
⎡ ⎤+− +⎛ ⎞ −⎢ ⎥⎜ ⎟+ ⎝ ⎠⎢ ⎥⎣ ⎦

      (10) 

(ⅲ) As is shown in Fig.2(c), the distance of image 

focus v satisfies 1 2
1 2

v vv v +< < , so the constraint of the 

relative spread of PSF is denoted by  

2
2 2 1 2 2

0 2
1 2 1

1 0v v vr
v v v

ρ σ σ
⎛ ⎞− − < Δ Δ <⎜ ⎟+ ⎝ ⎠

           (11) 

(ⅳ) As is shown in Fig.2 (d), the distance of image 

focus v satisfies 1 2
22

v v v v+ < < , so the constraint of the 

relative spread of PSF is denoted by  
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2
2 2 1 2 1

0 2
1 2 2

0 1v v vr
v v v

σ σ ρ
⎛ ⎞−< Δ Δ < −⎜ ⎟+ ⎝ ⎠

             (12) 

Since set 1 2v v< in all discussion, (9) and (11) 
determine 0σΔ < , while (10) and (12) determine 0σΔ > . 
Additionally, notice that geometry of imaging process for 
any object may be decomposed into arbitrary 
combination of four kinds of geometry of imaging 
processes above in Fig.2, as is shown in Fig.3. 

 
Figure 3. Integrated geometry of image formation for any object. 

 

C. Extended Enumeration Method 
Combination of (7) with one or some of (9), (10), (11) 

and (12) can be formalized as optimization problem with 
interval constraints, in which (7) is regarded as objective 
function and one or some of (9), (10), (11) and (12) are 
regarded as constraints. Constraints in optimization 
problem are simple intervals. Therefore, this paper adopts 
the idea of enumeration method to propose the extended 
enumeration method, which is simple and fast. The 
procedure for extended enumeration method can be 
succinctly given by the following steps.  
Step1: According to (9), (10), (11) and (12), determinate 
the interval [ ],α β of σΔ . 
Step2 ： By equal interval sampling in [ ],α β , 
get 0 1 nα σ σ σ β= Δ < Δ < < Δ = . 
Step3: Minimize ( )σΦ Δ  in (7) to obtain optimal 
solution：

{ }
( )( )*

0,1, ,

arg min k
k n

σ σ
∈

Δ = Φ Δ
.
 

Step4: Let * 1σ α−Δ =  and * 1σ β+Δ = , if α β ε− ≥ ，return 
Step2, otherwise, output is *σΔ . *σΔ is optimal solution 
for optimization problem. 

D. Depth Estimation 
In this paper, the procedure of depth estimation for 

DFD is succinctly given as the following. 
Step1: Acquire two measured defocused images 1I  and 

2I with different camera parameters, in which the radius 
of lens aperture and focal length are invariant except for 
image plane-to-lens distances. Meanwhile, record the 
radius of lens aperture 0r , focal length F and different 
image plane-to-lens distances 1v and 2v . 
 Step2: According to the camera parameters, determine 
the interval constraint of σΔ from (9), (10), (11) and (12). 

Step3: To obtain the optimal solution *σΔ , solve the 
optimization problem with (7) and the interval constraint 
determined in Step2 with the extended enumeration 
method proposed. 
Step4: According to the relationship of estimation of the 
depth D and the relative spread σΔ in (8), estimate the 
depth of the scene. 

Ⅲ.EXPERIMENTAL RESULTS 

This section describes the results from a series of 
experiments designed to validate the new proposed DFD 
algorithm. We use two groups of synthetic defocused 
images and two groups of real defocused images to test it. 
In simulated experiments, we reconstruct depth 
information of synthetic stair scene and cosine plane. 
Furthermore, we compute the mean and standard 
deviation of the estimated depth of stair scene with and 
without various noises (such as Gaussian, Salt & Pepper, 
and Poisson noise) at different depth level. In real 
experiments, we reconstruct depth information of two 
groups of real defocused images. 

A. Experimental Results on Simulated Images without 
Noise 

To evaluate the performance of the proposed DFD 
algorithm, we reconstruct the depth information of 
synthetic piecewise smooth surface (stair scene) and 
continuous smooth surface (cosine plane) without noise. 

In first simulated experiment, the scene was composed 
of 21 horizontal stripes of 21×210 pixels, which are 
placed from 650mm to 850mm in equidistantly ascending 
depths as we move from top to the bottom of the scene. 
Every stripe was generated by the same random radiance 
but with different equifocal planes. Two defocused 
images were captured by bringing the plane at 650mm 
and 850mm into focus in front of a camera with a 35mm 
lens and F-number 4 respectively, which are shown in 
Fig.4(a.1) and Fig.4(a.2) respectively; Fig.4(b.1) and 
Fig.4(b.2) show true depth map and estimated depth map 
of stair scene respectively; Fig.4(c.1)and Fig.4(c.2) show 
true mesh of depth and estimated mesh of depth of stair 
scene respectively. From Fig.4(b.1-b.2) and Fig.4(c.1-c.2), 
we can see that the estimated depth is very close to the 
true depth and it is hard to see the difference between 
them except for edges in images.  

In second simulated experiment, the scene was 
obtained by the cosine plane of 257×257 pixels such 
that ( )750 10 cos 64depth xπ= + , in which depth variation is 
only related to x-direction and not related to y-direction. 
Two defocused images were captured by bringing the 
plane at 650mm and 850mm into focus in front of a 
camera with a 35mm lens and F-number 4 respectively, 
which are shown in Fig.5(a.1) and Fig.5(a.2) respectively; 
Fig.5(b.1) and Fig.5(b.2) show true depth map and 
estimated depth map of cosine plane respectively; 
Fig.5(c.1)and Fig.5(c.2) show true mesh of depth and 
estimated mesh of depth of cosine plane respectively. 
From Fig.5(b.1-b.2) and Fig.5(c.1-c.2), we can see that 
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the estimated depth is very close to the true depth and it is 
hard to see the difference between them.  

The experimental results show that the continuous 
smooth surface (cosine plane) is superior to the piecewise 

smooth surface (stair scene) in the depth estimation by 
using the proposed DFD algorithm, because the numbers 
of edge in cosine plane are less than those in stair scene.  

 
Figure4. Performance test for the proposed algorithm with synthetic piecewise smooth surface (stair scene). (a.1) defocused image in near focus. (a.2) 
defocused image in far focus. (b.1) the true depth map. (b.2) the estimated depth map. (c.1) the true mesh of depth. (c.2) the estimated mesh of depth. 

 
 

 
Figure5. Performance test for the proposed algorithm with synthetic continuous smooth surface (cosine plane). (a.1) defocused image in near focus. 
(a.2) defocused image in far focus. (b.1) the true depth map. (b.2) the estimated depth map. (c.1) the true mesh of depth. (c.2) the estimated mesh of 

depth. 

B. Experimental Results on Simulated Images with Noise 
To evaluate the robustness of the proposed DFD 

algorithm, we compare the estimated depth information 
from defocused images without noise with that from 

defocused images with noises (such as Gaussian, Salt & 
Pepper, and Poisson noise). In this subsection, all 
experiments are tested on the stair scene.  
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Tab. 1 show that Root Mean Square (RMS) of 
estimated depth from defocused images without noise is 
compared with that from defocused images with noise 
(such as Gaussian, Salt & Pepper, and Poisson noise). 
Tab. 1 also show that RMS of estimated depth without 

noise approximates that with Salt & Pepper and Poisson 
noise, but that without noise differ greatly from that with 
Gaussian noise. Additionally, RMS of estimated depth 
with Salt & Pepper noise slightly varies at different level. 

 

TABLE 1.  

COMPARISON OF THE RMS OF ESTIMATED DEPTH FROM DEFOCUSED IMAGES WITHOUT AND WITH NOISE 

Noise No Gaussian Salt & Pepper Poisson 
Level  0.01 0.02 0.05 0.01 0.02 0.05  
RMS

（mm） 
2.1154 13.2228 19.6054 32.9025 2.1408 2.2101 2.3942 2.1154 

 
Fig.6 shows that mean and standard deviation of 

estimated depth from defocused images without noise is 
compared with that from defocused images with noise 
(such as Gaussian Salt & Pepper, and Poisson noise). 
From Fig.6, we can see that mean and standard deviation 
of estimated depth without noise is very close to that with 

Salt & Pepper and Poisson noise and it is hard to see the 
difference between them, but that those above are distinct 
from mean and standard deviation of estimated depth 
with Gaussian noise. 

In summary, these above show that the proposed DFD 
algorithm is robust to Salt & Pepper and Poisson noise 
except for Gaussian noise. 

 
Figure 6. Robustness test for the proposed DFD algorithm. (a) Mean and standard deviation of the estimated depth from defocused images without 

noise. (b) Mean and standard deviation of the estimated depth from defocused images with Gaussian noise at the value of variance 0.02. (c) Mean and 
standard deviation of the estimated depth from defocused images with Salt & Pepper noise at the 0.02 level.(d) Mean and standard deviation of the 

estimated depth from defocused images with Poisson noise. 

 
Figure 7. Detail of two 240×320 defocused images and estimated depth map after median filtering by the proposed DFD algorithm. (a) Defocused 

image in near focus. (b) Defocused image in far focus. For more details on the scene and camera settings, please refer to [20]. (c) Estimated 
depth map after median filtering. 
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Figure 8. Detail of two 238×205 defocused images and estimated depth map after median filtering by the proposed DFD algorithm. (a) Defocused 
image in near focus. (b) Defocused image in far focus. For more details on the scene and camera settings, please refer to [12]. (c) Estimated depth 

map after median filtering. 

C. Experimental Results on Real Images 
In this subsection, we test the proposed DFD algorithm 

on real images that are publicly available [12, 17], where 
also specifications and settings of the camera can be 
found. In the two datasets, the two camera parameters 
(the radius of lens aperture and focal length) are invariant 
except for image plane-to-lens distance.  

Fig.7(a-b) and Fig.8(a-b) show the defocused images, 
where in the first image objects closer to the camera are 
in focus; in the second image objects further from the 
camera are in focus. Fig.7(c) and Fig.8(c) show the 
resulting depth maps after median filtering. The encoded 
depth map bars are shown on the right of Fig.7(c) and 
Fig.8(c) respectively.  

Ⅳ. CONCLUSION 

This paper proposes DFD model based on geometric 
constraints. The two measured defocused images match 
with each other with this method including geometric 
constraints, which bypasses estimation of the radiance. 
These geometric constraints vary with different relative 
position of image plane and image focus. The 
experimental results on synthetic defocused images 
without noise show that this method is more applicable to 
the continuous smooth surface (cosine plane) than 
piecewise smooth surface (stair scene). The experimental 
results on the synthetic images with noise show that this 
method is robust to Salt &Pepper and Poisson noise 
except for Gaussian noise. Research on piecewise smooth 
surface (stair scene) and the image with Gaussian noise 
can be considered for future work. 
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