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Abstract—Information on the future state of traffic flow 
provides a solid foundation for the efficient implementation 
of traffic control and guidance. The prediction approaches 
based on fuzzy logic theory is of great interests, because the 
rule-based inference is similar to the way humans process 
casual relations and fuzzy linguistic variables provide a 
natural way to deal with uncertainties. This paper presents 
a comparative study on a set of widely used Mamdani and 
Sugeno fuzzy inference systems in the application on the 
short-term prediction for traffic flow based on the historical 
recordings. To fulfill the comparison, a series of experiments 
was designed and performed to evaluate prediction 
performance for each fuzzy inference system in terms of 
model complexity, execution time, noise resistance, 
performance consistency, missing data, and multi-step-
ahead predictability. Before discussing the primary results, 
a description on the fuzzy inference systems, evaluation 
factors and criteria was given. The analyses on the 
experimental results led to several findings which can be 
referenced when choosing a FIS for traffic flow prediction 
based on historical recordings. 
 
Index Terms—Traffic flow prediction, fuzzy inference 
systems, defuzzification mechanisms, traffic flow time series 
 

I.  INTRODUCTION 

In intelligent transportation systems (ITS), not only 
real time traffic flow is of great importance for providing 
dynamic traffic control and guidance, but also live and 
accurate traffic flow prediction can help reduce 
unexpected malfunction and improve efficiency in 
transportation systems. However, the road traffic system 
is a complex, open, and time-variant system which often 
exhibits highly randomness and uncertainty. Such 
challenge problem has fostered considerable research 
enthusiasm that has been continuously devoted to this 
field. As a result, a wide range of prediction algorithms 

has been developed, such as Kalman filter [1] and its 
extension [2], support vector machine (SVM) [3], 
Bayesian networks [4], and hybrid approach [5-8] etc. 
The prediction approaches based on Kalman filter theory 
operate recursively on a stream of noisy measurements to 
predict the future traffic status. Although, this type of 
approaches do not require to store previous recordings for 
prediction purpose, a linear dynamic system adopted for 
to simulate the traffic system is not appropriate. The 
extended Kalman filter can relax the linear assumption by 
employing differential equations to model the underlying 
systems, but the calculation efforts are increased 
accordingly. One of main advantages of the SVM 
approaches for traffic flow prediction is their capability to 
handle the nonlinear problem by means of the kernel 
transformation from input space to feature space. 
Furthermore, the prediction accuracy by this type of 
approaches is generally high even with a small set of 
training noisy data. The support vectors of a SVM are 
constructed by solving a quadratic programming problem 
and this is challenging for a large optimization problem 
due to the high order matrix calculation. Also, the 
function after training is not easy to interpret. Bayesian 
network is a probabilistic reasoning technology and 
therefore used in the traffic flow prediction to deal with 
the uncertainty due to the correlation between conditions. 
In addition, Bayesian network can model casual 
relationships between variables through learning. 
However, the main weaknesses for this type of 
approaches are that the learning result is largely 
influenced by the prior knowledge and Bayesian network 
has limitation on handling continuous features. The 
hybrid approaches attempt to overcome the weaknesses 
of each prediction technique by combining more than one 
prediction techniques. The prediction accuracy can be 
improved by the hybrid solution at the cost of extra 
computation and the improvement made is largely 
dependent on the fusion method employed.  

There are a number of ways to classify these prediction 
algorithms depending on the grouping factor to be used, 
such as single road link or correlated road network (sub-
network), urban streets or freeways, parametric or non-
parametric model, analytical or data-driven approach, 
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univariate or multivariate method, etc. Nonetheless, the 
fundamental idea behind these prediction methods is 
more or less like “yesterday once more”. That is, the 
knowledge extracted from past experiences is used to 
infer and predict the future status. Thus, it is essential to 
have good understanding on the past in an attempt to 
discover the rules governing the evolution.  

The evolution of a traffic system may be influenced by 
many factors, such as weather, road works, and sport 
events (e.g., Olympic Games) etc. To use these 
influencing factors, as the latent inputs of the traffic 
system, for traffic flow prediction, the prediction 
accuracy largely depends on the quality of the factors 
supplied with the efforts expended in collecting, 
analyzing, and processing data. On the other hand, a 
sequence of historical observations, namely time series, 
embeds rich information that can be used to infer the 
future tendency. Therefore, this paper concerns the traffic 
flow prediction based on historical recordings only. 

The modeling techniques based on fuzzy inference 
systems (FIS) are appealing and have found many 
successful applications in various fields [9-11]. As 
compared to the other prediction approaches (such as 
those mentioned above), the fuzzy approaches have the 
following features: 1) the rule-based structures are able to 
capture the dependency between inputs and outputs of a 
system; 2) the fuzzy linguistic variables provides a 
natural way to deal with uncertainties; 3) they are capable 
of modeling nonlinear systems; 4) the singular and 
linguistic outputs can be easily formed; 5) they are 
insensitive to random noise. Those unique features of the 
fuzzy approaches motivate us to investigate their 
performance in traffic flow prediction further.  

However, FISs have seen little application in the traffic 
flow prediction field over the last decade, apart from a 
few notable contributions reported in literature. Zhang 
and Ye proposed a prediction methodology by using 
fuzzy logic system to fuse the outputs of two methods out 
of autoregressive integrated moving average, back-
propagation neural networks, exponential smoothing 
method, and Kalman filter, resulting in four different 
combinations [6]. Similar idea has been adopted in [7], 
but the two methods mixed by a fuzzy logical model are 
history mean and artificial neural network models. The 
paper [8] describes a hybrid methodology that two fuzzy 
rule-based systems are constructed, one providing the 
next flow estimation based on the current flow only and 
the other predicting the one-step-ahead flow based on the 
current flow at the current location and the upstream 
location. The paper [12] presents a prediction approach 
for the short-term traffic flow prediction primarily based 
on Sugeno fuzzy system (also known as Takagi-Sugeno-
Kang, TSK). The initial structure is formed by 
partitioning the input vector space by the mean shift 
clustering algorithm and subsequently optimized by 
eliminating redundant structure using the mean firing 
technique, and finally the other parameters are 
determined by particle swarm optimization with the aim 
to minimize root mean squared error.  

The two types of FIS, namely Mamdani [13] and 
Sugeno FISs [14] are widely accepted and applied to 
many real-world problems. The predicted traffic flows 
are frequently used as a significant reference to designing 
or updating signal timing, route guidance, or variable 
message signs (VMS) etc deployed in the urban traffic 
networks. Some of these applications, such as signal 
timing or route guidance, need the numerical form of 
prediction result of high accuracy with time constraints, 
but the others, such as VMS, linguistic form with soft 
real-time requirement. The output from Mamdani FISs 
can be easily transformed to linguistic form as the 
inference result before defuzzification is a fuzzy set [13]. 
The Sugeno FISs are able to accurately model highly 
nonlinear systems [15]. Consequently, these two types of 
FISs are, in theory, suitable for the short-term prediction 
of traffic flow. Furthermore, although many types of FISs 
have been proposed, most of them were developed on the 
basis of Mamdani and Sugeno FISs [15]. Therefore, the 
comparison made between these two types of FISs in the 
short-term traffic flow prediction severed as the starting 
point of our on-going research work and the other FISs 
will be a focus of our future research. 

For Mamdani FISs, the inference for ith rule can be 
mathematically expressed as follow: 

iiin n i ii ByAxAxAxR  is     then  is    ...  and   is   and  is  if:  221 1  
      (1) 

where 
 2 1  , ... ,  , nxxx  are the input variables and Ai1, 

Ai2, …, Ain are the fuzzy sets. Unlike the Mamdani FIS, 
the output from a Sugeno FIS corresponding to ith rule is 
typically a function of the input vector x. 

)( is    then   is    ...  and   is   and  is  if:  221 1 xiiin n i ii fyAxAxAxR  
      (2) 

Sugeno FISs are similar to Mamdani FISs in many 
aspects, but the consequent parts are quite different. The 
Sugeno type of FIS uses a mathematical function of the 
inputs as the rule consequent, instead of fuzzy set 
employed in Mamdani FISs. The consequent of a rule in a 
Sugeno FIS is normally a polynomial in the input 
variables, but it can in theory be any type of functions as 
long as it can properly present the output within the fuzzy 
space specified by the antecedent. The Sugeno FIS 
resulted from a first-order polynomial was originally 
proposed in [16-17] and is called a first-order Sugeno FIS. 
Due to the different forms in the rule consequent of 
Mamdani and Sugeno FISs, the methods used in both 
types of FIS to get overall crisp output are different too. 

In the literature, there a large amount of applications 
employed either Mamdani or Sugeno FISs, but a few 
contributions have been made to the comparison between 
these two types of FIS in terms of their prediction 
performance. In [18], a comparison of Mamdani and 
Sugeno FISs was made to evaluate the quality of 
experience of hapto-audio-visual applications. Although 
the Sugeno FIS demonstrates more accurate than the 
Mamdani FIS, the Mamdani FIS displays consistency in 
their simulations. In addition, there were no noticeable 
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variations between the two types in terms of execution 
time. A comparative study of Mamdani and Sugeno FISs 
was reported in [19]. The two types of FIS were 
compared for a space fault detection application from 
three aspects: processing time, robustness to noise, and 
sensitivity analysis of the system’s behaviors to changes 
in input data and the comparison results led to the 
conclusion that a Sugeno FIS with equivalent functions as 
Mamdani FIS may improve the overall performance. In 
[20], a comparison was made between adaptive neuro-
fuzzy inference system (ANFIS) and a Mamdani fuzzy 
inference system for predicting municipal water 
consumption time series and the comparison indicated 
that ANFIS is superior to the Mamdani FIS. The paper 
[21] compared the performances of Mamdani and Sugeno 
FISs when computing the resonant frequency of 
rectangular microstrip antennas with thin and thick 
substrates, and the best result obtained from the 
experiments was generated by the Sugeno FIS. Hao et al. 
[22] investigated which type, Mamdani or Sugeno FIS, is 
more compact for function approximation. They showed 
that the basic structure of a Sugeno FIS depends on the 
number of locations of the extrema of the function to be 
approximated. The comparison results implied that 
minimal system configurations of Mamdani and Sugeno 
FISs are comparable. To the best of our knowledge, the 
literature contains no contributions made on the 
comparative study on the two types of FIS in traffic flow 
prediction.  

Consequently, this paper is devoted to the comparison 
on the performances of the two types of FIS in traffic 
flow prediction based on historical recordings in terms of 
model complexity, execution time, noise resistance, 
performance consistency, missing data, multi-step-ahead 
predictability, through a set of experiments. The next 
section outlines the basic structures of FISs to be 
evaluated and briefly describes the algorithms used to 
determine the rules and parameters, with particular 
emphasis on the defuzzification methods to be examined. 
Following that, the evaluation factors and criteria are 
explained, before presenting the experimental results. 

II.  MAMDANI AND SUGENO FUZZY INFERENCE 
SYSTEMS 

The evaluation was made on the structure widely 
adopted for the multi-input single-output (MISO) 
Mamdani and Sugeno FISs. The Gaussian membership 
function was used for both types of FIS, but the 
consequent for each rule in the Sugeno FISs employs 
linear function, namely, the first-order Sugeno FIS. Both 
types of FIS use T-norm for conjunction. While “min” is 
used in the Mamdani FISs for implication, the Sugeno 
FISs adopts “product” for implication. For the Mamdani 
FISs, the fuzzy sets resulted from the implication for each 
rule are aggregated using the maximum before applying 
the defuzzification. There are five defuzzification 
methods, namely centroid of area or center of gravity, 
bisector of area, smallest of maximum, largest of 
maximum, mean of maximum, which are often used in 
fuzzy modeling. On the other hand, the defuzzification 

method equipped in a typical Sugeno FIS is either 
weighted average or weighted sum. As the 
defuzzification process is completely different between 
Mamdani and Sugeno FISs, we compared the FISs with 
the above stated defuzzifications. 

A.  Defuzzification Methods 
After aggregation, the defuzzification process for the 

Mamdani type of FIS converts the fuzzy set B ( )(yμB
 is 

the membership function) in the universe of discourse V 
into a single crisp value as the final output. There are 5 
defuzzification methods frequently adopted in Mamdani 
type of FIS. 

1)  Centroid of area (COA) 
This defuzzification method returns the output by 

calculating the centroid of area formed by the aggregated 
fuzzy sets of the consequents as follow: 

∫
∫ ⋅

=
V B

V B

dyyμ

dyyμy
y

)(

)(
COA

                           (3) 

2)  Bisector of area (BOA) 
The vertical line corresponding to the output generated 

by BOA splits the aggregated fuzzy sets into two sub-
regions of equal area. This operation can be expressed as 
follow: 

∫∫ =
β

y B

y

α B dyyμdyyμ
BOA

BOA )()(                 (4) 

where { }Vvvα ∈= |min , { }Vvvβ ∈= |max . Note that 
the value resulted from this method is sometimes 
coincidently identical to that generated from COA. 

3)  Smallest of maximum (SOM) 
This method generates the crisp output by taking the 

smallest value that gives the maximum membership 
degree of the aggregated fuzzy set. 

( ){ })(max)(|minSOM yμyμyy BB ==          (5) 
4)  Largest of maximum (LOM) 
Instead of smallest value as SOM, LOM takes the 

largest value corresponding to the maximum membership 
degree to yield the final crisp output. 

( ){ })(max)(|maxLOM yμyμyy BB ==          (6) 
5)  Mean of maximum (MOM) 
In this defuzzification, the mean of maxima is taken as 

the crisp output. 

    
2

LOMSOM
MOM

yyy
+=                            (7) 

Note that if the aggregated membership function has a 
unique maximum degree, rather than a range (i.e., a 
plateau at the maximum value), the crisp outputs 
generated by SOM, LOM, and MOM are all identical. 

The consequent yi corresponding to the ith rule (M 
rules in total) in the Sugeno type of FIS is a function of 
inputs rather than a fuzzy set in the Mamdani type of FIS. 
The popular defuzzification methods for the Sugeno type 
are the following two. 

1)  Weighted average (WA) 
This defuzzification method generates the final output 

for a Sugeno FIS by averaging the weighted rule outputs. 
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                              (8) 

2)  Weighted sum (WS) 
To reduce the computation of WA, the WS method 

takes only the sum of the weighted rule outputs. 

∑ =
= M

i ii ywy
1WS                               (9) 

B.  Rules and Parameters Determination 
In this paper, fuzzy c-means (FCM) [23-24] is used to 

extract rules from a set of training data for the Mamdani 
FISs and the number of clusters pre-defined is the number 
of rules. Although the same clustering algorithm is taken 
for the Sugeno FISs to determine the antecedent, the 
estimation for the consequent parameters can be 
formulated as the least square problem and consequently 
the least estimation method [25] is used to determine the 
consequent parameters.  

III.  EVALUATION FACTORS AND CRITERIA 

A.  Evaluation Factors 
To compare the two types of FIS, the following 

practical aspects have been considered in this paper as 
they are critical to a success in the traffic flow prediction. 

1) Model complexity  
While a complex FIS may improve prediction accuracy, 

computational overhead is often a serious issue for the 
time-constrained applications due to curse of 
dimensionality. In this paper, the model complexity is 
measured by the total number of membership functions 
for all rules.  

2) Execution time 
The time required to deliver a solution from a predictor 

is often critical for traffic control and management or 
traveler decision support. Prediction made by a FIS is 
typically consists of two stages, model construction and 
execution (though the model can be constructed in an off-
line manner). However, this paper is not intended to 
compare various techniques proposed in the literature for 
model construction. Therefore, the execution time for 
each FIS under study is concerned in this work and the 
difference in execution time is largely attributed to the 
defuzzification mechanism used. 

3) Noise resistance 
As a sequence of observations on traffic flow is often 

corrupted by noise, it would be problematic if the future 
flow is estimated using the model that has overfit to the 
noisy time series. Thus, this test examines the ability of a 
FIS to immunize the noise embedded in the time series.  

4) Performance consistency  
This test measures whether the prediction performance 

of a FIS is consistent if the traffic situation is changed. A 
good predictor should have a low fluctuation in response 
to different traffic situations. 

5) Missing data 
In practice, there are some recordings missing due to 

disordered detectors or malfunctioned transformation etc. 
Although the missing recordings can be made up by 

many techniques, such as linear or nonlinear interpolation, 
it is often desired that the future flow can still be 
estimated without any extra preprocessing in order to 
minimize computation efforts. In this test, we will 
examine which FIS is mostly robust to missing data. 

6) Multi-steps-ahead predictability 
Predicting the first unknown future flow (i.e. one-step-

head) is useful in many aspects, for example real time 
guidance, but additional benefits can be obtained from 
multi-step-ahead prediction. In this paper, the multi-step-
ahead predictability is therefore examined in terms of the 
prediction accuracy for the increasing prediction horizon. 

B.  Evaluation Criteria 
Three statistical criteria, namely mean square error 

(MSE) [26], mean absolute percentage error (MAPE) 
[27], and variance of absolute percentage error (VAPE) 
[6], were used to assess the prediction quality. The MSE 
statistic is frequently employed for prediction evaluation, 
as it indicates a model’s ability to predict a value away 
from the mean. While MAPE calculates the average 
relative error between the estimated values and actual 
observed data, VAPE represents the performance stability. 

( )2

1

1M SE y( ) ( )
N

i
ˆ i y iN =

= −∑                      (10) 

%100
)(

)()(y1MAPE
1

×−= ∑
=

N

i iy
iyiˆ

N
           (11) 

%100)
)(

)()(y
var(VAPE ×

−
=

iy
iyiˆ

            (12) 

where y(i) and ŷ(i) are ith actual recordings and predicted 
values and N is the number of data.  

IV.  EXPERIMENTS AND RESULTS 

In order to make a comparison between the Mamdani 
and Sugeno FISs in traffic flow prediction, a series of 
experiments was performed in Matlab (version 7.13) and 
executed on Intel Core Duo processor (2.2 GH) running 
Windows Vista, based on the traffic flow time series 
collected and aggregated in the 2 minutes interval for a 
road in Beijing for the week starting from 20th to 26th 
November 2006. As the estimation of the consequent 
parameters for the Sugeno FISs was formulated as a least 
square fitting problem, there is a potential risk that the 
model overfits the noisy data. Consequently, a de-noising 
process was performed using a wavelet-based technique 
[28] for all experiments, before any evaluation proceeded. 

1) Model complexity  
The evaluation of complexity was designed by 

incrementing the number of inputs from 1 to 10 and the 
number of clusters (i.e., the number of membership 
function) from 2 to 10 (note that grouping all training 
data into one cluster is meaningless), respectively. The 
10-fold blocked cross-validation [29-30] was used to 
evaluate each FIS for each combination and 100 
independent runs were performed and averaged for each 
test to obtain the MSE, MAPE and VAPE values. Then, 
the FISs under test were ranked according to their MSE, 
MAPE, and VAPE values for each combination and the 
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rank corresponding to the majority over all combinations 
was assigned to the associated FIS, as shown in Table I. 

WA consistently outperformed all the others in terms 
of MSE, MAPE, and VAPE statistics, while the 
performance of WS was frequently ranked to be the 
bottom. Also, it can be seen that the MOM, SOM, LOM, 
and BOA models are in the second, third, fourth, and fifth 
places, respectively, in most situations. Therefore, it is 
evident that WA is able to produce the most accurate 
prediction with the same complexity as the others. 

Table II and Table III summarize the mean MSE 
values for each method for the different number of inputs 
and clusters, respectively. 

TABLE I.   
RANKS OF EACH FIS BASED ON THEIR MSE, MAPE, AND VAPE VALUES 

FOR TRAINING (DENOTED AS ‘T’) AND PREDICTING (DENOTED AS ‘P’) 
STAGES. 

FIS COA BOA SOM LOM MOM WA WS

MSE 
T 6 5 4 3 2 1 7

P 5 3 6 4 2 1 7

MAPE 
T 7 5 3 4 2 1 6

P 6 5 2 4 3 1 7

VAPE 
T 7 6 3 4 2 1 5

P 6 5 3 4 2 1 7

TABLE II.   
MEAN MSE VALUES FOR EACH ALGORITHM FOR THE DIFFERENT 

NUMBER OF INPUTS (‘T’ AND ‘P’ DENOTING TRAINING AND PREDICTING 
STAGES RESPECTIVELY). 

Inputs 1 2 3 4 5 6 7 8 9 10

C
O

A
 T 456.4 457.5 460.8 466.9 473.1 480.2 488.8 498.8 508.6 518.8

P 534.2 538.1 543.4 554.1 564.1 575.7 586.9 600.5 616.4 633.3

B
O

A
 T 315.7 318.0 322.5 328.9 335.2 342.2 351.4 362.5 372.5 383.0

P 387.1 392.0 397.8 409.8 421.2 433.2 444 457.7 475.3 493.2

SO
M

 T 188.4 200.0 214.0 227.6 245.0 266.2 288.8 315.1 345.4 376.5

P 307.6 325.1 345.0 376.8 401.1 430.4 453 490.4 540.0 598.2

LO
M

 T 181.8 189.4 197.7 211.1 222.7 232.8 246.2 258.6 270.4 283.2

P 315.9 334.6 353.2 368.4 386.8 407.7 438.3 465.5 494.6 524.7

M
O

M
 T 99.73 101.0 103.3 106.9 111.0 115.8 121.9 128.7 136.3 144.4

P 169.5 173.5 178.4 185.0 190.2 198.0 207.5 219.4 234.6 251.5

W
A

 T 2.144 0.272 0.267 0.246 0.237 0.206 0.193 0.193 0.194 0.186

P 5.018 1.845 2.846 3.966 7.533 8.715 48.48 83.74 83.74 1814

W
S T 19246 7038 3488 2287 1973 2120 2510 3019 3617 4219

P 18503 6862 3724 2835 2839 3291 3937 4688 5479 6306

 
The results listed in Table II indicate that the Mamdani 

type of FIS exhibit different behavior than the Sugeno 
type of FIS. That is the modeling and prediction errors 
generated by the Mamdani FISs with different 

defuzzification mechanisms increase with the number of 
inputs, but a valley pattern is generally held for the 
Sugeno FISs. Furthermore, the majority of the MSEs 
produced by WA （as highlighted in Table II） are lower 
than the other FISs by approximately 3 orders, indicating 
that WA model considerably outperformed as compared 
to the others. However, the poorest performance was 
generated by the Sugeno FIS with the defuzzification 
method of weighted sum. The discrepancy of the MSEs, 
measured for COA, BOA, SOM, LOM, MOM, and WS, 
between the training and prediction appears relatively 
stable, but for WA (as highlighted in Table II） , the 
prediction error increases rapidly when the number of 
inputs is greater than 6 even though the training error 
steadily reduces, implying WA overfit to the training data. 
Finally, near all MSEs measured during the prediction 
stage are larger than those during training stage. 

TABLE III.   
MEAN MSE VALUES FOR EACH ALGORITHM FOR THE DIFFERENT 

NUMBER OF CLUSTERS (‘T’ AND ‘P’ DENOTING TRAINING AND 
PREDICTING STAGES RESPECTIVELY). 

Clusters 2 3 4 5 6 7 8 9 10 

C
O

A
 T 1905 570 344.3 292.1 264.3 246.9 239.2 235.3 231.6

P 1977 758.2 434.2 384.3 354.4 328.3 317.4 311.2 307.1

B
O

A
 T 1406 403.1 235 197.6 182.3 171.7 167 164.3 161.4

P 1489 585.3 317.2 279.2 264 241.9 238.3 233.6 231.5

SO
M

 T 644.6 450.6 318.9 252.4 202.5 165.2 137 120.1 108.9

P 696.0 744.0 505.0 514.5 461.6 288.8 230 209.9 191.1

LO
M

 T 818.1 446.6 234.6 158.2 118.4 92.1 75.1 64.6 56.8

P 1214 706.1 427.6 289.1 243 231.8 214.3 187.6 167.0

M
O

M
 T 338.1 209.4 128.5 96.2 76.1 62.1 52.5 46.6 42.6

P 457.1 340.2 221 185.3 167.8 130 112.6 100.5 92.1

W
A

 T 0.441 0.435 0.425 0.416 0.412 0.406 0.4 0.397 0.3917

P 0.612 0.684 1.041 0.8 1.375 24.15 17.8 7814 120150

W
S 

T 948.0 2784 3470 3598 4313 5308 6264 7844 10035

P 1124 3278 4692 5021 5823 6634 7130 8455 10461

 
From Table III, the mean MSEs for the Mamdani FISs 

steadily reduce when the number of clusters increases. 
For WA (as highlighted in Table II）, the modeling error 
gradually decreases with the number of clusters, but the 
prediction performance is generally getting worse and 
worse. Both modeling and prediction errors for WS 
continuously increase as the number of clusters 
increments.  

From the above discussion, the followings can be 
summarized: a) to increase the number of membership 
functions is more efficient to improve the Mamdani FISs 
performance but when increasing either the number of 
inputs or membership functions, the prediction accuracy 
of WA decreases even though modeling error steadily 
declines; b) WA is capable of delivering the most 
accurate prediction when the number of inputs and 
membership functions are chosen properly; c) in general, 
to increase the number of inputs but membership 
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functions can improve WS performance, but the both 
training and prediction errors are considerably large. 

2) Execution time 
To examine the execution time, the same strategy as 

that in model complexity evaluation was adopted except 
that the blocked cross-validation was not used in this test. 
Each FIS was independently executed for 10000 times to 
obtain the mean execution time. Fig. 1 and Fig. 2 
illustrate the typical results obtained for the number of 
inputs ranging from 1 to 10 when the number of clusters 
is 4 and for the number of clusters ranging from 2 to 10 
when the number of inputs is 4. 
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Figure 1.  Execution time (ms) for the number of inputs ranging from 1 

to 10 when the number of clusters is 4. 
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Figure 2.  Execution time (ms) for the number of clusters ranging from 

2 to 10 when the number of inputs is 4. 

From Fig. 1 and Fig. 2, it is evident that COA (shown 
as solid line with ‘*’ marker) is most computationally 
expensive while the fastest FIS is WS (shown as dashed 
line with ‘○’ marker). Although WA (shown as dashed 
line with ‘*’ marker) requires more time to deliver a 
solution than WS, but it is faster than all Mamdani FISs 
under test. Except for COA, the other Mamdani FISs 
appears to take almost same amount of time during the 

prediction stage. In addition, the slops for the Mamdani 
FISs and the Sugeno FISs seems almost same when 
increasing the number of inputs, but different and the 
increasing rate is higher for the Mamdani FISs than the 
Sugeno FISs when increasing the number of clusters (as 
shown in Fig. 2). 

3) Noise resistance 
In this set of experiments, the time series of traffic 

flow was preprocessed to reduce the noise as much as 
possible and a white noise was subsequently added to the 
de-noised time series, to generate a set of time series of 
different signal-to-noise ratio (SNR), starting from 30dB 
to -10dB with -5dB interval. For each time series, the 
experiments were independently repeated for 50 times to 
obtain the averaged performance for all FISs under test. 
The performance was evaluated for each FIS by 
examining the MSE of the predicted values from the FIS 
trained using de-noised time series and noisy time series 
for each SNR. Fig. 3 and Table IV present the results 
obtained for different SNRs. 
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Figure 3.  Noise resistance comparison of the FISs (the Mamdani FISs 
shown as solid lines with markers ‘*’, ‘○’, ‘+’, ‘□’, and ‘•’ for COA, 

BOA, SOM, LOM, MOM respectively, and the Sugeno FISs denoted by 
dashed lines with markers ‘*’ and ‘○’ for WA, and WS respectively) for 

different SNRs. 

TABLE IV.   
MSE VALUES CORRESPONDING TO DIFFERENT SNRS.  

SNR
(dB) COA BOA SOM LOM MOM WA WS

30 0.0111 0.0151 0.4904 0.8534 0.4162 0.0190 0.0875
25 0.0369 0.0182 0.4488 0.7679 0.3526 0.0380 0.3181
20 0.1078 0.0606 0.4658 0.6819 0.3181 0.0937 1.0947
15 0.2714 0.1887 0.5464 0.6543 0.3446 0.2319 3.1901
10 0.5573 0.4678 0.8717 0.8502 0.6052 0.5846 7.0153
5 1.2533 1.2342 1.789 1.8471 1.5623 1.5054 11.338
0 2.3945 2.5971 3.4499 4.2061 3.5723 3.5923 14.273
-5 3.5193 3.8954 4.9731 6.2825 5.3721 6.189 15.419

-10 6.3024 6.7862 8.0198 9.6751 8.5917 12.072 16.627

It can be easily identified from Fig. 3 that as the noise 
level was gradually dominated in the time series, the 
prediction accuracy generated by WS (shown as dashed 
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line with ‘○’ marker) reduced dramatically and its decline 
speed is largest among all FISs under test. However, the 
responses from the other FISs are similar when SNRs are 
relatively larger, but diverged when SNR is smaller than 
5 dB. By a close observation on Fig. 3 and Table IV, 
COA (shown as solid line with ‘*’ marker and as 
highlighted in Table IV) is mostly resistant to the noise as 
its increasing rate in MSE is lowest as compared to the 
other FISs. Moreover, the performance of WA (shown as 
dashed line with ‘*’ marker) declined more quickly than 
all Mamdani FISs when the proportion of noise in the 
time series became larger and larger. In addition, LOM 
(shown as solid line with ‘□’ marker) generated the 
fastest-growing MSE value as compared to the remaining 
of the Mamdani FISs. Overall, the COA algorithm is 
mostly insensitive to the noise according to the 
comparison to the others. 

4) Performance consistency 
To evaluate the consistency for the FISs under test, the 

traffic flow data recorded for three different roads (here 
simply called A, B, and C) over the week, 20th to 26th 
November 2001, were used and the performance of each 
FIS was measured using 10-fold blocked cross-validation 
[28-29]. All parameters were set to be same (3 inputs and 
3 rules for all) for the FISs and results were averaged 
over 100 independent runs. Fig. 4, Fig. 5, and Fig. 6 
present the box-plots of MAPEs at training and prediction 
stages over the week for roads A, B, and C, respectively. 
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Figure 4.  Box-plots of MAPEs over the week for road A 
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Figure 5.  Box-plots of MAPEs over the week for road B 
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Figure 6.  Box-plots of MAPEs over the week for road C 
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From Fig. 4, Fig. 5, and Fig. 6, it is evident that WA 
consistently outperformed as compared to the others as it 
generated the lowest MAPE values at both training and 
prediction stages and variations over the week are 
relatively small. On the other hand, the median MAPEs 
produced by COA are largest and a relatively large 
fluctuation over the week can be observed. Among all 
Mamdani FISs, MOM is the second in performance 
consistency only to SOM. 

5) Missing data 
In this paper, the effect of missing data on the 

prediction performance was examined according to the 
following procedure: a FIS was constructed using the first 
half set of the time series that did not have any data 
missing; the other half set was used as the test data and a 
predefined number of inputs was replaced by 0 as missing 
data; the prediction performance for each FIS was 
evaluated by feeding the set of test data with and without 
the missing inputs into the FIS; finally, the effect was 
measured using the index of MAPE by comparing the 
performance with missing data to that without missing 
data. In our test, it was assumed that all FISs under test 
had 5 inputs and therefore we examined the effect with 
missing inputs from 1 to 5. Also, the other parameters 
were kept same for all FISs. Each test was performed 
independently for 100 times and the averaged results are 
listed in Table V. Except for all inputs fed with 0, LOM 
(as highlighted in Table V) was influenced much less 
than the others. In contrast, WA is mostly sensitive to the 
missing data. One of the interesting facts is that the 
number of missing inputs did not cause any fluctuation in 
the prediction performance of SOM. Except for this, the 
others generally decreased their prediction performances 
when the number of missing data increased.  

TABLE V.   
EFFECT OF MISSING DATA ON THE PREDICTION PERFORMANCE 

MEASURED BY MAPE.  

Number of 
missing data 1 2 3 4 5 

COA 241.35 241.79 242.26 245.36 430.38

BOA 311.48 311.88 312.64 317.08 563.95

SOM 504.50 504.50 504. 50 504.50 504. 50

LOM 41.839 43.857 46.855 56.129 617.31

MOM 324.00 324.94 326.64 332.05 660.68

WA（×100） 505.06 618.73 618.15 580.33 451.84

WS 203.12 203.2 201.56 198.97 206.29

6) Multi-step-ahead predictability 
When a prediction horizon is higher than 1, the 

unknown values can be predicted either recursively or 
directly. The recursive strategy applies the same model of 
one-step-ahead prediction recursively, using the values 
estimated as known inputs to predict the next unknown 
traffic flow. On the other hand, the direct prediction is 
simple and intuitive as it directly builds a FIS for the 
specified prediction horizon. In our test, two strategies 

were evaluated for the prediction horizon ranging from 1 
to 20 steps. Again, all parameters (i.e., 3 inputs, 3 rules, 
and first 300 points and last 300 points used as training 
and test data) were kept same for the tested FISs and each 
test was repeated for 100 times. Fig.7 illustrates the 
prediction performances measured by MAPE for the two 
strategies.  
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(b) Direct prediction 

Figure 7.  Multi-step-ahead prediction evaluation for the two strategies: 
(a) recursive and (b) direct prediction. 

As shown in Fig. 7(a), the results obtained by the 
recursive prediction for the FISs indicate the performance 
for each FIS generally follows a decreasing pattern with 
prediction horizon increases. While WA outperformed all 
the others, WS produced largest errors among all for the 
test prediction horizon. However, the situation in Fig. 7(b) 
for the direct prediction is relatively complicated. The 
traffic flow predicted by WS (shown as dashed line with 
‘o’ markers’) are less accurate for a few steps ahead, but 
its performance gradually improved since the prediction 
horizon is higher than 5. On the other hand, a reversed 
pattern is held for COA (shown as solid line with ‘*’ 
markers’) and BOA (shown as solid line with ‘o’ 
markers’). The MAPEs produced by the other FISs 

JOURNAL OF COMPUTERS, VOL. 9, NO. 1, JANUARY 2014 19

© 2014 ACADEMY PUBLISHER



increase constantly with the prediction horizon being 
gradually enlarged. WA produced more accurate 
predictions than the others when the prediction horizon is 
less than 17 approximately. 

To clarify the results presented above, a summary was 
made by ranking the FISs based on their averaged 
performance for each evaluation aspect. The overall rank 
for each FIS is determined by searching the rank 
dominated over all evaluation aspects. If more than one 
FIS has been ranked the same place, the place will be 
assigned to the FIS which has ranked to the place more 
frequently than the others over all evaluation aspects. 
Table VI lists the ranks for the FISs. It is clear that WA 
generally outperformed the others, but WS is the weakest 
FIS. Also, it should be noticed that although all the tested 
FISs were ranked, some of them (e.g., SOM, LOM, and 
MOM) performed almost equally for some evaluation 
aspects.  

TABLE VI.   
RANKS OF EACH FIS BASED ON THE EVALUATION RESULTS.  

FIS 
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Overall

COA 6 7 1 7 3 6 6 
BOA 5 4 2 6 4 4 4 
SOM 3 5 3 2 6 3 3 
LOM 4 6 5 5 1 5 5 
MOM 2 3 4 3 5 2 2 
WA 1 2 6 1 7 1 1 
WS 7 1 7 4 2 7 7 

 

V.  CONCLUSIONS 

This paper presented a comparison between a number 
of FISs for traffic flow prediction in terms of model 
complexity, execution time, noise resistance, 
performance consistency, missing data, and multi-step-
ahead predictability. Based on the comparison results, the 
following main findings can be concluded: 1) as 
compared to the other tested FISs, WA constantly 
demonstrated a more accurate prediction, but it is 
sensitive to noise; 2) a faster processing was realized by 
the Sugeno FISs mainly due to simplified defuzzification; 
3) while LOM is mostly robust to the presence of missing 
data, WA appears affected severely by missing inputs; 4) 
WA can deliver a more accurate estimation than the 
others when predicting the unknown values for more than 
one-step-ahead in either recursive or direct way. These 
findings provide an additional reference for choosing a 
FIS for traffic flow prediction based on historical 
recordings. For example，based on these findings, one 
may better to chose WA if the prediction result is used for 
on-trip routing, when the historical recording is clean and 
complete or extra preprocessing methods are employed, 
as the real time requirement of on-trip routing is severer.   
However, MOM may be the first choice when the 

information predicted for the next time instant is released 
via variable messages or radio etc, as these information 
platforms generally require linguistic forms.  
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