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Abstract—The maximum fragment length (MFL) is an 
important computational model for solving the founder 
sequence reconstruction problem. Benedettini et al. 
presented a meta-heuristic algorithm BACKFORTH based 
on iterative greedy method. The BACKFORTH algorithm 
starts with a single initial solution, and iteratively alternates 
between a partial destruction and reconstruction in order to 
obtain a final solution. The kind of optimization mechanism, 
which is based on a single initial solution, may make the 
performance of the BACKFORTH algorithm sensitive to 
the quality of the initialization. In this paper, a practical 
parthenogenetic algorithm PGMFL, which is a population-
based meta-heuristic method, is proposed. The PGMFL 
algorithm can search multiple regions of a solution space 
simultaneously. A novel genetic operator is introduced 
based on the presented heuristic algorithm HF, which takes 
advantage of look-ahead mechanism and some potential 
information, i.e., the proportions of 0 and 1 entries in a 
column of recombinant matrix and those in the 
corresponding column of the founder matrix, and some 
other heuristic information, to compute the column values. 
The PGMFL algorithm can get fewer breakpoints and 
longer fragment average length than the BACKFORTH 
algorithm, which are proved by a number of experiments.  
 
Index Terms—founder, reconstruction, parthenogenetic 
algorithm  
 

I.  INTRODUCTION 

With the rapid development of sequencing technology, 
abundant DNA sequences and haplotyped SNP sequences 
are available. It has become possible to investigate the 
genealogy of a population, and genealogy inference, 
which is significant for discovering the genetic basis of 
complex diseases, has become one of the main topics in 
genomics [1][2]. It is widely believed that mutation can 
make the gene inherited from the ancestor to be a 
diseased one. It is expected that we can reconstruct the 
ancestral genomes from their offspring diseased ones, 
infer the pathogenesis according to their evolutionary 
processes and finally find the therapeutic methods. 

Given a set of sample sequences from individuals of a 
population (for example, humans), the population 
descends from a small number of ancestral sequences 

called founders. Many findings from biological studies 
support the validity of this hypothesis. For example, the 
Ferroplasma type II genome seems to be a composite 
from three ancestral strains that have undergone 
homologous recombination to form a large population of 
mosaic genomes [3]. Researchers may try to construct 
more sample sequences (called recombinants) from 
relatively fewer founders so as to infer the evolutionary 
history of the recombinants. However, the number of 
founder sequences, as well as the founder sequences 
themselves, are generally unknown. The founder 
sequence reconstruction problem (FSRP), i.e., 
reconstructing a biologically plausible founder set or a 
recombinant mosaic pattern from a group of recombinant 
samples [4], has been formulated as a combinatorial 
optimization problem and received attention in 
computational biology today.  

Since a large number of founder sets or possible 
mosaic patterns can be inferred from a set of sample 
sequences, biologically meaningful computational models 
are needed for inferring breakpoints and founder 
sequences. In 2002, Ukkonen [5] presented two 
computational models for the FSRP problem based on a 
mosaic model and a parsimony criterion: (1) the 
minimum founder set (MFS) model; (2) the maximum 
fragment length (MFL) model. The latter model is studied 
in this paper. 

The maximum fragment length model is NP-hard in 
general case [6]. Recently it has been studied in some 
related works [5, 7-10]. Ukkonen [5] proposed a dynamic 
programming algorithm for solving this model. However, 
this algorithm does not scale well when the number of 
founders or the number/length of the recombinants grows. 
In 2007, Wu et al. [7] presented a tree search based 
algorithm RECBLOCK. The RECBLOCK algorithm lists 
all of the solutions by using exhaustive method, hence it 
has very good performance when the number of founders 
is small, but does not scale well either with the increase 
of founder number. In 2009, Roli et al. [8] developed a 
tabu search (TS) algorithm to solve the maximum 
fragment length model. The TS algorithm still works well 
for solving large size problems. In 2010, Benedettini et al. 
[9] presented a randomized iterated greedy algorithm 
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BACKFORTH, which has better performance than the 
TS algorithm proposed by Roli et al. [8]. In 2011, Blin et 
al. [10] put forward an accurate exponential algorithm. 
However, when the number of founder sequences 
increases, the performance of the algorithm still 
deteriorates.  

The BACKFORTH algorithm adopts a meta-heuristic 
framework based on iterative greedy algorithm. It starts 
with a complete initial solution, and iteratively alternates 
between the partial destruction of the incumbent solution 
and the reconstruction of the resulting partial solution in 
order to obtain again a complete solution [9]. Iterative 
greedy algorithm is an optimization mechanism based on 
a single initial solution, hence it is very sensitive to the 
quality of the initialization. In this paper, a practical 
parthenogenetic algorithm PGMFL, which is a 
population-based meta-heuristic method, is proposed. The 
PGMFL algorithm can search multiple regions of a 
solution space simultaneously and it is relatively 
insensitive to the quality of the initialization. 
Experimental results show that within the same running 
time budget, the PGMFL algorithm can obtain better 
performance than the BACKFORTH algorithm under 
different parameter settings. 

The rest of the paper is organized as follows. In next 
section, the maximum fragment length model is 
formalized, followed by a proposal of the PGMFL 
algorithm in section 3. The comparisons and analyses of 
the BACKFORTH algorithm and the PGMFL one are 
presented in section 4. Finally, some conclusions are 
drawn in section 5. 

II.  THE MAXIMUM FRAGMENT LENGTH MODEL 

Given a set of m recombinants C={C1,C2,…,Cm}, 
where each recombinant Ci (i=1,2,…,m) is denoted by a 
string of length n over a given alphabet Σ, i.e., 
Ci=ci1ci2…cin with cij∈ Σ (j=1,2,…,n). In this work, a 
typical biological application is concerned where the 
recombinants are haplotyped SNP sequences and 
Σ={0,1}. The two symbols 0 and 1 encode the two most 
common alleles of each SNP site. As shown in Fig.1(a), 
each row denotes a recombinant and each column denotes 
a SNP site. Let F={F1,F2,…,Fk} denote a set of k 
founders. Each founder Ft=ft1ft2…ftn (t=1,2,…,k) is a gene 
sequence of length n with ftj∈ Σ (j=1,2,…,n). As shown 
in Fig.1(b), each row denotes a founder while each 
column denotes a SNP site. 
 

 

 

 

 

 

 

 

(a)                                                                       (b)                                                                       (c) 
Figure 1. An example of the maximum fragment length model on binary sequences (a) illustrates a set of six recombinants, denoted by C1, C2, C3, 
C4, C5, and C6, respectively. (b) shows a set of four founders, denoted by A, B, C, and D, respectively. (c) shows a kind of mosaic structure for the 

recombinants in (a), and the vertical lines mark the breakpoints. 
 

If a recombinant Ci∈ C (i=1,2,…,m) can be 
fragmented into pi (1≤pi≤n) non-empty strings (fragments) 
FRi1, FRi2,…,

iipFR , such that each FRij(j=1,2,…, pi) 
occurs in at least one sequence of F exactly at the same 
position as in Ci, Ci is regarded as reconstructing from F. 
Here, a breakpoint is recorded if two consecutive 
fragments FRij and FRij+1 come from different founders. 
Take the fourth recombinant in Fig.1(a) for example, it 
can be decomposed into three fragments 001,110 and 10 
by two breakpoints, and the three fragments respectively 
occur at the same position in the first, the second and the 
first founders (i.e. A and B resp.) as in the fourth 
recombinant (i.e. C4). In this case, we call the fourth 
recombinant can be reconstructed by the founder set in 
Fig.1(b).  

If each recombinant Ci∈ C (i=1,2,…,m) can be 
reconstructed from founder set F, the set of recombinants 

C can be reconstructed from set F,  and F is called a 
founder set of C. Given all of the fragments FRij 
(i=1,2,…,m, j=1,2,…, pi), the number of breakpoint nb 
and the average fragment length aveλ  are defined as 
Formula (1) and Formula (2). 

,
1

mpnb
m

i i −=∑ =
                             (1) 

.
nb

nm
ave

×=λ                                          (2) 

 Based on the above concepts, a widely accepted 
optimization model was presented by Ukkonen [5] for the 
founder sequence reconstruction problem, as follows: 

The maximum fragment length  (MFL) model: given a 
set of recombinants C and a bound K for the number of 
founders, to find the largest aveλ  or the smallest nb that 
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are possible in a parse of C in terms of a founder set F of 
size at most K. 

III. ALGORITHMS FOR SOLVING THE MFL MODEL 

In this section, a constructive heuristic algorithm HF is 
presented for solving the maximum fragment length 
model. By using a novel genetic operator, which is based 
on the HF algorithm, a parthenogenetic algorithm 
PGMFL is proposed. 

A.  HF Algorithm  
An m×n matrix is defined for recording m recombinant 

sequences of length n. For convenience of description, 
the recombinant matrix is still denoted by C, where each 
row denotes a recombinant, and each column denotes a 
SNP site. Similarly, a K×n founder matrix F is defined, 
where each row denotes a founder, and each column also 
denotes a SNP site.  

The HF algorithm reconstructs the columns of founder 
sequences one after another. Following some notations 
used in the HF algorithm are defined. The column 
currently being constructed is called current column. For 
each row C[i,-] (i=1,2,... ,m), we denote by lb(i) the 
position of the last breakpoint in the row, and df(i) the 
index of the founder that represents row i between the last 
breakpoint lb(i) and current column. Take the fourth 
recombinant in Fig.1(a) for example, assume that current 
column is the fifth column, then lb(4)=3, and df(4)=2. For 
each row F[t,-](t=1,2,... ,k), let CS(t) be the set of all 
recombinants i with df(i)=t. 

Let }1,1|{ njdisS ij ≤≤≤≤=  be a set of d sequences of 
length n over alphabet Σ. We denote by nx(S,j) (x=0,1, 
j=1,2,... , n) the number of entries of column j that are 
equal to x (i.e. }|{ xsi ij = ). Let px(S, j) (x=0,1,j=1,2,... , n) 
be the proportion of x entries in the entries of columns j 
in matrix S, as shown in Formula (3). 

d
jSn

jSp x
x

),(
),( =                               (3) 

 Given matrices C and F, ESx(j) is defined as the ratio 
between px(F, j) and px(C, j), as defined in Formula (4). 

njx
jCp
jFpjES

x

x
x ...,2,1,1,0,

),(
),()( ===       (4) 

We, now, define a constructive algorithm HF. The 
input is an m×n recombinant matrix C, a founder matrix 
F, a bound K for the number of founders, a random 
control parameter rdp (0≤rdp≤1), and the look-ahead 
parameters nt and las. The output is a founder matrix F. 
Some important steps of HF algorithm will be introduced 
in details afterwards. 

1) Computing the first column: If the input founder 
matrix F is an empty one, i.e., there is not a value 
assigned to F[i,j] (i=1,2,…,K, j=1,2,..., n), the HF 
algorithm starts by constructing the first column of matrix 
F as follows.  

(a) Initialize counters n0(F,1) and n1(F,1) to 1 to 
ensure that at least one ‘0’ entry, respectively 

one ‘1’ entry, exists in the first column of the 
founder matrix F.  

(b) Generate a random number r between 0 and 1, 
increase n0(F,1) by 1 when r≤p0(C,1), and 
increase n1(F,1) by 1 otherwise. The process is 
repeated for K-2 times.  

(c) Initialize F[1,1], F[2,1], …, F[n0(F,1),1] to 0, 
and initialize F[n0(F,1)+1,1], F[n0(F,1)+2,1], …,  
F[K,1] to 1. 

2) Computing the remaining columns: Assume that 
the first j-1 columns of matrix F have already been 
constructed, and denote by Fj-1 the corresponding partial 
solution. Update the variables lb(i) and df(i) (i=1,2,…,m), 
i.e., among all of the founders with F[l,s]=C[i, 
s](l=1,…,K, s=h,…, j), select the founder lm with the 
minimum h as the new representant of recombinant C[i,-
] , and set lb(i)=h, df(i)=lm. 

Generate a random permutation (r1,r2,…,rK) of the 
integers {1, 2, ..., K}, and the j-th column F[-, j] (j=2, 
3, …, n) is constructed starting from row r1 to rK. Here 
we adopt look-ahead mechanism, which depends on the 
following two parameters:  

(a) nt,  the number of trials  
(b) las, the look-ahead size  
For this purpose, nt matrices {M1,M2,…,Mnt}, each of 

which is composed of K rows and min{las, n-j+1} 
columns, are generated. Here each matrix Md (d=1,…,nt) 
denotes a possible extension of Fj-1 by min{las, n-j+1} 
columns. Compute bd (d=1,…,nt), which is the optimal 
number of breakpoints obtained by appending Md to the 
partial solution Fj-1. Set  F[-, j]=MD[-,1], where 
D=argmin{bd}. The concrete method for computing Md[rk, 
l] (d=1,…,nt, k=1,…,K, l=1,…, min{las, n-j+1}) is 
defined as follows. 

Actually, Md is computed by using a duplicate copy 
of matrix C. For convenience of description, this copy is 
still denoted by C. A random number r is drawn 
uniformly at random from [0,1]. If r<rdp, Md[rk, l] is set 
to 0 with probability p0(CS(rk),j+l-1), and to 1 otherwise. 
If r≥rdp, Md[rk, l] is computed with the following 
methods. 

(a) If n0(CS(rk), j+l-1) is greater (resp. less) than 
n1(CS(rk), j+l-1), Md[rk,l] is set to 0 (resp. 1). 

(b) If n0(CS(rk), j+l-1) has the same value as 
n1(CS(rk), j+l-1), and ES0(j+l-1) is less (resp. 
greater) than ES1(j+l-1), Md[rk,l] is set to 0 
(resp. 1). 

(c) If none of the above two cases is satisfied, 
Md[rk,l] is set to 0/1 uniformly at random. 

After Md[rk,l] is assigned, the representant df(i) of the 
recombinant C[i,-] ( i =1,2,…,m ), which can not be 
represented anymore by its current representant (founder), 
need to be updated.  That is to say, if Md[rk,l]=0 (resp. 1), 
the recombinant of C with C[i, j+l-1]=1(resp. 0) and 
df(i)=rk need to be reassigned representatives as follows: 
if there exists such a new representing founder rfl 
(fl=k+1,…,K) that C[i,s1]=F[rfl,s1] and C[i,j+s2-
1]=Md[rfl,s2] (s1=lb(i),…,j-1, s2=1,…,l-1), df(i) is set to 
rfl., and the search process stops, otherwise df(i) is 
unchanged. 
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After all the entries in the l-th (l=1,…, min{las, n-j+1}) 
column of matrix Md are filled, some recombinants C[i,-] 
(i=1,2,…,m) can not be represented by their current 
founders, i.e., C[i, j+l-1]≠Md[df(i), l]. In such a situation, 
among all of the founders with F[fl,s1]=C[i,s1] and 
Md[fl,s2]= C[i,j+s2-1] (s1=h,…,j-1,s2=1,…,l, fl=1,…,K), 

select the founder lm with the minimum h as the new 
representant of recombinant C[i,-], and set lb(i)=h, 
df(i)=lm.  

Based on the above mentioned steps, HF algorithm is 
summarized in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. HF Algorithm 
 

B.  PGMFL Algorithm 
Parthenogenetic algorithm (PGA)[11][12] is a variant 

of genetic algorithm (GA) [13][14]. It employs gene 
recombination and selection operators instead of the 
traditional crossover operator to produce offspring. In the 
following, we will give some key techniques in 
designing PGMFL algorithm. 

1) Construction of the hypothesis space: A binary 
matrix is used to denote a chromosome which represents 
a founder matrix of the given recombinant matrix. Thus, 
all of the binary matrices with K rows and n columns 
constitute the hypothesis space: H={XK×n | X[i,j] ∈ {0, 1}, 
i=1,2,...,K, j=1,2,...,n}. 

2) Generation of the initial population: A population 
is composed of N chromosomes, i.e. the population size 
is N. We generate an initial population by using HF 
algorithm with parameters nt=1 and las=1, i.e., look-
ahead mechanism is not used while generating the initial 
population. 

3) Selection operator: Both roulette wheel selection 
[15] and elitist model [16] are used to generate a new 
population for the next generation. The operator ensure 
that the best individual can be preserved into the next 
generation. 

4) Recombination operator: Recombination operator 
generates new regions for search, that is generating new 
offspring chromosomes. Here a novel one based on HF 
algorithm is introduced, which has the following two 
characteristics.  

(a) The recombination operator plants some 
random information into the chromosome. This 
can make the algorithm escape from local 
optimum solution and improve the clime 
ability of the algorithm.  

(b) The recombination operator uses the 
information in the recombinants of matrix C to 
adjust the chromosome. This can improve the 
adaptability of the chromosome and the 
convergence speed of the algorithm 
simultaneously.  

Algorithm 1: HF Algorithm  

Input:  C, F, K, rdp, nt, las 
Output: F  
1. if F is an empty matrix then 
2.        n0(F,1)=1, n1(F,1)=1 
3.        for i=1,…,K-2 do 
4.            generate a random number r (0≤r≤1) 
5.            if (r ≤p0(C,1))  then n0(F,1)++ 
6.            else n1(F,1) ++ 
7.      F[1,1]=,…,=F[n0(F,1),1]=0 
8.      F[n0(F,1)+1,1] =,…,=F[K,1]=1 
9. update lb(i), df(i) (i=1,2,…,m) 
10. for j=nc+1,…,n do // nc denotes the number of constructed columns in matrix F 
11.       generate permutation (r1,r2,…,rK) (ri,i=1, 2,…,K) at random 
12.       for d=1,...,nt do 
13.            for l=1,…, min{las, n-j+1} do 
14.                 for k=1,…,K do 
15.                       generate a random number r 
16.                       if (r<rdp) then  
17.                             Md[rk, l]=0 with probability p0(CS(rk),j+l-1), and Md[rk, l]=1 otherwise 
18.                      else 
19.                             if (n0(CS(rk), j+l-1)> n1(CS(rk), j+l-1)) then Md[rk,l]=0  
20.                             else if (n0(CS(rk), j+l-1)< n1(CS(rk), j+l-1)) then Md[rk,l]=1 
21.                             else if ES0(j+l-1)< ES1(j+l-1) then Md[rk,l]=0 
22.                             else if ES0(j+l-1)> ES1(j+l-1) then Md[rk,l]=1 
23.                             else Md[rk,l]=rand()%2 //rand() is used to generate a random integer 
24.                      if (C[i, j+l-1]≠Md[rk,l] and df(i)=rk) then update df(i) ( mi ,,2,1 …= ) 
25.                 if (C[i, j+l-1]≠Md[df(i), l]) then update lb(i) and df(i) ( mi ,,2,1 …= ) 
26.            Compute bd  
27.       F[-, j]=MD[-,1] //D=argmin{bd}( d=1,...,nt) 
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The idea of the recombination operator is based on the 
fact that solutions to a problem instance can be 
constructed from left to right, as explained in the HF 
algorithm, but also from right to left. Given a 
chromosome X, a binary variable direction is generated 
randomly. If direction=0, dc (a random integer between 
1 and n) columns are removed from the right hand side 
or from the left hand side otherwise, i.e., the entries of 
these columns are deleted. Next, the HF algorithm is 
executed on the partial solution X to make it be a 
complete solution, and the new chromosome X' is 
obtained. The concrete description of the recombination 
operator is given in Fig. 3. 

 
Algorithm 2: Recombination operator 
Input: an m×n recombinant matrix C, a chromosome X 
Output: a new chromosome X' 
1. generate variable direction and dc randomly 
2. if direction=0 then 
3.     for j=1 to dc 
4.          X[i,j]=’ ’(i=1,...,K) // X[i,j] is deleted 
5. else if direction=1 then 
6.     for j=1 to dc    
7.          X[i,n-j+1]=’ ’(i=1,...,K) // X[i,n-j+1] is deleted 
8. the HF algorithm is executed on X to generate X' 

Figure 3. Recombination operator 
 

4) Designation of the fitness function: The fitness 
function measures how “good” a chromosome is, so that 
better chromosomes can be selected. Because each 
chromosome represents a viable solution of the 
maximum fragment length model, we need to make an 
estimate of the results. Given a chromosome X and the 
recombinant matrix C, the fitness function Fitness(X) is 
defined as Formula (5): 

nb
XFitness 1)( =                                  (5) 

As mentioned above, chromosome X denotes a 
founder matrix of the given recombinant matrix, nb 
denotes the number of breakpoints in recombinant matrix 
C when given the founder matrix X. The smaller nb is, 
the stronger the fitness of chromosome X is.  

The PGMFL algorithm for solving the founder 
sequences reconstruction problem is summarized in Fig.4. 

IV. EXPERIMENTAL RESULTS 

In this section, experimental results are presented to 
compare the performance of the PGMFL and 
BACKFORTH algorithms. All experiments were 
performed on a Lenovo Workstation with Pentium(R) D 
3.0GHz Processors and 2GB of RAM. The operating 
system was Windows XP Professional and the compiler 
was Microsoft Visual C++ 2010.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. PGMFL Algorithm 
 

In the experiments, we used the following two 
measurements to evaluate the performance of the two 
algorithms:  

(a) nb,  the number of breakpoints 
(b) aveλ , the average fragment length  

A similar benchmark set introduced in Ref. [8] and Ref. 
[9] was used. This set is composed of randomly generated 
instances with m∈ {30, 50, 100} recombinants and 

n∈ {2m, 3m, 5m} SNP sites. The best set of parameters 

given in Ref. [9] was used for the BACKFORTH 
algorithm. The parameters of the PGMFL algorithm were 
set as follows: rdp=0.2, nt=10 (5 in case k=3), las=1, 
N=300, which are the same as the BACKFORTH 
algorithm. For every experimental instance, we have 
limited the CPU time to one hour, which is the same as 
Ref. [9]. 

Table I to Table III show the experimental results of 
instances with 30 recombinant sequences, where the 
number of SNP sites n is set to 60, 90 and 150 

Algorithm 3: PGMFL Algorithm 

Input:  C, F, K, rdp, nt, las, N, maxtime //maxtime is the maximum of running time 
Output: F 
1.  Generate the initial population pop0={X1(0),…,XN(0)} 
2.  for i=1,…,N do 
3.     compute Fitness(Xi(0))   
4.  tm=0  //tm denotes the actual iteration time 
5.  gen=0 // gen denotes the actual iteration times 
6.  If tm<maxtime then 
7.     select N members from popgen by using selection operator, and add them to popgen+1 
8.     for i=1,…,N do  
9.        apply recombination operator on Xi(gen+1) to produce )1(' +genX i    

10.        If Fitness( )1(' +genXi )> Fitness(Xi(gen+1)) then 

11.           Xi(gen+1)= )1(' +genX i  
12.     get the value of tm 
13.     gen=gen+1 
14.  output the individual with the highest fitness         
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respectively. In each of the three tables, eight sets of 
parameters were set in dealing with the bound K for the 
number of founders.  

From Table I to Table III we can see that with the 
increase of parameter K, the nbs obtained by the two 
algorithms are both decreased. In Table I, the nb of 
algorithm BACKFORTH ranges from 611 to 260, and the 
one of algorithm PGMFL ranges from 595 to 247. In 
Table II, the nb of algorithm BACKFORTH ranges from 
923 to 402, and the one of algorithm PGMFL ranges from 
914 to 399. In Table III, the nb of algorithm 
BACKFORTH ranges from 1590 to 754, and the one of 
algorithm PGMFL ranges from 1555 to 747. 

TABLE I.  
PERFORMANCE COMPARISONS WITH M=30, N=60. 

K aveλ  Nb 
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.95 3.03 611 595 
4 3.57 3.62 504 497 
5 4.15 4.17 434 432 
6 4.64 4.84 388 372 
7 5.28 5.64 341 319 
8 5.83 6.12 309 294 
9 6.43 6.50 280 277 
10 6.92 7.29 260 247 

TABLE II.  
PERFORMANCE COMPARISONS WITH M=30, N=90. 

K aveλ  Nb 
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.93 2.95 923 914 
4 3.52 3.62 768 746 
5 4.07 4.28 664 631 
6 4.70 4.75 575 569 
7 5.14 5.23 525 516 
8 5.57 5.78 485 467 
9 6.04 6.18 447 437 
10 6.72 6.77 402 399 

TABLE III.  
PERFORMANCE COMPARISONS WITH M=30, N=150. 

K aveλ  Nb 
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.83 2.89 1590 1555 
4 3.49 3.52 1290 1278 
5 4.11 4.13 1095 1089 
6 4.55 4.62 988 975 
7 5.07 5.09 887 884 
8 5.48 5.53 821 814 
9 5.97 6.02 754 747 
10 6.39 6.47 704 696 
 
It can be known from Formula (2) that the value of 

aveλ  is inversely proportional to the value of nb. The 
bigger nb is, the smaller aveλ  is. Therefore, with the 
increase of parameter K, the average fragment length aveλ  
obtained by the two algorithms is increased. In Table I, 
the aveλ  of algorithm BACKFORTH ranges from 2.95 to 
6.92, and the one of algorithm PGMFL ranges from 3.03 
to 7.29. In Table II, the aveλ  of algorithm BACKFORTH 
ranges from 2.93 to 6.72, and the one of algorithm 
PGMFL ranges from 2.95 to 6.77. In Table III, the aveλ  
of algorithm BACKFORTH ranges from 2.83 to 6.39, 

and the one of algorithm PGMFL ranges from 2.89 to 
6.47. 

In addition, in these three tables, with the same running 
time budget, the PGMFL algorithm can get fewer 
breakpoints and longer average fragment length than the 
BACKFORTH algorithm under different parameter 
settings. 

Table IV to Table VI show the experimental results of 
instances with 50 recombinants, where n is set to 100, 
150 and 250 respectively. In each of the three tables, 
eight sets of parameters were also set in dealing with 
parameter K. 

TABLE IV.  
PERFORMANCE COMPARISONS WITH M=50, N=100.  

K aveλ Nb 
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.70 2.74 1854 1828 
4 3.26 3.27 1536 1530 
5 3.60 3.71 1387 1348 
6 4.07 4.15 1228 1206 
7 4.48 4.51 1116 1108 
8 4.84 4.93 1033 1014 
9 5.27 5.29 949 946 
10 5.61 5.64 891 887 

TABLE V.  
PERFORMANCE COMPARISONS WITH M=50, N=150.  

K aveλ Nb 
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.71 2.73 2765 2746 
4 3.16 3.20 2371 2346 
5 3.54 3.63 2116 2068 
6 4.03 4.04 1861 1857 
7 4.38 4.47 1711 1678 
8 4.81 4.84 1560 1548 
9 5.13 5.15 1461 1457 
10 5.44 5.47 1379 1370 

TABLE VI.  
PERFORMANCE COMPARISONS WITH M=50, N=250. 

K aveλ Nb 
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.65 2.67 4710 4678 
4 3.12 3.14 4001 3985 
5 3.58 3.59 3489 3478 
6 3.97 3.99 3145 3132 
7 4.31 4.34 2902 2883 
8 4.70 4.73 2657 2644 
9 5.04 5.05 2481 2477 
10 5.36 5.37 2330 2326 
 
Table IV to Table VI show that with the increase of 

parameter K, the number of breakpoints nb obtained by 
the two algorithms is decreased. In Table IV, the nb of 
algorithm BACKFORTH ranges from 1854 to 891, and 
the one of algorithm PGMFL ranges from 1828 to 887. In 
Table V, the nb of algorithm BACKFORTH ranges from 
2765 to 1379, and the one of algorithm PGMFL ranges 
from 2746 to 1370. In Table VI, the nb of algorithm 
BACKFORTH ranges from 4710 to 2330, and the one of 
algorithm PGMFL ranges from 4678 to 2326. 

As mentioned above, in these three tables, with the 
increase of parameter K, the average fragment length aveλ  
obtained by the two algorithms is also increased. In Table 

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2939

© 2013 ACADEMY PUBLISHER



IV, the aveλ  of algorithm BACKFORTH ranges from 
2.70 to 5.61, and the one of algorithm PGMFL ranges 
from 2.74 to 5.64. In Table V, the aveλ  of algorithm 
BACKFORTH ranges from 2.71 to 5.44, and the one of 
algorithm PGMFL ranges from 2.73 to 5.47. In Table VI, 
the aveλ  of algorithm BACKFORTH ranges from 2.65 to 
5.36, and the one of algorithm PGMFL ranges from 2.67 
to 5.37. 

In Table IV to Table VI, the PGMFL algorithm still 
has better performance than the BACKFORTH algorithm 
under different parameter settings with the same running 
time budget. 

In Table VII, four sets of parameters were set in 
dealing with parameter K: (1) K=3, (2) K=4, (3) K=5, (4) 
K=6. In all of these four cases, the number of 
recombinants m was set to 100, and the number of SNP 
sites n was set to 200, 300 and 500 respectively.  

TABLE VII.  
PERFORMANCE COMPARISONS WITH M=100. 

K n aveλ  Nb 
BACKFORTH PGMFL BACKFORTH PGMFL

3 
200 2.54 2.55 7860 7843 
300 2.52 2.53 11927 11874 
500 2.51 2.51 19939 19894 

4 
200 2.89 2.95 6921 6780 
300 2.88 2.92 10416 10285 
500 2.86 2.91 17459 17186 

5 
200 3.23 3.27 6187 6109 
300 3.23 3.28 9297 9135 
500 3.20 3.27 15613 15298 

6 
200 3.59 3.60 5566 5551 
300 3.58 3.64 8386 8231 
500 3.52 3.59 14216 13938 

 
From Table VII we can see that within the same 

running time budget, the PGMFL algorithm can obtain 
fewer breakpoints and longer average fragment length 
than the BACKFORTH algorithm under all parameter 
settings. In addition, given a certain value of bound K, 
with the increase of SNP sites n, although the absolute 
number of breakpoints obtained by the PGMFL algorithm 
and the BACKFORTH algorithm increases, the average 
fragment length got by these two algorithms keeps almost 
unchanged. Hence, the parameter n has little effect on the 
performance of the PGMFL and the BACKFORTH 
algorithms. 

The above experimental results show that the PGMFL 
algorithm is able to get better performance than the 
BACKFORTH algorithm. During the iteration process, 
the BACKFORTH algorithm adopts a meta-heuristic 
framework based on iterative greedy algorithm and 
makes full use of the effective information of the 
obtained solutions. The BACKFORTH algorithm starts 
with a single initial solution, and iteratively refines it to 
get the optimal solution. However, the BACKFORTH 
algorithm uses an optimization mechanism based on a 
single initial solution, hence the performance of the 
BACKFORTH is sensitive to the quality of the initial 
solution. The PGMFL algorithm is based on 
parthenogenetic algorithm, which can search multiple 
regions of a solution space simultaneously and it is 

relatively insensitive to the quality of the initial solution. 
In addition, the recombination operator based on the HF 
algorithm makes full use of the information in the 
recombinant sequences to adjust the chromosomes step 
by step, which plays a strong role in evolving towards 
higher adaptability for chromosomes. The operator still 
plants random information for evolution, which prevents 
premature convergence to local optima and improves the 
clime ability of the PGMFL algorithm. Therefore, the 
PGMFL algorithm can obtain a better solution than the 
BACKFORTH algorithm. 

 
V. CONCLUSIONS 

In recent years, the problem of reconstructing founder 
sequences from a set of recombinant sequences has 
received much attention in computational biology. The 
maximum fragment length model is one of the important 
computational models for solving the founder sequences 
reconstruction problem.  

In this paper, a parthenogenetic algorithm PGMFL is 
presented for solving the model by introducing an 
effective recombination operator based on the HF 
algorithm. Comparing with the BACKFORTH algorithm, 
the PGMFL algorithm can get better solutions within the 
same time budget, which were tested by a number of 
experiments. Furthermore, the PGMFL algorithm has 
high efficiency and is intended to reconstruct long 
founders. In conclusion, the PGMFL algorithm is a 
practical solution for solving the founder sequences 
reconstruction problem. 

ACKNOWLEDGMENT 

The authors are grateful to Professor Yufeng Wu for 
his kindly providing the ADH sample data, and Professor 
Qi Zhang for bringing the minimum mosaic problem to 
our attention. This research was supported in part by 
Guangxi Natural Science Foundation under Grant No. 
2011GXNSFB018068, No. 2011GXNSFB018070 and 
No. 2012GXNSFAA053219, 
the National Natural Science Foundation of China under 
Grant No. 61165009, and “Bagui Scholar” Project 
Special Funds. 

REFERENCES 

[1] J. D. Kececioglu, D. Gusfield, “Reconstructing a history of 
recombinations from a set of sequences”, Discrete Applied 
Mathematics, vol.88, no.1-3, pp.239-260,1998. 

[2] T. Pupko, I. Pe'er, R. Shamir, D. Graur, “A fast algorithm 
for joint reconstruction of ancestral amino acid sequences”, 
Molecular Biology and Evolution, vol.17, pp.890-
896,2000. 

[3] G. Tyson, J. Chapman, P. Hugenholtz, et al., “Community 
structure and metabolism through reconstruction of 
microbial genomes from the environment”, Nature, 
vol.428, pp.37-43,2004.  

[4] Q. Zhang, W. Wang, L. McMillan, F.P.D. Villena, 
D.Threadgill, “Inferring genome-wide mosaic structure”, 
In Proceeding of the Pacific Symposium on Biocomputing, 
pp.150-161,2009. 

2940 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER



[5] E. Ukkonen, “Finding founder sequences from a set of 
recombinants”, Lecture Notes in Computer Science, 
vol.2452, pp.277-286,2002. 

[6] P. Rastas, E. Ukkonen, “Haplotype inference via 
hierarchical genotype parsing”, Lecture Notes in Computer 
Science, vol.4645, pp.85-97,2007. 

[7] Y. Wu, D. Gusfield, “Improved algorithms for inferring the 
minimum mosaic of a set of recombinants”, Lecture Notes 
in Computer Science, vol.4580, pp.150-161,2007. 

[8] A. Roli, C. Blum, “Tabu search for the founder sequence 
reconstruction problem: a preliminary study”, Lecture 
Notes in Computer Science, vol.5518, pp.1035-1042,2009. 

[9] S. Benedettini, C. Blum, A. Roli, “A randomized iterated 
greedy algorithm for the founder sequence reconstruction 
problem”, Lecture Notes in Computer Science, vol.6073, 
pp.37-51,2010. 

[10] G. Blin, R. Rizzi, F. Sikora, S. Vialette, “Minimum mosaic 
inference of a set of recombinants”, In Proceedings of the 
17th Computing: the Australasian Theory Symposium, 
pp.23-30,2011. 

[11] M. J. Li, T. S. Tong, “A partheno-genetic algorithm and 
analysis on its global convergence”, Acta Automatic 
Sinica, vol.25, pp.68-72,1999. 

[12] J. L. Wu, J. X. Wang, J. E. Chen, “A parthenogenetic 
algorithm for single individual SNP haplotyping”, 
Engineering Applications of Artificial Intelligence, vol.22, 
pp.401-406,2009. 

[13] M. Mitchell, “Genetic algorithms: an overview”, 
Complexity, vol.1, no.1, pp.31-39,1995.  

[14] S. A. Ghoreishi, M. A. Nekoui, S. Partovi, S. O. Basiri, 
“Application of Genetic Algorithm for Solving Multi-
Objective Optimization Problems in Ro-bust Control of 
Distillation Column”, International Journal of 
Advancements in Computing Technology, vol.3, no.1, 
pp.32-43, 2011. 

[15] R.Sivaraj, Dr.T.Ravichandran, “A review of selection 
methods in genetic algorithm”, International Journal of 
Engineering Science and Technology, vol.3, no.5, pp.3792-
3797,2011.    

[16] D.Bhandari, C.A.Murthy, “Genetic algorithm with elitist 
model and its convergence”, International Journal of 
Pattern Recognition and Artificial 
Intelligence,vol.10,no.6,pp.731-747, 1996. 

 
 
Jingli Wu, born in 1978, an associate professor of the College 
of Computer Science and Information Technology, Guangxi 
Normal University, Guilin, P.R. China. She received her Ph.D. 
degree in Computer Science from Central South University of 
P.R. China in 2008. Her current research interests include 
biocomputing, algorithm analysis and optimization. 
 
 
Hua Wang, born in 1985, she is currently working towards his 
M.S. degree in College of Computer Science and Information 
Technology, Guangxi Normal University. Her research interests 
are in the areas of bio-computing and evolutionary algorithm 
 

 

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2941

© 2013 ACADEMY PUBLISHER




