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Abstract—Hyperspectral images face the problem of high 
dimensionality and low samples number, which results in 
unsatisfied recognition efficiency, thus dimensionality 
reduction is needed before terrain classification. A novel 
hyperspectral images feature extraction method is 
presented for dimensionality reduction. Firstly, take 
discrete Fourier transformation (DFT) of each pixel 
spectral curve, and combine the amplitude spectrum and 
corresponding phase spectrum; then direct linear 
discriminant analysis (DLDA) is performed in the 
combination spectrum space to extract features. Minimum 
distance classifier is used to evaluate the feature extraction 
performance in the achieved combination spectrum DLDA 
subspace. The experimental results for airborne 
visible/infrared imaging spectrometer (AVIRIS) 
hyperspectral image show that, comparing with the spectral 
DLDA subspace method, the present method can improve 
the terrain classification efficiency.  

 
Index Terms—Terrain classification, Feature subspace, 
Feature extraction, Hyperspectral image 
 

I.  INTRODUCTION 

Hyperspectral images [1] provide abundant 
information in spatial domain and spectral domain. 
Hyperspectral images have high dimensionality because 
of high spectral resolution, while the number of samples 
is relatively small due to the expensive and 
time-consuming sample acquirement. This causes 
following problems in hyperspectral images terrain 
classification: (i) comparing with the low dimensionality 
data space, high dimensionality space has lower linear 
classification reliability and less classifier generalization 
ability; (ii) with the increase of bands number, the data 
amount and calculated amount increase rapidly; (iii) on 
the condition of fixed data number, with the increase of 
bands number, classification accuracy will descend after 
ascending to certain degree [2]. Therefore, 
dimensionality reduction is needed before terrain 
classification. Linear discriminant analysis [3–6] (LDA) 
is an efficient feature extraction method for 
dimensionality reduction based on Fisher criterion, 

namely, the ratio of total between-class scatter to average 
within-class scatter is maximized in the LDA subspace. 
Recently, LDA is mainly applied in the spectral domain 
of hyperspectral images [7–10]. Spectral domain means 
the original hyperspectral bands data space, in the 
spectral domain, a hyperspectral pixel is a datum in the 
high dimensional spectral space whose dimensionality is 
the bands number. 

In this paper, a novel hyperspectral images feature 
extraction method is presented, i.e., direct linear 
discriminant analysis [11] (DLDA) is used to extract 
features in the combination spectrum space of amplitude 
spectrum and phase spectrum. Firstly, take discrete 
Fourier transformation (DFT) of each pixel spectral 
curve, then combine the amplitude spectrum and 
corresponding phase spectrum; secondly, DLDA is 
performed in the combination spectrum space to extract 
features. DLDA is an improvement of traditional LDA, 
which is presented for solving the small sample size (SSS) 
problem [12] in face recognition. In this paper, we apply 
LDA to the Fourier frequency domain of hyperspectral 
image for the first time. An amplitude spectrum is a 
vector whose components determine the intensities in a 
pixel spectral curve, and the corresponding phase 
spectrum is a vector of angles that contains important 
structure characteristics of a spectral curve. Therefore, 
the combination spectrum which combines amplitude 
spectrum and phase spectrum contains both intensities 
and structure information of a pixel spectral curve. From 
the viewpoint of feature extraction, the combination 
spectrum itself is a feature of hyperspectral images which 
is obtained by DFT. Minimum distance classifier is used 
to evaluate the feature extraction performance in the 
achieved combination spectrum DLDA subspace. The 
experimental results for airborne visible/infrared imaging 
spectrometer (AVIRIS) hyperspectral image data show 
that, comparing with the spectral DLDA subspace 
method, the present method can improve the terrain 
classification accuracy.  

II.  COMBINATION SPECTRUM DLDA SUBSPACE 
TERRAIN CLASSIFICATION 
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A new hyperspectral image terrain classification 
method is presented in this section. Firstly, the 
combination spectrum of each pixel spectral curve is 
achieved by combining the amplitude spectrum and the 
corresponding phase spectrum; secondly, the 
combination spectrum DLDA subspace is obtained by 
performing DLDA in the combination spectrum space; 
finally, minimum distance classifier is used in the 
combination spectrum DLDA subspace for evaluating the 
feature extraction performance. 

A.  Combination Spectrum Space 
Suppose the spectral resolution of a hyperspectral 

image is N , then an arbitrary pixel 
T

110 ],,,[ −= Nxxx …x  is a datum in N -dimensional 
data space, the components of x  compose a spectral 
curve. Shown in Fig. 1 are two pixel spectral curves of 
two types of terrain objects: corn-notill and grass/trees. 
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Figure 1.  Two pixel spectral curves of corn-notill and grass/trees. 

From the viewpoint of signal processing, x  is a 
discrete signal, taking DFT of x  yields the spectrum 

T
110 ],,,[ −= NXXX …X ,         (1) 

where  

∑
−

=

−=
1

0

/2
N

n

Nunj
nu exX π    1,,1,0 −= Nu … ,   (2) 

and u  is the discrete frequency variable. Because DFT 
is complex in general, it can be expressed in polar form 

uj
uu eXX φ= ,              (3) 

where uX  and uφ  are the magnitude and angle of 

complex function uX . The amplitude spectrum of x  
is 

T
110 ],,,[ −= NXXX …A ,        (4) 

and the phase spectrum of x  is 

T
110 ],,,[ −= Nφφφ …Φ .           (5) 

The amplitude spectrum of each pixel is even 
symmetry because the components of a spectral curve are 
real numbers, thus we combine the former half of 
amplitude spectrum with corresponding phase spectrum. 
For an arbitrary pixel x , the combination spectrum of 
amplitude spectrum and phase spectrum is 

T
110)12/(10 ],,,,,,,[ −−= NNXXX φφφ ……C .  (6) 

Therefore, the dimensionality of the combination 
spectrum space is 2/3N . In the combination spectrum 
space, datum C  corresponds to the original pixel x .  

The components of the amplitude spectrum determine 
the amplitudes of the sinusoids that combine to form the 
resulting pixel spectral curve. At any given frequency in 
the DFT of a spectral curve, a larger amplitude implies a 
greater prominence of a sinusoid is present in the spectral 
curve. The phase is a measure of displacement of the 
various sinusoids with respect to their origin. An 
amplitude spectrum determines the intensities in a 
spectral curve, and the corresponding phase spectrum 
carries important structure characteristics of the spectral 
curve. Therefore, a combination spectrum contains both 
intensities and structure information of a spectral curve.  

From the viewpoint of feature extraction, the 
combination spectrum itself is a feature of hyperspectral 
images which is obtained by DFT. DLDA is performed in 
the combination spectrum space for further feature 
extraction and dimensionality reduction. Therefore, the 
presented hyperspectral images feature extraction method 
actually includes two successive feature extraction steps, 
namely, DFT and DLDA. 

B.  DLDA 
DLDA is an improvement of traditional LDA, which is 

presented for solving the small sample size (SSS) 
problem in face recognition [11]. Suppose there are c  
classes training data in an N -dimensional data space, 
the within-class scatter matrix is defined as 

∑ ∑= =
−−= c

j
n

k j
k

jj
k

j
j

jw
j

n
P1 1

T)()( ]))((1[ mxmxS ,  (7) 

where jn  is the sample number of class j , )(k
jx  is 

the k -th sample of class j . jm  and jP  are the 

mean and a priori probability of class j , respectively. 
The between-class scatter matrix is defined as 

∑ = −−= c
j jjjb P1

T))(( mmmmS ,     (8) 

where ∑ == c
j jjP1 mm  is the overall mean. LDA 

finds a linear transformation matrix dN ×ℜ∈W , such 
that after the N -dimensional original data x  are 
mapped to a d -dimensional feature subspace by 
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xWy T= , Fisher criterion 

)]}()[({max)( T1T
F WSWWSWW

W bwtrJ −=   (9) 

is maximized. The solution of (9) consists of the 
eigenvectors corresponding to the d  largest 
eigenvalues of bw SS 1− [13,14]. The eigenvalue 

decomposition of bw SS 1−  is equivalent to diagonalizing 

wS  and bS  simultaneously. For solving W , LDA 

whitens wS  first, and then diagonalizes bS ; while 

DLDA whithens bS  first, and then diagonalizes wS . 
The solving steps of DLDA are as follows: 

(1) Whiten bS . Let bU  and bΛ  be the eigenvector 

matrix and eigenvalue matrix of bS  respectively, i.e., 

bbbb ΛUSU =T , bΛ  is a diagonal matrix containing 

the nonzero eigenvalues of bS  in descending order. 

There exists a matrix 2/1
1

−= bbΛUW  which satisfies 

IWSW =1
T

1 b , I  is an identity matrix. 

(2) Diagonalize 1
T

1 WSW w . There exists a matrix 

wU ′  satisfies wwww ΛUWSWU ′=′′ 1
T

1
T)( , wΛ′  is a 

diagonal matrix containing the d  smallest eigenvalues 
of 1

T
1 WSW w  in ascending order, the columns of wU ′  

are the corresponding eigenvectors. 
(3) Sphere the data in feature subspace. There exists a 

matrix 2/1
2 ))(( −′′= ww ΛUW  satisfies 

IWWSWW =21
T

1
T

2 w . 
(4) The resulting linear transformation matrix 

21WWW = , and an N -dimensional original datum 
x  is mapped to the d -dimensional feature subspace 

by 

xWy T= .              (10) 

Comparing with LDA, DLDA is more suitable for 
feature extraction in the combination spectrum space of 
hyperspectral images, because: (i) DLDA whitens 
between-class scatter matrix first, and the null space of 
between-class scatter matrix which does not contain 
classification information is discarded in this step. (ii) 
The combination spectrum space also has SSS problem, 
under the small sample condition, within-class scatter 
matrix is singular in general. LDA whitens the 
within-class scatter matrix firstly, and discards the null 
space of within-class scatter matrix which contains 
important classification information; while DLDA 
diagonalizes the within-class scatter matrix latterly, 
which can avoid discarding the null space of within-class 
scatter matrix. (iii) The dimensionality of LDA subspace 

is limited by classes number, while the dimensionality of 
DLDA subspace is not limited by classes number. 

C.  Combination Spectrum DLDA Subspace Terrain 
Classification 

The procedure of the presented terrain classification 
method is: firstly, calculate the combination spectrum for 
each pixel; secondly, DLDA is performed in the 
combination spectrum space to extract features; lastly, 
minimum distance classifier is designed in the achieved 
combination spectrum DLDA subspace for recognition. 
The principle of the presented method is shown in Fig. 2. 

 
Figure 2.  Principle of terrain classification in combination spectrum 

DLDA subspace. 

The detailed steps of the presented method are as 
follows: 

(i) Feature extraction.  
① Take DFT of each training datum, and the 

combination spectrum of each training datum is obtained 
according to (6). 

② Perform DLDA in the combination spectrum space 
according to 2.2, and the linear transformation matrix 
W  is obtained. 

(ii) Set up the templates database. Using (10), the 
combination spectrum of each training datum is mapped 
to the combination spectrum DLDA subspace. The mean 
vectors { }cμμμ ,,, 21 "  of each class in the subspace 
are saved as templates. 

(iii) Recognition. 
① Perform feature extraction to testing data. Take 

DFT of a testing datum, and the combination spectrum of 
the testing datum is obtained according to (6), then the 
combination spectrum of the testing datum is mapped to 
the combination spectrum DLDA subspace according to 
(10), and is denoted as y .  

② Design minimum distance classifier. y  belongs to 

class 
2,,1

min arg yμ −
= ici …

, where 
2

yμ −i  is the 

Euclidean distance between y  and the i -th template. 

III.  EXPERIMENTS 

For verifying the efficiency of the presented method, 
the experimental results of the presented combination 
spectrum DLDA subspace method are compared with 
those of the original spectral space method, original 
combination spectrum space method, and spectral DLDA 
subspace method, under the condition of same training 
data and testing data. 

A.  Experimental Data 
We use the AVIRIS hyperspectral image which is 

taken over Northwest Indiana’s Indian Pine test site in 
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June 1992. The Indian Pines image contains 16 
land-cover classes, 145×145 pixels, and 220 spectral 
bands in the 400–2450-nm range. We remove 20 noisy 
bands corresponding the region of water absorption, so 
the final dimensionality of each pixel is 200. Besides the 
whole-image, we also use a part of the scene, called the 
sub-image, consisting of pixels [27–94]×[31–116] for a 
size of 68×86. The sub-image contains 4 classes: 
Corn-notill, Grass/Trees, Soybeans-notill, and 
Soybeans-min. Shown in Fig. 3 are the RGB composition 
maps of the whole-image and the sub-image 
corresponding to bands 35, 17, and 6.  

         
 (a)                              (b) 

Figure 3.  RGB composition maps of Indian Pines image 
corresponding to bands 35, 17, and 6. (a) Whole-image (b) Sub-image. 

B.  Experimental Results 
For both the whole-image and the sub-image, we 

randomly select 20% of each class samples as training 
data, and the rest as testing data. Table I shows the class 
label and the testing data number of each class. The total 
testing data number is 8292. 

TABLE I. 
CLASS LABELS AND TESTING DATA NUMBERS OF WHOLE-IMAGE 

Class names Class 
labels 

Testing 
 data  

numbers 
Class names Class 

labels

Testing 
data 

numbers

Alfalfa 1 43 Oats 9 16 

Corn-notill 2 1147 Soybeans-notill 10 774 

Corn-min 3 667 Soybeans-min 11 1974 

Corn 4 187 Soybean-clean 12 491 

Grass/Pasture 5 398 Wheat 13 170 

Grass/Trees 6 598 Woods 14 1035 

Grass/pasture- 
mowed 7 21 Bldg-Grass- 

Tree-Drives 15 304 

Hay-windrowed 8 391 Stone-steel towers 16 76 

Table II shows the average recognition rates of the 
whole-image. It can be seen from Table II that, in 
original spectral space and original combination 
spectrum space, the average recognition rates are both 
very low, because the original spectral space and original 
combination spectrum space both have high 
dimensionalities among which are a lot of redundant 
dimensions. After DLDA feature extraction, the average 
recognition rates in spectral DLDA subspace and 
combination spectrum DLDA subspace are both 
dramatically improved. The average recognition rate in 
combination spectrum DLDA subspace is 1.11 

percentage points larger than that in spectral DLDA 
subspace, which shows that the combination spectrum 
DLDA subspace contains more separability information 
than spectral DLDA subspace.  

TABLE II. 
AVERAGE RECOGNITION RATES OF WHOLE-IMAGE IN ORIGINAL 

SPECTRAL SPACE, SPECTRAL DLDA SUBSPACE, ORIGINAL 
COMBINATION SPECTRUM SPACE, AND COMBINATION SPECTRUM 

DLDA SUBSPACE 

 
Spectral 

space (200 
dimensions)

Spectral  
DLDA  

subspace (10 
 dimensions) 

Combination 
spectrum  

space (300 
dimensions) 

Combination 
spectrum DLDA

subspace 
(16 dimensions)

Average 
recognition 
rates [%]

48.38 77.98 43.27 79.09 

Table III shows the confusion matrixes for the 
sub-image in original spectral space and spectral DLDA 
subspace. The spectral DLDA subspace is achieved by 
performing DLDA in the original spectral space. It can be 
seen that, after DLDA feature extraction, the 
classification accuracy is greatly improved, and the data 
dimensionality is reduced from 200 to 3. 

TABLE III. 
CONFUSION MATRIXES FOR SUB-IMAGE IN ORIGINAL SPECTRAL SPACE 

AND SPECTRAL DLDA SUBSPACE  

  Original spectral space 
(200 dimensions) 

Spectral DLDA subspace
(3 dimensions) 

Class 
labels 2 6 10 11 2 6 10 11 

2 69.98 0 23.54 36.47 92.0 0 0.7 8.2

6 0.74 100.0 0.17 1.56 0 100.0 0.3 1.0

10 15.63 0 67.53 26.02 3.5 0 94.2 7.1

11 13.65 0 8.76 35.95 4.50 0 4.8 83.7

Average 
recognition 
rates [%]

68.37 92.48 

Table IV shows the confusion matrixes for the 
sub-image in original combination spectrum space and 
combination spectrum DLDA subspace. Comparing 
Table IV with Table III we can see that, the average 
recognition rate in original spectral space is 5.2 
percentage points larger than that in original combination 
spectrum space. In both the original spectral space and 
original combination spectrum space, the recognition 
rates of class 2, class 10, and class 11 are very low, this is 
because the Indian Pines image was collected in June, 
these crops were very early in their growth cycle with 
about 5% coverage, discriminating them under this 
condition can be very difficult. 

The average recognition rate in combination spectrum 
DLDA subspace is 1.82 percentage points larger than that 
in spectral DLDA subspace, and the recognition rates of 
class 2, class 10, and class 11 are improved 0.9 
percentage point, 1 percentage point, and 6.2 percentage 
points respectively. These experimental results verify the 
efficiency of the present method. 
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TABLE IV. 
 CONFUSION MATRIXES FOR SUB-IMAGE IN ORIGINAL COMBINATION 
SPECTRUM SPACE AND COMBINATION SPECTRUM DLDA SUBSPACE  

   
Combination spectrum space 

(300 dimensions) 

Combination spectrum 
DLDA subspace 
(3 dimensions) 

Class 
labels 2 6 10 11 2 6 10 11 

2 70.35 0.51 25.43 36.47 92.9 0 1.2 5.1

6 11.04 99.49 6.36 3.11 0 99.1 0.2 0.5

10 9.55 0 55.84 33.42 0.5 0 95.2 4.5

11 9.06 0 12.37 27.0 6.6 0.9 3.4 89.9

Average 
recognition 
rates [%] 

63.17 94.3 

Table V shows the confusion matrixes for the 
sub-image in amplitude spectrum DLDA subspace and 
phase spectrum DLDA subspace. The amplitude 
spectrum DLDA subspace and phase spectrum DLDA 
subspace are achieved by performing DLDA in the 
amplitude spectrum and phase spectrum space, 
respectively. 

TABLE V. 
 CONFUSION MATRIXES FOR SUB-IMAGE IN AMPLITUDE SPECTRUM 

DLDA SUBSPACE AND PHASE SPECTRUM DLDA SUBSPACE  

   Amplitude spectrum DLDA 
subspace  

(3 dimensions) 

Phase spectrum DLDA 
subspace 

(3 dimensions) 

Class 
labels 

2 6 10 11 2 6 10 11 

2 91.4 0 0.5 6.7 84.7 0.3 2.4 9.2

6 0.1 99.7 0.2 0.8 0 98.7 0.2 0.9

10 1.5 0 95.5 6 3.3 0.5 95.4 9.5

11 7 0.3 3.8 86.6 12 0.5 2.0 80.3

Average 
recognition 
rates [%] 

93.3 89.8 

It can be seen from Table V that, the average 
recognition rates in amplitude spectrum DLDA subspace 
and phase spectrum DLDA subspace are both very high. 
Comparing Table V with Table III, we can see that, the 
average recognition rate in the amplitude spectrum 
DLDA subspace is 0.82 percentage point larger than that 
in spectral DLDA subspace. Table V indicates that, the 
amplitude spectrum and phase spectrum of a spectral 
curve both contain important separability information. 
Comparing Table V with Table IV, it can be seen that, 
combination spectrum contains more separability 
information than the individual amplitude spectrum and 
phase spectrum. 

IV.  CONCLUSION 

A novel hyperspectral images terrain classification 
method is presented in this paper. Firstly, the 
combination spectrum of each pixel spectral curve is 
achieved by combining the amplitude spectrum and 
corresponding phase spectrum; secondly, the 

combination spectrum DLDA subspace is obtained by 
performing DLDA in the combination spectrum space; 
finally, minimum distance classifier is designed in the 
achieved combination spectrum DLDA subspace to 
evaluate the feature extraction performance. The 
experimental results for AVIRIS hyperspectral image 
show that, comparing with the spectral DLDA subspace 
method, the present method can improve the terrain 
classification accuracy. The experimental results also 
verify that, the Fourier spectrum of pixel spectral curve 
contains important separability information for 
hyperspectral images terrain classification. 
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