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Abstract—Model checking is an efficient technique for
detecting errors of a system. However diagnosing program
errors is the most time consuming hard work. One of the
major advantages of model checking is the production of a
counterexample when a property violation is detected. The
error trace produced by a model checker may exhibit the
symptom related to the cause of errors. Thus, counterex-
amples can be enough and are indicative for the cause
of violation of the property. We present an assumption-
based approach to localize the cause of a property violation
using reasoning with constraints. The assumption among
the statements in counterexample is made to point out
which statement(s) is (are) faulty. Some constraints will be
introduced from the specifications of the program. Moreover,
we transform the counterexample into a propositional logic
formula which is then fed to a SAT solver or a theorem
prover together with constraints. A calculus of reasoning
with these constraints proceeds under certain assumptions.
If the result is satisfiable, the assumption is correct, other-
wise, the assumption is wrong and a new assumption should
be proposed. Some examples are presented to support the
applicability and effectiveness of our approach.

Index Terms—error diagnosing, assumption-based reason-
ing, model checking, constraints, counterexamples

I. INTRODUCTION

Diagnosing, i.e., locating and correcting errors in pro-
grams, is a difficult task in general, because of the gigantic
size of the search space for diagnosing and the complexity
of intrinsic links in the system (i.e., the intended behavior
of the program), and the process of realization.

Model checking is a popular automated verification
technique used to check properties of the finite-state
systems [6]. The model checking result is either a coun-
terexample at the source level showing how the system
could violate the property or a statement that the system
respects the property. The counterexample returned by a
model checker can help understanding symptoms related
to errors. Since the cause of errors are hidden deeply in
the code, A programmer needs to put significant effort to
uncover it.

Model based diagnosis[2] is a theory for diagnosing
physical systems. The diagnostic program is to determine
those components of the system which is assumed to
be functional abnormally, and explain the discrepancy
between the observed and correct system behavior. Reiter

et al.[2,3] have developed a general theory based on
first principles. Their algorithm computes all diagnoses
which explain the differences between the predicted and
observed behavior of a given system via minimal hitting
set for all conflict sets of the system. The observations
in model based diagnosis are the inputs and outputs of
the physical system. The system descriptions denoted
as SD are the set of sentences represented as first-
order sentences. The assumption where components are
assumed faulty is derived after the system is diagnosed.
A unary predicate AB(c) is used in the assumption which
means that component c is abnormal.

We apply this idea to allocate errors of programs.
However some modifications must be made to meet the
features of programs. The program description is the set of
transforming rules which represent the behavior of state-
ments. The counterexamples returned by a model checker
are observations of the program. The constraints which
derived from the specifications of the program represent
the intended program’s behavior. We therefore make as-
sumptions on the program statements. The assumption de-
termines a particular statement faulty. We then transform
the counterexample into a logic formula which is then
fed to a theorem prover or a SAT solver together with
the constraints. This logic formula represents the detected
program behavior and the constraints represent the intend-
ed one. The consequence of a certain assumption explains
the differences between the intended behavior given by
the constraints and the detected behavior given by a
specific program (a counterexample trace). If the result
of reasoning is satisfied, then the assumption is correct.
We then locate errors in those statements where they are
assumed faulty for program debugging. Otherwise, the
assumption is wrong and another assumption should be
made.

The rest of the paper is organized as follows. In Section
2 we give an example to illustrate our approach. Section 3
presents our assumption-based reasoning with constrains
for error localizing. In Section 4 we further propose an
approach to remove the redundant candidate statements
for diagnosing. Three experiments are illustrated in Sec-
tion 5 to support the applicability and effectiveness of our
approach. Related work is presented in Section 6 and the
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conclusion is given in Section 7.

II. AN EXAMPLE

To illustrate the idea of our approach, we give an
example as shown in Figure 1. This segment of code
is to find the middle number of three inputs. We use
Java PathFinder (JPF) model checker[10] to verify this
program. The method Verify.random(n) will nondetermin-
istically return an integer value in the range [0, n]. In
the program x=Verify.random(9)+1 means that x will
randomly take an integer value in the range [1, 10]. From
the specification (y <= x&&x <= z&&m == x)||(z <=

x&&x <= y&&m == x)||(z <= y&&y <= x&&m ==

y)||(x <= y&&y <= z&&m == y)||(x <= z&&z <=

y&&m == z)||(y <= z&&z <= x&&m == z)), we can get
constraints of the program which are annotated in Figure
1. Certain constraint at certain position of the program
means that when the program executes at this position,
the program behavior should satisfy this constraint.

1: public class MiddleNumber {
2: public static void main(String[ ] args) {
3: int x=Verify.random(9)+1;
4: int y=Verify.random(9)+1;
5: int z=Verify.random(9)+1;
6: int m=z;
7: if (y < z){
8: if (x < y){
9: m=y;
10: } else {
11: if (x < z) {
12: m=y;
13: }
14: }
15: }else
16: if (x > y){
17: m=y;
18: } else {
19: if (x > z) {
20: m=x;
21: }
22: }
23: constraint: (y<=x && x<=z && m==x)|| (z<=x && x<=y &&
m==x)||(z<=y &&y <=x && m==y)||(x<=y && y<=z && m==y)||(x<=z
&& z<=y && m==z)||(y<=z && z<=x && m==z)
24: assert ((y<=x && x<=z && m==x)|| (z<=x && x<=y
&& m==x)|| (z<=y &&y <=x && m==y)|| (x<=y && y<=z
&& m==y)|| (x<=z && z<=y && m==z)|| (y<=z && z<=x
&& m==z))
25: }
26: }

Figure 1. A segment of code.

Obviously, the assertion is not true. JPF returns a coun-
terexample CE={3, 4, 5, 6, 7, 8, 11, 12, 24}, where x = 2,
y = 1 and z = 3 respectively. The notation ij represents
the statement i at the j-th step in CE. Notice that when
reasoning along a counterexample, we discard the last
assertion on the counterexample which is violated. To be
better understood, We unwind the counterexample CE as
follows( p7, p8 and p11 represent predicates y < z, x < y
and x < z respectively and ⊤ and ⊥ represent true and
false respectively):
31 : x = 2 → 42 : y = 1 → 53 : z = 3 → 64 : m = z → 75 : y <

z(p7 == ⊤) → 86 : x < y(p8 == ⊥) → 117 : x < z (p11 ==

⊤) → 128 : m = y {(y <= x&&x <= z&&m == x)||(z <=

x&&x <= y&&m == x)||(z <= y&&y <= x&&m ==

y)||(x <= y&&y <= z&&m == y)||(x <= z&&z <=

y&&m == z)||(y <= z&&z <= x&&m == z)}

Assumption 1: AB(7) which means that statement 7 is
abnormal or faulty.

We first transform the counterexample into a corre-
sponding trace formula (for its definition see in Section
3).

(1). 64:m=z
TR(m=z)=(m==z) ;

(2). 75:p7=(y<z)(abnormal)
TR(m=z;assume(y<z))=(m==z) ;

(3). 86:p8=(x<y)==⊥
TR(m=z;assume(y<z);assume(x<y))=(m==z)∧(x>=y) ;

(4). 97:p9=(x<z)==⊤
TR(m=z;...;assume(x<z))=(m==z)∧(x>=y)∧(x<z) ;

(5). 128:m=y
TR(m=z;...;assume(x<z);m=y)=(x>=y)∧(x<z)∧(m==y) .

m == z is removed from the trace formula since we can
only take the latest value at any time for every variable.
Now we get the trace formula (x >= y)∧ (x < z)∧ (m == y)

for counterexample CE under assumption 1. This trace
formula and the constrains are fed to a SAT solver or
a theorem prover to be examined if the trace formula is
consistent with the constraints.

Note that we cannot use the input values of variables
of the program such as x = 2, y = 1 and z = 3. We can
only proceed the calculus symbolically. Under this way
we reason the cause of property violation symbolically
from the symptom exhibited by the counterexample. The
notion of “abnormal” in this paper means incorrect or
faulty. For instance, if an assignment statement x = 1 is
assumed abnormal, then it means that the variable x is
not assigned correctly, x should be assigned to another
value, however it cannot be predicted what value should
be assigned to x. Since assumption 1 states that statement
7 is abnormal, we cannot predict any state of statement 7,
i.e., cannot predict any values of predicate y < z. From the
above reasoning, we get that x >= y, x < z and m == y

contradict with the constraints (y < x&&x < z&&m ==

x)||(z < x&&x < y&&m == x)||(z < y&&y < x&&m ==

y)||(x < y&&y < z&&m == y)||(x < z&&z < y&&m == z)||(y <

z&&z < x&&m == z). That is, the behavior of program
under assumption 1 is inconsistent with the intended
behavior of program which is represented by constraints.
This discrepancy implies that assumption 1 is not correct,
and we have ¬AB(7) which means that statement 7 is
correct. With the similar calculus we also get that ¬AB(11).
Assumption 2: AB(8), statement 8 is abnormal.

We have the trace formula as follows:
(1). 64:m=z

TR(m=z)=(m==z) ;

(2). 75:p7=(y<z)==⊤
TR(m=z;assume(y<z))=(m==z)∧(y<z) ;

(3). 86:p8=(x<y) (abnormal)
TR(m=z;assume(y<z);assume(x<y))=(m==z)∧(y<z)

(4). 117:p11=(x<z)==⊤
TR(m=z;...;assume(x<z))=(m==z)∧(y<z)∧(x<z)

(5). 128:m=y
TR(m=z;...;assume(x<z);m=y)=(y<z)∧(x<z)∧(m==y) ;

Under this assumption, we get the trace formula (y <

z) ∧ (x < z) ∧ (m == y) and then feed this trace formula
together with constraints to a SAT solver. The result is
satisfied which means that the observed behavior
of the program is consistent with the intended one. We
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then know assumption 2 correct, and statement 8 is a
candidate for debugging. Formal definition of diagnoses
of the program will be presented in Section 3.

Assumption 3: AB(12), statement 12 is abnormal.
We have the trace formula as follows:

(1). 64:m=z
TR(m=z)=(m==z) ;

(2). 75:p7=(y<z)==⊤
TR(m=z;assume(y<z))=(m==z)∧(y<z) ;

(3). 86:p8=(x<y)==⊥
TR(m=z;...;assume(x<y))=(m==z)∧(y<z)∧(x>=y)

(4). 117:p11=(x<z)==⊤
TR(m=z;...;assume(x<z))=(m==z)∧(y<z)∧(x>=y)∧(x<z)

(5). 128:m=y(abnormal)
TR(m=z;...;assume(x<z);m=y)=(y<z)∧(x>=y)∧(x<z)

Note that both m == z and m == y are removed
from trace formula since statement m = y is executed
later than statement m = z. On the other hand, statement
m = y is abnormal, then m == y is also removed
(since we cannot predict which value variable m should
take). Under assumption 3, we get the trace formula
(y < z)∧ (x >= y)∧ (x < z) and then feed this trace formula
together with constraints to a SAT solver. The result is
satisfied, we then judge assumption 3 is correct and
statement 12 is also a candidate for diagnosing. From
assumptions 2 and 3 we allocate errors in {8, 12}. In
fact, statement 12 is faulty, we should replace assignment
(m = y) with assignment (m = x), then the program has
no errors.

Using the assumption-based reasoning with constraints
we obtain that the diagnosis for this program according
to the counterexample CE is statements {8,12}.

We now illustrate how we can get whether or not the
trace formula under a certain assumption contradicts with
the constraints. We can use SAT solving towards this aim.
Let p1 = (y < x), p2 = (x < z), p3 = (m == x), ¬p2 = (z < x),
¬p1 = (x < y), p4 = (z < y), p5 = (m == y), ¬p4 = (y < z),
and p6 = (m == z). Note that we only consider the case
that three variables take different values. Thus ¬p1 = (x <

y) provided that p1 = (y < x). Whether or not the trace
formula contradicts with the constraints under assumption
1 is depending on the truth value of the propositional
formula: (p1∧p2∧p5)∧{(p1∧p2∧p3)∨(¬p1∧¬p2∧p3)∨(p1∧
p4∧p5)∨(¬p1∧¬p4∧p5)∨(p2∧p4∧p6)∨(¬p2∧¬p4∧p6)}. We
still need to present some apriori knowledge/information
which is inherent to the program to determine the truth
value of the above formula. First, it is easy to see that
p3 → ¬p5∧¬p6 which indicates that if variable m takes
a value x then it cannot take another value such as y and
z at the same time. Similarly, we have p5 → ¬p3 ∧ ¬p6
and p6 → ¬p3 ∧ ¬p5. Second, we have transitivity of
< or >. Thus p1 ∧ p2 → ¬p4 which indicates that if
y < x and x < z hold then y < z holds. So we also have
p2 ∧ p4 → ¬p1 and p1 ∧ p4 → ¬p2.

We use a SAT solver PicoSat [16] to calculate the truth
value of the trace formula together with constraints. Under
assumption 2, the formula being checked is changed to
(p3 → ¬p5 ∧ ¬p6) ∧ (p5 → ¬p3 ∧ ¬p6) ∧ (p6 → ¬p3 ∧ ¬p5) ∧
(p1 ∧ p2 → ¬p4) ∧ (p2 ∧ p4 → ¬p1) ∧ (p1 ∧ p4 → ¬p2) ∧ (p2 ∧
¬p4∧ p5)∧ {(p1∧ p2∧ p3)∨ (¬p1∧¬p2∧ p3)∨ (p1∧ p4∧ p5)∨

(¬p1 ∧ ¬p4 ∧ p5) ∨ (p2 ∧ p4 ∧ p6) ∨ (¬p2 ∧ ¬p4 ∧ p6)}. PicoSat
returns the satisfied result with the true assignments
p1 = false, p2 = true, p3 = false, p4 = false, p5 = true

and p6 = false. The true assignments indicate that x <

y, x < z, y < z and m == y must hold at the end of
some execution trace of the program. Under assumption
3, we check (p3 → ¬p5 ∧ ¬p6) ∧ (p5 → ¬p3 ∧ ¬p6) ∧ (p6 →
¬p3 ∧ ¬p5) ∧ (p1 ∧ p2 → ¬p4) ∧ (p2 ∧ p4 → ¬p1) ∧ (p1 ∧ p4 →
¬p2)∧ (p1∧p2∧¬p4)∧{(p1∧p2∧p3)∨ (¬p1∧¬p2∧p3)∨ (p1∧
p4∧ p5)∨ (¬p1∧¬p4∧ p5)∨ (p2∧ p4∧ p6)∨ (¬p2∧¬p4∧ p6)},
the result is also satisfied. The true assignments are
p1 = true, p2 = true, p3 = true, p4 = false, p5 = false and
p6 = false which indicates that y < x, x < z, y < z and
m == x must hold at the end of some execution trace of
the program.

III. ASSUMPTION-BASED REASONING WITH
CONSTRAINTS

The diagnostic process is to identify faulty compo-
nents of a functionally abnormal system and explain the
discrepancy between the problematic and correct system
behavior. In [2], a system is a pair (SD, COMPONENTS)
where SD, the system description, is a set of first-
sentences, and COMPONENTS is a finite set of constants.
The observations of a system are a finite set OBS of first-
order sentences of inputs and outputs of the system. A
diagnosis for (SD, COMPONENTS, OBS) is a minimal set
∆ ⊆ COMPONENTS such that

SD ∪ OBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ COMPONENTS −∆} . . . (∗)

is consistent. It is easy to derived that a diagnosis exists
for (SD, COMPONENTS, OBS) iff SD ∪ OBS is consistent.

We extend this idea from physical system diagnosing
to program debugging. An execution path π = s1, s2, . . .
is a sequence of program statements. We also use πi,j =
si, ..., sj to represent the segment between si and sj . As
in [4], we use assume(p) to denote a branching statement
where p is its predicate. That is, branching statement i:
assume(p), where p is a predicate. It might come from
statements like if (p) . . . or while (p) . . . or successfully
executing of assert(p).

In order to detect possibly faulty statements of the
program, a description of the error trace for reasoning
under a certain assumption is needed. The predicate AB(i)

is used to indicate that statement i is abnormal. A correct
behavior statement i is therefore denoted as ¬AB(i). We
now propose a definition of the error tracing formula
under a given assumption.

Definition 1: Given π1,i−1 = s1, ..., si−1(i > 1) and
a propositional formula ϕ (ϕ is a trace formula which
is obtained from the initial statement s1 to statement
si−1), the trace formula with respect to π1,i, denoted by
TR(ϕ, si), is defined as follows:

(1) For an assignment statement si : v = e, there are three
subcases:
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(1.1) if ϕ contains a formula v == e1 for same variable
v, TR(ϕ, si) = (ϕ \ (v == e1)) ∧ (v == e);

(1.2) if ϕ does not contain any formula v == e1 for
same variable v, TR(ϕ, si) = ϕ ∧ (v == e);

(1.3) if ϕ is formula related to v, TR(ϕ, si) = ϕ(e/v);

(2.1) For a branch statement si : assume(p), if the val-
ue of predicate p is true when executing statement si,
TR(ϕ, si) = ϕ ∧ p;

(2.2) For a branch statement si : assume(p), if the value
of predicate p is false when executing statement si,
TR(ϕ, si) = ϕ ∧ ¬p;

(2.3) For a branch statement si : assume(p), if ϕ contains
a same predicate p and its value is p1 (p1 = p if predicate
p is true; otherwise, p1 = ¬p), TR(ϕ, si) = (ϕ\p1)∧ p2 where
p2 = p if predicate p is true when executing statement si;
otherwise p2 = ¬p;

(3.1) For an assignment statement si : v = e which is
assumed to be abnormal, TR(ϕ, si) = ϕ;

(3.2) For a branch statement si : assume(p) which is
assumed to be abnormal, TR(ϕ, si) = ϕ;

(4) For a sequence of statements si; si+1, TR(ϕ, si; si+1) =

TR(TR(ϕ, si), si+1);
Note that formula ϕ \ (v == e1) is a formula obtained

by removing v == e1 from ϕ and formula ϕ(e/v) denotes
the substitution of v with e in ϕ. For instance, if z == x

and ϕ = (x <= y) then ϕ(z/x) = (z <= y).
Case (1.1) means that we can only take the latest value

at any time for every variable. Case (2.3) has the same
meaning. i.e., the latest value should be taken for the same
predicate. Case (1.3) means that the trace formula should
reflect the dynamic changes due to the execution of the
program. Cases (3.1) and (3.2) represent that we don’t
need to consider any state of the abnormal statement since
its value for the variable cannot be predicted.

We use propositional logic to handle the following
program errors: wrong operator usage(e.g.: <= instead
of <), logical code bug, wrong assignment expression,
error due to extra code fragments, wrong constant value
supplied(e.g.: off-by-one error), wrong initialization of a
variable and array index, predicate error in branching due
to negation of branching condition and so on.

Given a program P and the set S of specifications which
need to be verified for P . Let CE be a counterexample
returned by a model checker. Let TR be a trace formula
for CE under a certain assumption that represents the de-
tected behavior of P . Note that i is an index corresponding
to a certain statement of the program.

Definition 2: Given a program P , a counterexample
CE, a trace formula TR, a set of constraints S and a
set of indices I where each i ∈ I corresponds to a certain
statement of P . A diagnosis for (P, TR,CE, S) is a minimal
set ∆ ⊆ I such that

TR ∪ CE ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ I −∆} ∪ S . . . (∗∗)

is satisfied. On the other hand, if the above formula
is unsatisfied, then the assumption {AB(c)|c ∈ ∆} is
incorrect.

Remark 1: Formula (∗) is a first order logic whose
truth value can be evaluated using the minimal hitting
set approach. Formula (**) represents a procedure of
reasoning about the propositional logic formula. Formula
(∗) uses OBS as the whole observations of the physical
system. Since programs may not have outputs, we need
the constraints as a part of observations to guarantee that
the behavior of the program is correct. On the other
hand, the counterexample is also a part of observations
representing the detected behavior of the program. Thus,
the consequence of the assumption also explains the
differences between the intended behavior given by the
constraints and the detected behavior given by a trace
formula.

Definition 3: Given a diagnosis of (P, TR,CE, S), an
abnormal assignment statement s1 ∈ △ denoted as
s1 : v = e, a transitive abnormal statement of s1 is an
assignment s2 which use the value of v and the state
of statement s1 affects the state of statement s2 on the
execution path of program P .

For example, assume that s1 : y = x+1 and statement
s1 is abnormal, then the later executed statement s2 : z =
y+2 is the transitive abnormal statement of s1 since the
assignment statement s2 : z = y + 2 use the value of y
and the value of y affects the value of z.

The transitive abnormal statements obviously are ab-
normal during reasoning. Let △′ be the set of transitive
abnormal statements of assumption ∆, we still denote
△∪△′ as △ in the rest of this paper.

Theorem 1: A nonempty diagnosis for (P, TR,CE, S)

exists iff TR ∪ CE ∪ {¬AB(c)|c ∈ I} ∪ S is unsatisfied.
Proof: “⇒” Since a nonempty diagnosis exists for

(P, TR,CE, S), from definition 2 there is a nonempty
minimal set ∆ ⊆ I such that TR ∪ CE ∪ {AB(c)|c ∈
∆} ∪ {¬AB(c)|c ∈ I −∆} ∪ S is satisfied. This implies that
TR ∪ CE ∪ {¬AB(c)|c ∈ I} ∪ S is unsatisfied.

“⇐” Since TR ∪ CE ∪ {¬AB(c)|c ∈ I} ∪ S is unsatisfied
which means that the correct assumption is actually
wrong; there is a nonempty minimal set ∆ ⊆ I such that
TR∪CE∪{AB(c)|c ∈ ∆}∪{¬AB(c)|c ∈ I−∆}∪S is satisfied.

Definition 4: For a diagnosis of (P, TR,CE, S), if TR∪
CE ∪ {¬AB(c)|c ∈ I} ∪ S is satisfied, then we say all
statements of the program are correct. On the other hand,
some constraint of S is not satisfied, so that we say
that there is an absence of function of the program. The
program still does not run correctly according to the
specifications.

Definition 4 states the fact that the behavior of the
program is partially correct, but we still need to add
some statements to perform some function such that all
specifications of the program are satisfied. More details
will be illustrated in section 6. So far, there are two types
of diagnoses for program P . One is diagnosis for the
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statement of the program P . The other is diagnosis for
the absence of the function.

Definition 5: A conflict set for (P, TR,CE, S) is a set
∆ ⊆ I such that TR ∪ CE ∪ {¬AB(c)|c ∈ ∆} ∪ {AB(c)|c ∈
I −∆} ∪ S is unsatisfied.

For the program in Figure 1, {7} and {11} are both
conflict sets. The relationship between a diagnosis and a
conflict set can be explained as follows.

Theorem 2: ∆ ⊆ I is a diagnosis for (P, TR,CE, S) iff
∆ is a minimal set such that I−∆ is not a conflict set for
(P, TR,CE, S).

Proof: “⇒” Let ∆ ⊆ I be a diagnosis for
(P, TR,CE, S). Hence, TR ∪ CE ∪ {AB(c)|c ∈ ∆} ∪
{¬AB(c)|c ∈ I −∆} ∪ S is satisfied. It can be restated that
TR∪CE∪{¬AB(c)|c ∈ I−∆}∪{AB(c)|c ∈ ∆}∪S is satisfied.
Hence, I −∆ is not a conflict set for (P, TR,CE, S).

“⇐” Suppose that ∆ is the minimal set such that I−∆ is
not a conflict set for (P, TR,CE, S). We have that TR∪CE∪
{¬AB(c)|c ∈ I−∆}∪{AB(c)|c ∈ ∆}∪S is satisfied. It is easy
to see that TR∪CE∪{AB(c)|c ∈ ∆}∪{¬AB(c)|c ∈ I−∆}∪S

is satisfied and ∆ is a diagnosis for (P, TR,CE, S).
If diagnosis ∆ contains only one element, it is called

a single fault diagnosis. If it contains more than one
element, it is called a multiple fault diagnosis. We now
reason for the program which has two-fault diagnosis.
Let’s consider the program shown in Figure 2. Note that
this program is also illustrated in [7,9,13].

1: public class AcquireReleaseLocks {
2: public static int LOCK=0;
3: public static void main(String[ ] args) {
4: int got−lock=0;
5: do {
6: if (Verify.randomBool()) {
7: lock();
8: got−lock + +;
9: }
10: if (got−lock!=0) {
11: unlock();
12: }
13: got−lock − −;
14: } while (Verify.randomBool());
15: } // constraint: got− lock==0
16: public static void lock() {
17: assert(LOCK==0);
18: LOCK=1;
19: }
20: public static void unlock() {
21: assert(LOCK==1);
22: LOCK=0;
23: }
24: }

Figure 2. A program which has a two-fault diagnosis.

This program calls method lock() and unlock() in
order to acquire and release a lock. The method lock()
checks that the lock is available and requests it. Vice
versa, unlock() checks that the lock is held and releases
it. The lock is represented by variable LOCK which is set
to 0 or 1 with respect to the state of the lock. The variable
got−lock is used to keep track of the status of the lock.
Method Verify.randomBool() returns a random boolean
value in JPF. Thus, the if -statement in line 6 causes the
lock to be requested nondeterministically, and the while-
statement in line 14 causes the loop to be executed for
an arbitrary number of times. The explicit specifications
are two assertions, and an inherent specification is the

program which should acquire a lock and release a lock
in strict alternation along all execution traces. We put
got−lock==0 at line 15 as a constraint to check whether
the program acquires a lock and releases a lock in strict
alternation along all execution traces.

We check the program by JPF. The assertions are
violated and we get a counterexample {2, 4, 6, 10, 13, 14,
6, 10, 21}. We first slice the program along this counterex-
ample and obtain the dynamic slice {2, 4, 6, 10, 13, 14}.
Moreover, We unwind the counterexample CE as follows
(p6, p10 and p14 represent predicates in line 6, 10, 14
respectively):

21 : LOCK = 0 → 42 : got−lock = 0 → 63 : P6(== ⊥) →
104 : got−lock! = 0(p10 == ⊥) → 135 : got−lock −− →
146 : p14 (== ⊤) {got lock==0} → 67 : P6(== ⊥) →
108 : got−lock! = 0 (p10 == ⊤)

Assumption 1: AB(10) which means that statement 10
is abnormal.

We get the trace formula under assumption 1 as fol-
lows:

(1). 42:got−lock=0
TR(got−lock=0)=(got−lock==0) ;

(2). 104:(got−lock!=0) (abnormal)
TR(got lock=0;assume(got−lock!=0))=(got−lock==0) ;

(2). 135:got−lock−−
TR(got−lock=0;...,got−lock−−)=(got−lock==−1) ;

So the trace formula is TR(got−lock = 0; ..., got−lock −

−) = (got−lock == −1) which contradicts with the con-
straint got−lock == 0.

From above, we conclude that assumption 1 is wrong,
i.e., statement 10 is correct.

Assumption 2: AB(13) which means that statement 13
is abnormal.

(1). 42:got−lock=0
TR(got−lock=0)=(got−lock==0) ;

(2). 104:(got−lock!=0)==⊥
TR(got−lock=0;assume(got−lock!=0))=(got−lock==0) ;

(3). 135:got−lock−−(abnormal)
TR(got−lock=0;...;got−lock−−))=(got−lock==0) ;

(4). 108:(got−lock!=0)==⊤
TR(...;assume(got−lock!=0);...;assume(got−lock!=0))=(got−lock!=0) .

The trace formula TR(got−lock = 0; assume(got−lock! =

0); ...; assume(got−lock! = 0)) = (got−lock! = 0) contradicts
with the constraint got−lock == 0. Therefore, assumption
2 is also wrong, i.e., statement 13 is correct. Furthermore,
We make another assumption which states that both
statement 10 and 13 are abnormal.

Assumption 3: AB(10) and AB(13).

(1). 42:got−lock=0
TR(got−lock=0)=(got−lock==0) ;

(2). 104:(got−lock!=0)(abnormal)
TR(got−lock=0;assume(got−lock!=0))=(got−lock==0) ;

(3). 135:got−lock−−(abnormal)
TR(got−lock=0;...;got−lock−−)=(got−lock==0) ;

(4). 108:(got−lock!=0)(abnormal)
TR(got−lock=0;...;assume(got−lock!=0))=(got−lock==0) .

Thus TR(got−lock = 0; assume(got−lock! = 0); got−lock −

−) = (got−lock == 0) is consistent with constraint
got−lock == 0.
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It also shows that TR(got−lock = 0; assume(got−lock! =

0); got−lock − −; assume(got−lock! = 0) = (got−lock == 0) is
consistent with constraint got−lock == 0. From the above
reasoning, assumption 3 is correct, i.e., statements 10
and 13 are both abnormal. In fact the real fault of the
program is that statement 13 should be placed within
the scope of if -statement at line 10. Thus, for single
statement 13, it is not abnormal, however it should be
controlled by statement 10. Compared our result with the
one of [7,9,13], our method is more precise. We make
other assumptions such as AB(2), AB(4), AB(6) and AB(14).
They are all incorrect, so the diagnosis of the program
according to this counterexample is a two-fault diagnosis
which is {10,13}.

IV. REFINEMENT OF ERROR LOCALIZATION

Since the given counterexample can exhibit the symp-
tom related to the cause of error, we first analyze the error
trace, then the program is diagnosed. However, due to no
enough execution information, the diagnosed candidates
may be more than what we expected. To identify precise
error location, we need more execution information of the
program.

If the trace formula does not contradict with the con-
straints, i.e., TR∪CE∪{AB(c)|c ∈ ∆}∪{¬AB(c)|c ∈ I−∆}∪S
is satisfiable, the SAT solver will return true assignments
of the formula which can provide information of cor-
rect program behavior. True assignments mean that in
order to not contradict with the constraints, conditions
of the true assignments must hold at the end of some
execution traces. If there is no such execution trace that
all conditions of the true assignments hold, then these
statements for diagnosing under certain assumption are
the most likely faulty statements. On the other hand,
if there is such an execution trace that all conditions
of the true assignments hold, then these statements for
diagnosing under certain assumption are redundant and
can be removed from debugged candidates. We can then
narrow the range of statements for diagnosing.

The principle behind is that for assumed faulty s-
tatements, if there is an execution trace in which all
conditions(predicates) of true assignments of formula
TR∪CE∪{AB(c)|c ∈ ∆}∪{¬AB(c)|c ∈ I−∆}∪S hold, then
this trace corresponds to a witness of the program. That is,
after executing of the witness of program the conditions of
true assignment of the formula hold. So, these statements
could be correct though they appear spuriously faulty.

On the other hand, if there is no such trace that all
conditions of true assignments of formula TR ∪ CE ∪
{AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ I − ∆} ∪ S hold, then the
predicate(s) of statement(s) assumed faulty cannot take
any suitable value(s) in the execution of program so that
the formula is satisfiable. Then, these statements are the
real faulty statements. We illustrate these two cases by
the example in Section 2.

As in Section 2, we localize errors in {8,12} for the
program shown in Figure 1. In order to highlight the more
suspicious diagnosed candidates, we apply the above idea

to this example. Note that for assumption 2 in Section 2,
the corresponding true assignments is x < y, x < z, y < z

and m == y. These true assignments imply that in order
not to contradict with the constraints, the predicates such
as x < y, x < z, y < z and m == y must hold at the end
of some execution traces of the program.

We put the assertion assert(!((x < y)&&(x < z)&&(y <

z)&&(m == y))) at line 23 at the end of program in Figure
1 to determine whether or not statement 8 is the real
candidate for diagnosing. If there is an execution trace
where (x < y)&&(x < z)&&(y < z)&&(m == y) hold, JPF
will return a counterexample that just represents this trace.
We check this assertion and JPF returns an execution
trace {3,4,5,6,7,8,9} with the inputs x == 1, y == 2 and
z == 3. Note that trace {3,4,5,6,7,8,9} corresponds to a
witness of the program and predicate x < y in statement
8 can take value true in the witness such that the formula
TR ∪ CE ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ I − ∆} ∪ S is
satisfiable. Hence, statement 8 is a redundant candidate
for debugging.

In Section 2, for assumption 3, the corresponding true
assignments are y < x, x < z, y < z and m == x. Similarly,
the assertion we put at line 23 is changed to assert(!((y <

x)&&(x < z)&&(y < z)&&(m == x))). JPF shows that the
specification is correct. This means that there is no such
execution trace that (y < x)&&(x < z)&&(y < z)&&(m == x)

hold at the end of program execution. The real cause is
as follows: since (y < x)&&(x < z)&&(y < z)&&(m == x)

must hold after running the program, the program should
execute the trace {3,4,5,6,7,8,11,12}. On the other hand,
at statement 12 variable m takes a value y instead of x,
m == x cannot hold at the end of program execution.
This means that statement 12 is the real error of the
program. Moreover, the potential correction of the error
is also provided. That is, at statement 12 m = y should be
replaced with m = x.

We present a formal rule for refining the error location
as follows:
Refinement Rule: Let ∆ ⊆ I be a diagnosis for
(P, TR,CE, S) under a certain assumption. That is,

TR ∪ CE ∪ {¬AB(c)|c ∈ I −∆} ∪ {AB(c)|c ∈ ∆} ∪ S

is satisfiable. If all conditions in the corresponding true
assignments of the above formula hold for some execution
trace, then the diagnosis ∆ is redundant and can be
removed from candidates for debugging.

Remark 2: The discrepancies between the true assign-
ments of a counterexample and the true assignments
returned by solving the formula TR ∪ CE ∪ {¬AB(c)|c ∈
I − ∆} ∪ {AB(c)|c ∈ ∆} ∪ S might provide us intrinsic
information about how to correct the faulty statement
when no such execution trace that all conditions of the
true assignments of the formula hold.

V. CASE STUDIES

In this section we present initial experimental results
supporting the applicability of our approach on real time
programs. We have implemented a prototype program,
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called trace formula producer(TFP), to get the trace
formula for the given counterexample under a certain
assumption. The inputs of the trace formula producer are
the given counterexample and certain assumptions. First,
we illustrate the sorter program related to the absence of
function.

A. Sorter

The sorter program shown in Figure 3 is to sort four
arbitrary numbers in an ascending order.

1: class sorter2 {
2: public static void main(String[ ] args) {
3: int a=verify.random(4);
4: int b=verify.random(4);
5: int c=verify.random(4);
6: int d=verify.random(4);
7: int temp=0;;
8: if (a>b) {
9: temp=b;
10: b=a;
11: a=temp;
12: }
13: if (b>c) {
14: temp=c;
15: c=b;
16: b=temp;
17: }
18: if (c>d) {
19: temp=d;
20: d=c;
21: c=temp;
22: }
23: if (b>c) {
24: temp=c;
25: c=b;
26: b=temp;
27: }
28: if (a>b) {
29: temp=b;
30: b=a;
31: a=temp;
32: } // constraint: (a<=b) && (b<=c)&& (c<=d)
33: assert((a <= b) && (b <= c) && (c <= d));
34: }

Figure 3. The sorter program.

We check this program by JPF. The assertion
is violated and we get a counterexample
{3,4,5,6,7,8,13,14,15,16,18,19,20,21,23,28,29,30,31,33}
where the input values of a, b, c, and d are 1, 1, 0, 0
respectively. Note that the values of predicates in line
8 and 23 are both false and the values of predicates in
line 13, 18 and 28 are all true. All assumptions that
assume some individual statement is faulty are not true
according to our method. We now make an assumption
that all statements of the program are correct and have
the following trace formula:

(1). 86:(a>b)==⊥ 137:(b>c)==⊤
TR(assume(a>b);assume(b>c))=(a<=b)∧(b>c) ;

(2). 148:temp=c
TR(assume(a>b);...;temp=c)=(a<=b)∧(b>temp) ;

(3). 159:c=b
TR(assume(a>b);...;c=b)=(c>temp)∧(a<=c) ;

(4). 1610:b=temp
TR(assume(a>b);...;b=temp)=(c>b)∧(a<=c) ;

(5). 1811:(c>d)==⊤
TR(assume(a>b);...;assume(c>d))=(c>=a)∧(c>b)∧(c>d) ;

(6). 1912:temp=d
TR(assume(a>b);...;temp=d)=(c>=a)∧(c>b)∧(c>temp) ;

(7). 2013:d=c
TR(assume(a>b);...;d=c)=(d>=a)∧(d>b)∧(d>temp) ;

(8). 2114:c=temp
TR(assume(a>b);...;c=temp)=(d>=a)∧(d>b)∧(d>c) ;

(9). 2315:(b>c)==⊥
TR(...;assume(b>c))=(d>=a)∧(d>b)∧(d>c)∧(b<=c) ;

(10). 2816:(a>b)==⊤
TR(...;assume(a>b))=(d>c)∧(c>=b)∧(d>=a)∧(a>b) ;

(11). 2917:temp=b
TR(...;temp=b)=(d>c)∧(c>=temp)∧(d>=a)∧(a>temp) ;

(12). 3018:b=a
TR(...;b=a)=(d>c)∧(c>=temp)∧(d>=b)∧(b>temp) ;

(13). 3119:a=temp
TR(...;a=temp)=(d>c)∧(c>=a)∧(d>=b)∧(b>a) ;

The trace formula under the given assumption is
TR(assume(a > b); ...; a = temp) = (d > c) ∧ (c >=

a)∧(d >= b)∧(b > a) which is consistent with the constraint
{a <= b, b <= c, c <= d}. Hence, the assumption is correct,
namely, all statements are correct. However, from d >

c >= a, d >= b > a we cannot conclude that b <= c which
is a constraint from the specification. So, the program
is partially correct, we should add some statements to
perform a comparison between b and c. Thus, we need
to add statements if(b > c){temp = c; c = b; b = temp; }
at the end of the program, and so far, the program is
entirely correct. Trace formula producer(TFP) constructs
the above trace formula and calls Picosat solver[16] to
determine whether the trace formula contradicts with the
constrains.

B. TCAS Program

Traffic Alert and Collision Avoidance System (TCAS)
is an aircraft conflict detection and resolution system used
by all US commercial aircraft. The Georgia Tech version
of the Siemens suite [15] constitutes an ANSI C version
of the Resolution Advisory (RA) component of the TCAS
system (173 lines of C code). TCAS continuously moni-
tors the radar information to check whether there is any
neighbor aircraft that could represent a potential threat by
getting too close.

In such case, it is said that an intruder aircraft is
entering the protected zone. Whenever an intruder aircraft
enters the protected zone, TCAS issues a Traffic Advisory
(TA) and estimates the time remaining until the two
aircraft reach the closest point of approach (and then begin
to fly away from each other). Such estimate is used to
calculate the vertical separation between the two aircraft
assuming that the controlled aircraft either maintains its
current trajectory or performs immediately an upward
(downward) maneuver. Depending on the results obtained,
TCAS may issue a RA suggesting the pilot either to climb
or to descend. To be able to use JPF, we translate these
C programs into Java programs. Figure 4 shows the code
of procedure alt sep test().

Let ASTEn identify the statement where the analyzed
subsystem starts the computation for selecting the best es-
cape maneuver and, ASTUpRA and ASTDownRA identify
the statements where climbing and descending RAs are
selected respectively.

We use a faulty version (version 1) of TCAS to check
the property P1 Cond → !PrA, where P1 Cond=(Up Sepration

< Layer Positive RA ALT Thresh) && (Down Sepration >= Lay-

er Positive RA ALT Thresh) and PrA=(ASTEn && ASTUpRA). This
property is not satisfied. The prototype TFP allocates
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the fault in four statements as candidates for diagnosing
shown in Figure 4. We further refine the error allocation
using the method in Section 4.

......
public boolean Inhibit Biased Climb () {
=⇒ return

(Climb Inh?Up Sep+NOZCROSS:Up Sep) ... (1)
}
......

public boolean Own Below Threat () {
=⇒ return

(Own Tracked Alt < Other Tracked Alt); ... (2)
}
......

public boolean Non Crossing Biased Climb(){
......

=⇒ result=
!(Own Below Threat()) || (Own Below Threat())

&& (!(Down Separation >ALIM()); ...(3)
......

public int alt sep test(){
......

=⇒ need upward RA=Non Crossing Biased Climb()
&& Own Below Threat(); ...(4)

......
}
......

}
......

Figure 4. alLocating errors in TCAS version 1.

If we assume statement result =

!(Own Below Threat())||(Own Below Threat())&&(!(Down

Separation > ALIM()) is faulty, the true assignments
indicate that variable result in statement result =

!(Own Below Threat())||(Own Below Threat())&&(!(Down

Separation > ALIM()) should take false value at the
end of some execution traces. We put the assertion
assert(result! = false) at the end of the program, JPF
shows that this assertion is true which means that
condition (result == false) of the satisfiable assignments
does not hold at the end of all execution traces.
For the assumption that supposes any of three other
statements is faulty, all conditions of true assignments
are satisfied at the end of some execution trace.
Thus, the fault to be refined is statement result =

!(Own Below Threat())||(Own Below Threat())&&(!(Down

Separation > ALIM()) and the other three statements
are redundant candidates for diagnosing. In fact the
real fault in this version is the above statement,
and the corresponding correct statement is result =

!(Own Below Threat())||(Own Below Threat())&&(!(Down

Separation >= ALIM()).
Moreover, we use TCAS version 2 to check the

property P2 Cond → PrB, where P2 Cond=(Up Sepration

> Layer Positive RA ALT Thresh) && (Own Tracked Alt > Oth-

er Tracked ALT) && (Down Separation >Up Separation) and
PrB=ASTDownRA. This property is not satisfied. Our method
allocates errors in four statements as candidates for de-
bugging shown in Figure 5. We further refine the error
allocation. For the assumption which assumes statement
(3) is faulty, the truth assignments suggest that vari-
able result in method Non Crossing Biased Descend()
should take true value at the end of some execution
trace. We put the assertion assert(result! = true) at the
end of the program, JPF shows that this assertion is

true which means that condition (result == true) of the
satisfiable assignments does not hold at the end of all
execution traces. Thus, statement (3) is the high suspi-
cious candidate for debugging. Similarly, we show that
the statements (1), (2) and (4) are redundant candidates
for debugging. Actually, the real fault in version 2 is
statement (1), and the corresponding correct statement is
(Climb Inh?Up Sep+NOZCROSS:Up Sep).

......
public boolean Inhibit Biased Climb () {
=⇒ return

(Climb Inh?Up Sep+MINSEP:Up Sep) ... (1)
}
......

public boolean Non Crossing Biased Descend(){
......

=⇒ upward preferred=Inhibit Biased Climb()>
Down Separation; ... (2)

if (upward preferred){
=⇒ result=

!(Own Below Threat()) && (Cur Vertical Sep
>=MINISEP) && (Down Separation >ALIM());

... (3)
......
}
......

public int alt sep test(){
......

=⇒ need downward RA=Non Crossing Biased
Descend() && Own Above Threat(); ... (4)

......
}
......

}

Figure 5. Allocating errors in TCAS version 2.

C. Schedule Program

The schedule program of the Siemens test suite is
a priority scheduler. The input of the program is a
list of commands of the following kinds: FINISH (The
current process exits by this execution), NEW JOB (This
adds a new process at specified priority), BLOCK (This
adds the current process to the blocked queue), QUAN-
TUM EXPIRE (This puts the current process at the end
of its prio queue), UNBLOCK (This unblocks a process
from the blocked queue), and UPGRADE (This promotes
a process from the small-priority queue to the next higher
priority). The output is a list of numbers indicating
the order in which processes exit from the system.The
program consists of 405 lines of C code.

We use a faulty version of the program (version 2) to
verify the property (P1 Cond && P2 Cond) → PrC, where
P1 Cond=((int)(prio queue[2].mem count *ratio+1) ≤ prio queue[2]

.mem count, P2 Cond=((int)(block queue.mem count *ratio+1))

≤ block queue.mem count and PrC=(prio queue[3].mem count

)==(count initial+ n newjob+n upgrade+n unblock-n block-

n finish)). P1 Cond and P2 Cond guarantee that the
scheduler can select a process to upgrade and unblock.

prio queue[3].mem count indicates the number of pro-
cesses at prio queue[3]; count initial indicates the initial
number of the processes at prio queue[3]; n newjob is
the times of adding a new process at priority 3; n upgrade
is the times of promoting a process of priority 2 to priority
3; n block indicates the times of adding a process of
priority 3 to the blocked queue; n unblock represents the
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times of unblocking a process from the blocked queue
to prio queue[3], and n finish represents the times of
exiting a process from prio queue[3].

We check this property after executing each command.
The JPF shows that the property is not satisfied after
executing command UNBLOCK. The prototype TFP al-
locates the faults in five statements as candidates for
diagnosing shown in Figure 6. Similarly, using the refined
method the statements count = block queue.mem count+ 1

and n = (int)count ∗ ratio are allocated as high suspicious
errors for diagnosing. In fact the real faults in this
version are the above statements, and the corresponding
correct statements are count = block queue.mem count and
n = (int)(count ∗ ratio+ 1).

......
public void unblock process(float ratio) {

......
=⇒ count=block queue.mem count+1; ...... (1)
=⇒ n=(int) count*ratio; ...... (2)

......
=⇒ if (proc!=null) { ...... (3)

......
}
}
......

public Ele find nth(List f list, int n) {
......

=⇒ if(n<=0) ...... (4)
=⇒ return null; ...... (5)
}

......

Figure 6. Allocating errors in Schedule program of version 2.

We also check the property (P1 Cond && P2 Cond) → PrC

of Schedule programs in faulty version 1. JPF shows
that the property is also not satisfied after executing
command FINISH. The prototype TFP allocates the faults
in three statements as candidates for diagnosing shown in
Figure 7. Furthermore, If the refined method is used, the
statements if (count > 1) is allocated as high suspicious error
for diagnosing. In fact the real faults in this version are the
above statement, and the corresponding correct statement
is if (count > 0).

......
public void upgrade process prio(int prio, float ratio) {

......
=⇒ if (count > 1) { ...... (1)

n = (int) (count * ratio + 1);
......
}
}
......

public void unblock process(float ratio) {
if (!block queue.isEmpty()) {

=⇒ count = block queue.mem count; ...... (2)
=⇒ n=(int)(count*ratio+1); ...... (3)

......
}
}
......

Figure 7. Allocating errors in Schedule program of version 1.

VI. RELATED WORK

The software fault diagnosing problem has caught at-
tention of recent research. Ilan [1] uses causality concepts

to explain a counterexample. Case studies show that the
method can substantially speed up time needed for under-
standing of a counterexample. Groce [8] uses a SAT based
bounded model checker to produce the counterexample,
and then uses a pseudo-boolean constraint solver to find
a successful execution that is as close as possible to the
counterexample. The difference between the successful
execution and the counterexample is computed and is
considered as the potential cause of failure.

Ball et. al.[2] use multiple calls to a model checker
and compare the counterexamples to a successful trace.
Transitions that do not appear in a correct trace are
reported as a possible cause of the fault. The work of
Grove and Visser [7] is based on comparing negative and
positive program traces. The set cause(neg) is to compute
those statements that only appear in negative traces and
are necessary for a trace to be negative. They can use
this set to allocate the errors of a program. However the
precision of error allocation depends on the positive and
negative traces found by a model checker.

Wang et. al.[5] present a causal analysis for a coun-
terexample to determine what particular line in the code is
responsible for the fault of the program. They use a path-
based syntactic-level weakest precondition algorithm to
produce a proof of infeasibility for the given counterex-
ample, which is a minimal set of word-level predicates
extracted from the failed execution that explains why the
execution fails.

B.Jobstmann et. al.[9] studied the program repair prob-
lem which is closely related to fault location. They
consider the program repair problem as a game. The
game is played between the environment, which provides
the inputs, and the system, which provides the correct
value for the unknown expression. The game is won
if for any input sequence the system can provide a
sequence of values for the unknown expression such that
the specification is satisfied. A winning strategy fixes
the proper values for the unknown expression and thus
corresponds to a repair.

Delta debugging [12] is a automatic testing algorithm
that narrows the difference in the program states between
a failing and a passing run to isolate the statement consti-
tuting the cause of the failure. This method is empirical,
which is quite different from approaches based on formal
or static analysis.

By forcible switching a predicate’s outcome at runtime
and altering the control flow, the program state can not
only be inexpensively modified, but in addition it is often
possible to bring the program execution to a successful
completion [11]. By examining the switched predicate,
also called the critical predicate, the cause of the bug can
then be identified. This technique is shown to be practical
and effective for allocating errors in many practical cases.

Statistical debugging [14] proposes a statistic approach
to localize faults without prior knowledge of program se-
mantics. The approach uses the predicated-based dynamic
analysis. By exploring detailed statics about predicate
evaluation it ranks predicate according to how abnormally
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each predicate evaluates in incorrect executions. The more
abnormal the evaluations, the more likely the predicate is
fault-relevant.

Some static and hybrid model-based approaches are
proposed for software diagnosing [18]. One is a general-
ized value-based model where the component partitioning
of a program as well as test drivers can be chosen freely.
To handle programs with unstructured control flow, the
static single information approach is presented. Moreover,
a hybrid modeling approach is introduced where static
analysis and abstract test execution are combined into a
more flexible model by customizing a models structure to
a given test specification.

Manu Jose et. al.[17] present an algorithm for error
cause localization based on a reduction to the maximal
satisfiability problem (MAX-SAT). They encode the se-
mantics of a bounded unrolling of the program as a
Boolean trace formula. For a failing program execution
(e.g., one that violates an assertion or a post-condition),
They construct an unsatisfiable formula by taking the
formula and additionally asserting that the input is the
failing test and that the assertion condition does hold at
the end. Finally, using MAX-SAT, they find a maximal set
of clauses in this formula that can be satisfied together,
and output the complement set as a potential cause of the
error. As stated in [17], their method is limited by the
existing code, they cannot localize errors that can only be
fixed by adding additional codes.

R.Ceballos, et al, [19] present a method for software
diagnosis which is based on the combination of design by
contract, model-based diagnosis and constraint program-
ming. The main idea is to transform the contracts and
source code into an abstract model based on constraints in
a Max-CSP (Maximal Constraint Satisfaction Problem).
This model enables the detection of errors in contracts
and/or in a source code.

Lei Zhao, et al, [21] propose a context-aware fault
localization approach via path analysis. They use the
program control flow graph to organize the coverage
and calculate edge suspiciousness. Given a failed exe-
cution, they use the fault proneness to assess how each
block covered by this execution contributes to the failure
by contrasting the coverage statistics of different edges
covering the block. The sum of all fault proneness for
every failed execution is defined as suspiciousness, and
finally a ranked list can be synthesized to facilitate fault
localization.

The closely related work to ours is that of D.Kob
and F.Wotawa [13]. They use a model-based debugging
approach for error localization. The program model is
represented as a set of logical rules and some of rules
are the rules of Hoare logic. They use Hoare logic to
propagate predicates through the program, the predicate
states the values of variables. The resolution calculus
is proceeded to find the candidate of diagnoses. To
get a better precision for fault localization multiple
counterexamples is needed. However their work is quite
different from ours. We reason the diagnoses without any

Hoare logic. By introducing constraints of the program,
we can proceed reasoning along a counterexample
symbolically. Comparing the predicates, assignments
and expressions on counterexample with the constraints
which the program should obey, we can get whether
the assumptions are correct and can then obtain the
candidates of the diagnoses. Our approach is more
precise. For example, to the program in Figure 2, only
using the counterexample {2,4,6,10,13,14,6,10,21},
they get the diagnosis localizing fault in
{2,3,6,10,11,13,14}. By getting another counterexample
{2,4,6,10,13,14,6,17,18,8,10,13,14,6,17}, they localize
fault in {6,10,13,14}. If getting the third counterexample
{2,4,6,10,13,14,6,17,18,8,10,13,14,6,10,21,22,13,14,6,10,
21}, the diagnosis is {6,13,14}.

VII. CONCLUSION

We presented a formalization of fault diagnosing based
on reasoning with constraints. The approach consists
of three steps. First, the trace formula is constructed
for a given counterexample under a certain assumption.
This trace formula represents the detected behavior of
the program under the given assumption. Second, the
discrepancy between the trace formula and the constraints
is determined by a SAT solver or a theorem prover. If the
trace formula contradicts with the constraints, the given
assumption is wrong. Otherwise, the statement under a
certain assumption is a candidate for diagnosing. Finally,
a refined method is applied to improve the precision of
error localization.

Unlike most of other approaches, we do not need
additional execution traces other than a buggy one. The
cost of diagnosis is relative inexpensive. The procedure of
reasoning only use propositional logic formulas without
any Hoare logic and first order logic formulas which will
let the reasoning more complicated.

Two types of diagnoses are discussed. One is the
diagnosis of the absence of function and the other is
multiple fault diagnosis which has little discussions on
other work. The initial experimental results support the
applicability of our approach.
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