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Abstract— Genetic Algorithms are traditionally used to solve
combinatorial optimization problems. The implementation
of Genetic Algorithms involves of using genetic operators
(crossover, mutation, selection, etc.). Meanwhile, parameters
(such as population size, probabilities of crossover and
mutation) of Genetic Algorithm need to be chosen or tuned.
In this paper, we propose a hybrid Fuzzy-Genetic Algorithm
(FLGA) approach to solve the multiprocessor scheduling
problem. Based on traditional Genetic Algorithms, a fuzzy
logic controller is added to tune parameters dynamically
which potentially can improve the overall performance. In
detail, the probabilities of crossover and mutation is tuned
by a fuzzy logic controller based on fuzzy rules. Compared
to the Standard Genetic Algorithm (SGA), the results of
experiments clearly show that the FLGA method performs
significantly better.

Index Terms— Genetic Algorithms, FLGA, SGA, Multipro-
cessor Scheduling, Fuzzy Logic Controller

I. INTRODUCTION

ENETIC Algorithms (GA) have been widely used

for classification, model selection, and other opti-
mization tasks [1], [6], [9]. However, the performance of
Genetic Algorithms is largely affected by choosing the
values of their parameters, such as the population size,
probabilities of crossover and mutation. A poor parameter
settings usually lead to several problems such as the
premature convergence, local optimum etc.

In this paper, we target to solve the multiprocessor
scheduling problem. The multiprocessor scheduling prob-
lem consists of finding a task schedule that minimizes the
execution time of the parallel program and the number of
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required processors. As Genetic Algorithms are naturally
fit for the combinatorial optimization problem, it is an
ideal choice for the multiprocessor scheduling problem.
To prevent premature and local optimum, the selection
of parameter setting are critical for the performance of
Genetic Algorithms. In this paper, we propose to use
a Fuzzy Logic Controller (FLC) to dynamically adapt
the crossover and mutation probabilities in order to get
a better performance. The fuzzy rules [2] of FLC are
designed according to the consideration of improving
fitness.

The structure of this paper is organized as follows: the
multiprocessor scheduling problem is briefly introduced
in Section 2. In Section 3, the detail of standard Genetic
Algorithm are discussed. And then we introduce the basic
concepts of fuzzy logic and our hybrid Fuzzy-Genetic
Algorithm (FLGA) by adding a fuzzy logic controller in
the standard Genetic Algorithm in Section 4. The results
of experiments and discussions are provided in Section 5.
Finally, Section 6 concludes the paper.

II. THE MULTIPROCESSOR SCHEDULING PROBLEM

The Multiprocessor Scheduling Problem is to minimize
the execution time of the parallel program in order to
optimize the problem. A multiprocessor system is a set of
identical processors which has its own memory, and each
pair of processors communicate exclusively by message
passing through an interconnection network [3], [8], [10].
Each task is associated with a cost, representing its exe-
cution time. In order to be executed, each task of a given
parallel program must be scheduled to some processor
of a given multiprocessor system. In general, different
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schedules may need different numbers of processors;
these communications can slow down the execution of
the parallel program. So, different schedules of each
task satisfying the priority constraints lead to different
execution time of the parallel program.

The multiprocessor scheduling problem is a kind of
typical optimization problems, it has been extensively
studied by a large number of researchers [4], [14], [19].
Because an exhaustive search is often unrealistic, most
of the work has been done on heuristic methods to
find near-optimal solutions. There are two most studied
heuristic methods for multiprocessor scheduling problem:
list heuristic and meta-heuristic. The meta-heuristic is
known as Genetic Algorithm.

In this paper, the Genetic Algorithm is incorporated
to solve the multiprocessor scheduling problem [5]. A
Genetic Algorithm is a guided random search method
where elements (called individuals) in a given set of
solutions (called the population) are randomly combined
and modified (we call these combinations crossover and
mutation respectively) until some termination condition is
achieved. The population evolves iteratively (in the Genet-
ic Algorithm terminology, through generations) in order
to improve the fitness of its individuals. The fitness of an
individual is said to be better than the fitness of another
individual if the solution corresponding to is closer to an
optimal solution. In each iteration, the crossover generates
a new population in which the individuals are supposed
to keep the good characteristics of the individuals of
previous generation.

In the context of multiprocessor scheduling problem,
Hou et al [7] proposed a kind of standard Genetic Algo-
rithm. As standard Genetic Algorithms has some known
drawbacks such as premature and local optimum, it is
demanded to extend the Genetic Algorithms for better
performance.

III. GENETIC ALGORITHM

Genetic Algorithms are a particular class of evolu-
tionary algorithms that use techniques inspired by evolu-
tionary biology such as inheritance, mutation, selection,
and crossover [1], [6], [13]. It has been widely used
in computing to find exact or approximate solutions to
optimization and search problems.

A. Basic Principals of Genetic Algorithm

Genetic Algorithms are implemented as a comput-
er simulation in which a population of abstract rep-
resentations (called chromosomes or the genotype or
the genome) of candidate solutions (called individuals,
creatures, or phenotypes) to an optimization problem
evolves toward better solutions. The evolution usually
starts from a population of randomly generated individ-
uals and happens in generations. In each generation, the
fitness of every individual in the population is evaluated,
multiple individuals are stochastically selected from the
current population (based on their fitness), and modified
(recombined and possibly randomly mutated) to form a
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new population. The new population is then used in the
next iteration of the algorithm. Commonly, the algorithm
terminates when either a maximum number of generations
has been produced, or a satisfactory fitness level has been
reached for the population. If the algorithm has terminated
due to a maximum number of generations, a satisfactory
solution may or may not have been reached.

A typical Genetic Algorithm requires two things to
be defined: 1. A genetic representation of the solution
domain. 2. A fitness function to evaluate the solution
domain.

The fitness function is defined over the genetic rep-
resentation and measures the quality of the represented
solution. The fitness function is always problem de-
pendent. Once we have the genetic representation and
the fitness function defined, GA proceeds to initialize a
population of solutions randomly, and then improve it
through repetitive application of mutation, crossover, and
selection operators.

B. Detail Steps of Genetic Algorithm

1) Initialization: Initially many individual solutions
are randomly generated to form an initial population. The
population size depends on the nature of the problem, but
typically contains several hundreds or thousands of pos-
sible solutions. Traditionally, the population is generated
randomly, covering the entire range of possible solutions
(the search space). Occasionally, the solutions may be
”seeded” in areas where optimal solutions are likely to
be found.

2) Selection: During each successive generation, a
proportion of the existing population is selected to breed a
new generation. Individual solutions are selected through
a fitness-based process, where fitter solutions (as mea-
sured by a fitness function) are typically more likely to be
selected. Certain selection methods rate the fitness of each
solution and preferentially select the best solutions. Other
methods rate only a random sample of the population, as
this process may be very time-consuming.

Most functions are stochastic and designed so that a
small proportion of less fit solutions are selected. This
helps keep the diversity of the population large, preventing
premature convergence on poor solutions. Popular and
well-studied selection methods include roulette wheel
selection and tournament selection. In our case, we will
use roulette wheel selection with a certain selection rate.

3) Reproduction: The next step is to generate a
second-generation population of solutions from those s-
elected through genetic operators: crossover (also called
recombination), and mutation.

Crossover is usually applied to selected pairs of “par-
ents” with a probability equal to a given crossover rate,
and generate two new individuals by crossing the par-
ents characteristics. Hence, the “Children” share many
of the characteristics of their “parents”. Normally, there
are several ways to go in crossover procedure like one-
point crossover, two-point crossover and order crossover.
Mutation is used to modify an individual with a certain
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mutation rate. After crossover and mutation, we desire
that some “good” individuals will survive and reproduce,
while some “bad” individuals will be eliminated. Gener-
ally, the average fitness will have increased by this pro-
cedure for the population, since only the best organisms
from the first generation are selected for breeding, along
with a small proportion of less fit solutions, for reasons
already mentioned above.

4) Termination: Repeat the steps mentioned above,
it is expected to get some individuals with better and
better fitness from generation to generation. Usually, the
algorithm terminates when either a maximum number of
generations has been produced, or a satisfactory fitness
level has been reached for the population.

IV. HYBRID FUZZY-GENETIC ALGORITHM
A. The Basic Concepts of Fuzzy Logic Controller

Fuzzy logic [2] is widely used in machine control.
The term itself inspires a certain skepticism, sounding
equivalent to “half-baked logic” or “bogus logic”, but
the "fuzzy” part does not refer to a lack of rigor in the
method, rather to the fact that the logic involved can deal
with fuzzy concepts - concepts that cannot be expressed
as ’true” or “’false” but rather as "partially true”. Although
Genetic Algorithms can perform just as well as fuzzy
logic in many cases, fuzzy logic has the advantage that
the solution to the problem can be cast in terms that
human operators can understand, so that their experience
can be used in the design of the controller. This makes
it easier to mechanize tasks that are already successfully
performed by humans A Fuzzy Logic Controller (FLC)
that is composed of the following: Knowledge base that
includes the information given by the expert in the form
of linguistic control rules; Fuzzification interface, which
has the effect of transforming crisp data into fuzzy sets;
Decision making unit, make the decision according to the
knowledge base by using a reasoning method; Defuzzifi-
cation interface, which produces a quantifiable result in
fuzzy logic [8]. The general structure of an FLC is shown
in Fig.1

Knowledge base

input Fuzzification Defuzzification outpyt
interface interface :‘Pj>
(crisp) (crisp)

4>‘ Decision making unit ’—I

Figure 1. General Structure of a Fuzzy Logic Controller

The advantages of FLC lies in: it does not require
precise, noise-free inputs. The output control is a smooth
control function despite a wide range of input variations;
in the target control system, FLC uses user-defined rules,
it can be modified easily to improve system performance;
new rules can easily be incorporated into the system;
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because of the rule-based operation, any reasonable num-
ber of inputs can be processed and numerous outputs
generated; FL can control nonlinear systems that would
be difficult or impossible to model mathematically.

B. Genetic Algorithm with Fuzzy Logic Controller

Standard Genetic Algorithm (SGA) has been known to
offer significant approximate solution for a optimization
or searching problem. However, despite of the successful
application of SGA to these problems, the identification
of the correct setting of genetic parameters (probabilities
of crossover and mutation etc) for the problem is not an
easy task. The performance of the Genetic Algorithm is
directly affected by the careful selection of parameters.

In SGA, when a fixed probability of parameter is
given at the beginning of algorithm, we can’ t change
it in the process of implementation until it stops. In this
situation, it is possible to destroy a high fitness individual
when a large crossover probability is set. For a low
crossover probability, sometimes it is hard to obtain better
individuals and gets a slow convergence. High mutation
probability will bring too much diversity and takes a
longer time to get the optimal solution. Low mutation
probability can not prevent the premature convergence and
miss some near-optimal solutions.

How to set the parameters correctly? Which value is
the most adaptive? Can we change the parameters in the
process of implementation? If change, what value of the
variation is suitable? This is the motivation to introduce
fuzzy logic to control the parameters.

In this paper, the probabilities of crossover and muta-
tion are just the objectives that we will control [16], [20].
So that we design two fuzzy logic controllers, one is for
probability of crossover (Ap.(t)), the other one is for
probability of mutation (Ap,,(t)). A diagram of Hybrid
Fuzzy-Genetic Algorithm is shown in Fig.2.

FLO)

(Performance measures)

Crossover
fuzzy
controller

Ap. @)

—>  Genetic

!

Mutation
fuzzy
controller

Ap,8)

Figure 2. Hybrid Fuzzy-Genetic Algorithm

The dashed area above is just the FLC. The main
idea is to use the current performance measures of GA
as the inputs of FLC, and the outputs of the FLC are
the new GA’s parameters. Current performance measures
measured by the fitness are sent to the FLC, and then, FLC
computes the new control parameters through the certain
fuzzy rules. When GA gets the new parameters from
FLC, it will repeat the steps above until the termination
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condition is met. So the value of controller parameters
may be renewed in every generation in our algorithm
(FLGA). Fuzzy rules can be designed using different
strategies. The general idea for updating the crossover and
mutation probabilities is to consider the changes of the
maximum fitness and average fitness in the GA population
of two continuous generations.

V. RESULTS OF EXPERIMENTS
A. Experimental Benchmarks

In computing, a benchmark is the act of running a
computer program, a set of programs, or other opera-
tions, in order to assess the relative performance of an
object, normally by running a number of standard tests
and trials. Benchmarks provide a method of comparing
the performance of various subsystems across different
chip/system architectures. The experimental benchmarks
in this paper are based on a multiprocessor scheduling
problem with DAG (Directed Acyclic Graph). After a
series of theoretical analysis, we will test the scheduling
problem with benchmarks. The emphasis of this paper
is to test the use fuzzy logic controller to dynamically
control the parameters of Genetic Algorithm.

The benchmark instances in the experiment are provid-
ed by a tool called ALPES [11], [12]. It contains several
well-known parallel programs, and each parallel program
has two kind of size: large (-1) and medium (-m). Fig.3
shows the different number of tasks.

Parallel Program . | Number of Tasks{ Parallel Program.. | Number of Tasks -
-m. 365. -m. 184,
Eellford FFT..
-l 992, -l 1026..
-m. 258.. -m. 782,
Diamondi Gauss.
-l 1026.. -l 1227.
-m. 486.. -m. 262.
Diamond2 Iterative..
| 1227. | 538.
-m. 731, Ms- -m. 68
Di a2
I 1002, Gauss: I 1482
-m. 731. -m. 214,
Diamondd Prolog ..
| 1002.. | 1313.
-m. 382. -m. 326.
Divecong.. Ged .-
-1 766 1 1026..

Figure 3. Characteristics of test graphs

Notice that, different programs have different number
of tasks, that means the best and average makespans
of solutions are diverse which potentially makes the
experiments results more general.

B. Results of Experiments and Discussions

In order to compare the quality of the solutions provid-
ed by SGA and FLGA, a traceable procedure is added in
our algorithms so that we can record the best and average
solutions of each generation. In this paper, we mainly
focus on the effect of fuzzy logic controller, compare the
results which from the Standard Genetic Algorithm (SGA)
without FLC with our hybrid Fuzzy-Genetic Algorithm
(FLGA). Actually, many factors can affect the results of
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Genetic Algorithms. Such as coding method, population
size, different restrictions, different rules of crossover and
mutation etc [15], [17], [18]. Our algorithm may get a
better result if we change these factors, but that is not the
main point of the experiments, the aim target here is to
design an algorithm which can dynamically control the
parameters of GA, so that the Genetic Algorithm can be
self-controlled, and get a better performance.

In our experiments, two different strategies FLGA-1
and FLGA-2 are incorparated in order to see the diversity
of our proposed method. The best and average solutions
obtained by SGA and FLGA are shown in Fig.4.

SGA SGA

FLGA1, FLGAZ. Best
GraphiDAG)..
(25=03, P =03)| (=08, Pp=0.02) The First Strategy .. The Second Strategy.. Known,
. N Best | Aversge | Best | Averaga | Bast | Average | Aversge| Best | Average | Aversge| Best
sms. | Sizs
Schedue| Schedue | Schedue| Schedule| Schecue{ Schedue | Improve | Schedue{ Schedus{ Improve{ Schedue.
ama| @27. | 384. 341, 392, 12, 137, | 227. 91, 105, | 259, 1,
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ao| 1z0s. | am0z. | ooz | ross. | ara. | osss. | ear. | z2es. [ o2sa. | t003.| 1e3.
.| 288, | 01, 326, 387, 268, | 284, 15, 186, | 243, 55, 131,
Diamend!
| en 1466, | 1323 1401 61 201 665 330 351 115, | 276
ma| 520 586 536 504 253, | 260 326 156 266 320 12
Diamondz
1 1s0s. | 1802, | 1208 1264 892, | 915 &9 344 102 1200, 218
m.| 33 566 330 820 520, | 536 E) 432 465 501 178
Diamends.
| orrsa. | a20 E 1102 664, | & 530 670 5 530 228
m.| 238 502 392 165 225, | 231 | 332 195 224 339 132
Diamondt
1 35 a85 42 588 335 a7z, | ss3 310 346 813 154
m.| 326 B 35¢ 33 21 220 15 228 258 118 B
Divsena -
1| sz 1103, 865 925 442 435 608 442 432 811 169
e 192 115 138 54 109, | s 5 85 108 29
FFT.
| ss2 589 435 435 215 265, | 404 193 212 45 102
m. 26 913 1 226 3ge. [ 12, | 501 230 341 572 226
Gauss.,
G| 2012, | 2231 | 1322 1435 715, | 886 1345, [ 551 560 1671 30
R 118 115 131 N 1 B 33 o5 53 15
Herative.,
| 2ss 320 286 238 166, | 224, [ 6 175 224 36 4
s m.| 14071 | 14186, | 1eses.| 1s007. | G113, | sese. | ses2.| ese2. | esa3. | e223.| <5
Gauss: | .| gsgte.| 17363, ( 13226.| 13495, | 3029, | 3730, [ 1s233.| 2866, | 3551, | 14112, 2859,
m.| 204 291 285 272 N 143 143 85 128 162 80
Prolog.,
| 1m2e. | as7a. | oeas. | otsos. | oanin [ omsal | vison| =2l [ oeoes | w2l | 2ms,
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Figure 4. Comparison of the best and average solutions obtained by
SGA and FLGA

From this table, we can clearly see that the results of
FLGA are much better than those of SGA. There are two
SGA, one is with a fixed p. = 0.3 and p,,, = 0.3, and
the other one is with a fixed p. = 0.8 and p,, = 0.2. The
two SGA have a common ground that the probabilities
of crossover and mutation will be a constant during the
test process. However, in our proposed algorithm, the
probabilities of crossover and mutation can be changed
at each or certain generation according to a certain fuzzy
rule.

The results are obvious, both FLGA-1 and FLGA-2
have much better solutions, which means we can get a
much better schedule of multiprocessor scheduling prob-
lem. The results obtained by two SGA look like similar,
but the results of the first SGA are worse than the second
SGA at most situations. Because of the first SGA is equal
to p,, = 0.3, actually it is a high probability of mutation,
although it can jump out from the local-optimal, however,
it may break some good individuals of each generation, so
it may destroy some near-optimal solutions. Notice that,
the bold number indicate the results will become very bad
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if p,, is too high. The results may change significantly in
the process of convergence.

We also compared the experimental results with the
best well-known results. We can found that the solutions
obtained by FLGA is closer to the best well-known
solutions than SGA. However, both of them cannot be
very close to the best well-known results, this is because
of the drawback of the coding method used in the standard
algorithm [7]. The standard Genetic Algorithm may miss
some optimal solution. In spite of the fuzzy logic can
make good efforts, it can’t get the optimal solution. As
mentioned before, the coding method and the problem
itself are not the main point of this paper, so the improving
of performance is acceptable. Moreover, the most impor-
tant thing is that the fuzzy controller makes effort, which
indicates the Genetic Algorithms can perform better with
fuzzy logic controller.

VI. CONCLUSION

In this paper, we introduced a Hybrid Fuzzy-Genetic
Algorithm, by incorporating Fuzzy Logic Controller to
the Standard Genetic Algorithms, based on an existing
hybrid Genetic Algorithm working on the multiproces-
sor scheduling problem. The Fuzzy Logic Controller is
designated to tune the mutation and crossover probabil-
ities in a dynamic fashion within the Genetic Algorithm
evolution. The results of experiments clearly show that
the FLGA outperform SGA in the test benchmark of the
multiprocessor scheduling problem. Although it will cost
extra time to adjust the parameters in each generation,
it converges to the global optimum in a smaller number
of generations. FLGA is an ideal alternative for the
combinatorial optimization problems.
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