
A Parthenogenetic Algorithm for the Founder
Sequence Reconstruction Problem

Jingli Wu

College of Computer Science and Information Technology, Guangxi Normal University, Guilin, 541004, China
Email: wjlhappy@mailbox.gxnu.edu.cn

Hua Wang

College of Computer Science and Information Technology, Guangxi Normal University, Guilin, 541004, China
Email: hwang1986@126.com

Abstract—The maximum fragment length (MFL) is an
important computational model for solving the founder
sequence reconstruction problem. Benedettini et al.
presented a meta-heuristic algorithm BACKFORTH based
on iterative greedy method. The BACKFORTH algorithm
starts with a single initial solution, and iteratively alternates
between a partial destruction and reconstruction in order to
obtain a final solution. The kind of optimization mechanism,
which is based on a single initial solution, may make the
performance of the BACKFORTH algorithm sensitive to
the quality of the initialization. In this paper, a practical
parthenogenetic algorithm PGMFL, which is a population-
based meta-heuristic method, is proposed. The PGMFL
algorithm can search multiple regions of a solution space
simultaneously. A novel genetic operator is introduced
based on the presented heuristic algorithm HF, which takes
advantage of look-ahead mechanism and some potential
information, i.e., the proportions of 0 and 1 entries in a
column of recombinant matrix and those in the
corresponding column of the founder matrix, and some
other heuristic information, to compute the column values.
The PGMFL algorithm can get fewer breakpoints and
longer fragment average length than the BACKFORTH
algorithm, which are proved by a number of experiments.

Index Terms—founder, reconstruction, parthenogenetic
algorithm

I. INTRODUCTION

With the rapid development of sequencing technology,
abundant DNA sequences and haplotyped SNP sequences
are available. It has become possible to investigate the
genealogy of a population, and genealogy inference,
which is significant for discovering the genetic basis of
complex diseases, has become one of the main topics in
genomics [1][2]. It is widely believed that mutation can
make the gene inherited from the ancestor to be a
diseased one. It is expected that we can reconstruct the
ancestral genomes from their offspring diseased ones,
infer the pathogenesis according to their evolutionary
processes and finally find the therapeutic methods.

Given a set of sample sequences from individuals of a
population (for example, humans), the population
descends from a small number of ancestral sequences

called founders. Many findings from biological studies
support the validity of this hypothesis. For example, the
Ferroplasma type II genome seems to be a composite
from three ancestral strains that have undergone
homologous recombination to form a large population of
mosaic genomes [3]. Researchers may try to construct
more sample sequences (called recombinants) from
relatively fewer founders so as to infer the evolutionary
history of the recombinants. However, the number of
founder sequences, as well as the founder sequences
themselves, are generally unknown. The founder
sequence reconstruction problem (FSRP), i.e.,
reconstructing a biologically plausible founder set or a
recombinant mosaic pattern from a group of recombinant
samples [4], has been formulated as a combinatorial
optimization problem and received attention in
computational biology today.

Since a large number of founder sets or possible
mosaic patterns can be inferred from a set of sample
sequences, biologically meaningful computational models
are needed for inferring breakpoints and founder
sequences. In 2002, Ukkonen [5] presented two
computational models for the FSRP problem based on a
mosaic model and a parsimony criterion: (1) the
minimum founder set (MFS) model; (2) the maximum
fragment length (MFL) model. The latter model is studied
in this paper.

The maximum fragment length model is NP-hard in
general case [6]. Recently it has been studied in some
related works [5, 7-10]. Ukkonen [5] proposed a dynamic
programming algorithm for solving this model. However,
this algorithm does not scale well when the number of
founders or the number/length of the recombinants grows.
In 2007, Wu et al. [7] presented a tree search based
algorithm RECBLOCK. The RECBLOCK algorithm lists
all of the solutions by using exhaustive method, hence it
has very good performance when the number of founders
is small, but does not scale well either with the increase
of founder number. In 2009, Roli et al. [8] developed a
tabu search (TS) algorithm to solve the maximum
fragment length model. The TS algorithm still works well
for solving large size problems. In 2010, Benedettini et al.
[9] presented a randomized iterated greedy algorithm

2934 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.11.2934-2941

BACKFORTH, which has better performance than the
TS algorithm proposed by Roli et al. [8]. In 2011, Blin et
al. [10] put forward an accurate exponential algorithm.
However, when the number of founder sequences
increases, the performance of the algorithm still
deteriorates.

The BACKFORTH algorithm adopts a meta-heuristic
framework based on iterative greedy algorithm. It starts
with a complete initial solution, and iteratively alternates
between the partial destruction of the incumbent solution
and the reconstruction of the resulting partial solution in
order to obtain again a complete solution [9]. Iterative
greedy algorithm is an optimization mechanism based on
a single initial solution, hence it is very sensitive to the
quality of the initialization. In this paper, a practical
parthenogenetic algorithm PGMFL, which is a
population-based meta-heuristic method, is proposed. The
PGMFL algorithm can search multiple regions of a
solution space simultaneously and it is relatively
insensitive to the quality of the initialization.
Experimental results show that within the same running
time budget, the PGMFL algorithm can obtain better
performance than the BACKFORTH algorithm under
different parameter settings.

The rest of the paper is organized as follows. In next
section, the maximum fragment length model is
formalized, followed by a proposal of the PGMFL
algorithm in section 3. The comparisons and analyses of
the BACKFORTH algorithm and the PGMFL one are
presented in section 4. Finally, some conclusions are
drawn in section 5.

II. THE MAXIMUM FRAGMENT LENGTH MODEL

Given a set of m recombinants C={C1,C2,…,Cm},
where each recombinant Ci (i=1,2,…,m) is denoted by a
string of length n over a given alphabet Σ, i.e.,
Ci=ci1ci2…cin with cij∈ Σ (j=1,2,…,n). In this work, a
typical biological application is concerned where the
recombinants are haplotyped SNP sequences and
Σ={0,1}. The two symbols 0 and 1 encode the two most
common alleles of each SNP site. As shown in Fig.1(a),
each row denotes a recombinant and each column denotes
a SNP site. Let F={F1,F2,…,Fk} denote a set of k
founders. Each founder Ft=ft1ft2…ftn (t=1,2,…,k) is a gene
sequence of length n with ftj∈ Σ (j=1,2,…,n). As shown
in Fig.1(b), each row denotes a founder while each
column denotes a SNP site.

(a) (b) (c)
Figure 1. An example of the maximum fragment length model on binary sequences (a) illustrates a set of six recombinants, denoted by C1, C2, C3,
C4, C5, and C6, respectively. (b) shows a set of four founders, denoted by A, B, C, and D, respectively. (c) shows a kind of mosaic structure for the

recombinants in (a), and the vertical lines mark the breakpoints.

If a recombinant Ci∈ C (i=1,2,…,m) can be
fragmented into pi (1≤pi≤n) non-empty strings (fragments)
FRi1, FRi2,…,

iipFR , such that each FRij(j=1,2,…, pi)
occurs in at least one sequence of F exactly at the same
position as in Ci, Ci is regarded as reconstructing from F.
Here, a breakpoint is recorded if two consecutive
fragments FRij and FRij+1 come from different founders.
Take the fourth recombinant in Fig.1(a) for example, it
can be decomposed into three fragments 001,110 and 10
by two breakpoints, and the three fragments respectively
occur at the same position in the first, the second and the
first founders (i.e. A and B resp.) as in the fourth
recombinant (i.e. C4). In this case, we call the fourth
recombinant can be reconstructed by the founder set in
Fig.1(b).

If each recombinant Ci∈ C (i=1,2,…,m) can be
reconstructed from founder set F, the set of recombinants

C can be reconstructed from set F, and F is called a
founder set of C. Given all of the fragments FRij
(i=1,2,…,m, j=1,2,…, pi), the number of breakpoint nb
and the average fragment length aveλ are defined as
Formula (1) and Formula (2).

,
1

mpnb
m

i i −=∑ =
 (1)

.
nb

nm
ave

×=λ (2)

 Based on the above concepts, a widely accepted
optimization model was presented by Ukkonen [5] for the
founder sequence reconstruction problem, as follows:

The maximum fragment length (MFL) model: given a
set of recombinants C and a bound K for the number of
founders, to find the largest aveλ or the smallest nb that

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2935

© 2013 ACADEMY PUBLISHER

are possible in a parse of C in terms of a founder set F of
size at most K.

III. ALGORITHMS FOR SOLVING THE MFL MODEL

In this section, a constructive heuristic algorithm HF is
presented for solving the maximum fragment length
model. By using a novel genetic operator, which is based
on the HF algorithm, a parthenogenetic algorithm
PGMFL is proposed.

A. HF Algorithm
An m×n matrix is defined for recording m recombinant

sequences of length n. For convenience of description,
the recombinant matrix is still denoted by C, where each
row denotes a recombinant, and each column denotes a
SNP site. Similarly, a K×n founder matrix F is defined,
where each row denotes a founder, and each column also
denotes a SNP site.

The HF algorithm reconstructs the columns of founder
sequences one after another. Following some notations
used in the HF algorithm are defined. The column
currently being constructed is called current column. For
each row C[i,-] (i=1,2,... ,m), we denote by lb(i) the
position of the last breakpoint in the row, and df(i) the
index of the founder that represents row i between the last
breakpoint lb(i) and current column. Take the fourth
recombinant in Fig.1(a) for example, assume that current
column is the fifth column, then lb(4)=3, and df(4)=2. For
each row F[t,-](t=1,2,... ,k), let CS(t) be the set of all
recombinants i with df(i)=t.

Let }1,1|{ njdisS ij ≤≤≤≤= be a set of d sequences of
length n over alphabet Σ. We denote by nx(S,j) (x=0,1,
j=1,2,... , n) the number of entries of column j that are
equal to x (i.e. }|{ xsi ij =). Let px(S, j) (x=0,1,j=1,2,... , n)
be the proportion of x entries in the entries of columns j
in matrix S, as shown in Formula (3).

d
jSn

jSp x
x

),(
),(= (3)

 Given matrices C and F, ESx(j) is defined as the ratio
between px(F, j) and px(C, j), as defined in Formula (4).

njx
jCp
jFpjES

x

x
x ...,2,1,1,0,

),(
),()(=== (4)

We, now, define a constructive algorithm HF. The
input is an m×n recombinant matrix C, a founder matrix
F, a bound K for the number of founders, a random
control parameter rdp (0≤rdp≤1), and the look-ahead
parameters nt and las. The output is a founder matrix F.
Some important steps of HF algorithm will be introduced
in details afterwards.

1) Computing the first column: If the input founder
matrix F is an empty one, i.e., there is not a value
assigned to F[i,j] (i=1,2,…,K, j=1,2,..., n), the HF
algorithm starts by constructing the first column of matrix
F as follows.

(a) Initialize counters n0(F,1) and n1(F,1) to 1 to
ensure that at least one ‘0’ entry, respectively

one ‘1’ entry, exists in the first column of the
founder matrix F.

(b) Generate a random number r between 0 and 1,
increase n0(F,1) by 1 when r≤p0(C,1), and
increase n1(F,1) by 1 otherwise. The process is
repeated for K-2 times.

(c) Initialize F[1,1], F[2,1], …, F[n0(F,1),1] to 0,
and initialize F[n0(F,1)+1,1], F[n0(F,1)+2,1], …,
F[K,1] to 1.

2) Computing the remaining columns: Assume that
the first j-1 columns of matrix F have already been
constructed, and denote by Fj-1 the corresponding partial
solution. Update the variables lb(i) and df(i) (i=1,2,…,m),
i.e., among all of the founders with F[l,s]=C[i,
s](l=1,…,K, s=h,…, j), select the founder lm with the
minimum h as the new representant of recombinant C[i,-
] , and set lb(i)=h, df(i)=lm.

Generate a random permutation (r1,r2,…,rK) of the
integers {1, 2, ..., K}, and the j-th column F[-, j] (j=2,
3, …, n) is constructed starting from row r1 to rK. Here
we adopt look-ahead mechanism, which depends on the
following two parameters:

(a) nt, the number of trials
(b) las, the look-ahead size
For this purpose, nt matrices {M1,M2,…,Mnt}, each of

which is composed of K rows and min{las, n-j+1}
columns, are generated. Here each matrix Md (d=1,…,nt)
denotes a possible extension of Fj-1 by min{las, n-j+1}
columns. Compute bd (d=1,…,nt), which is the optimal
number of breakpoints obtained by appending Md to the
partial solution Fj-1. Set F[-, j]=MD[-,1], where
D=argmin{bd}. The concrete method for computing Md[rk,
l] (d=1,…,nt, k=1,…,K, l=1,…, min{las, n-j+1}) is
defined as follows.

Actually, Md is computed by using a duplicate copy
of matrix C. For convenience of description, this copy is
still denoted by C. A random number r is drawn
uniformly at random from [0,1]. If r<rdp, Md[rk, l] is set
to 0 with probability p0(CS(rk),j+l-1), and to 1 otherwise.
If r≥rdp, Md[rk, l] is computed with the following
methods.

(a) If n0(CS(rk), j+l-1) is greater (resp. less) than
n1(CS(rk), j+l-1), Md[rk,l] is set to 0 (resp. 1).

(b) If n0(CS(rk), j+l-1) has the same value as
n1(CS(rk), j+l-1), and ES0(j+l-1) is less (resp.
greater) than ES1(j+l-1), Md[rk,l] is set to 0
(resp. 1).

(c) If none of the above two cases is satisfied,
Md[rk,l] is set to 0/1 uniformly at random.

After Md[rk,l] is assigned, the representant df(i) of the
recombinant C[i,-] (i =1,2,…,m), which can not be
represented anymore by its current representant (founder),
need to be updated. That is to say, if Md[rk,l]=0 (resp. 1),
the recombinant of C with C[i, j+l-1]=1(resp. 0) and
df(i)=rk need to be reassigned representatives as follows:
if there exists such a new representing founder rfl
(fl=k+1,…,K) that C[i,s1]=F[rfl,s1] and C[i,j+s2-
1]=Md[rfl,s2] (s1=lb(i),…,j-1, s2=1,…,l-1), df(i) is set to
rfl., and the search process stops, otherwise df(i) is
unchanged.

2936 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

After all the entries in the l-th (l=1,…, min{las, n-j+1})
column of matrix Md are filled, some recombinants C[i,-]
(i=1,2,…,m) can not be represented by their current
founders, i.e., C[i, j+l-1]≠Md[df(i), l]. In such a situation,
among all of the founders with F[fl,s1]=C[i,s1] and
Md[fl,s2]= C[i,j+s2-1] (s1=h,…,j-1,s2=1,…,l, fl=1,…,K),

select the founder lm with the minimum h as the new
representant of recombinant C[i,-], and set lb(i)=h,
df(i)=lm.

Based on the above mentioned steps, HF algorithm is
summarized in Fig. 2.

Figure 2. HF Algorithm

B. PGMFL Algorithm
Parthenogenetic algorithm (PGA)[11][12] is a variant

of genetic algorithm (GA) [13][14]. It employs gene
recombination and selection operators instead of the
traditional crossover operator to produce offspring. In the
following, we will give some key techniques in
designing PGMFL algorithm.

1) Construction of the hypothesis space: A binary
matrix is used to denote a chromosome which represents
a founder matrix of the given recombinant matrix. Thus,
all of the binary matrices with K rows and n columns
constitute the hypothesis space: H={XK×n | X[i,j] ∈ {0, 1},
i=1,2,...,K, j=1,2,...,n}.

2) Generation of the initial population: A population
is composed of N chromosomes, i.e. the population size
is N. We generate an initial population by using HF
algorithm with parameters nt=1 and las=1, i.e., look-
ahead mechanism is not used while generating the initial
population.

3) Selection operator: Both roulette wheel selection
[15] and elitist model [16] are used to generate a new
population for the next generation. The operator ensure
that the best individual can be preserved into the next
generation.

4) Recombination operator: Recombination operator
generates new regions for search, that is generating new
offspring chromosomes. Here a novel one based on HF
algorithm is introduced, which has the following two
characteristics.

(a) The recombination operator plants some
random information into the chromosome. This
can make the algorithm escape from local
optimum solution and improve the clime
ability of the algorithm.

(b) The recombination operator uses the
information in the recombinants of matrix C to
adjust the chromosome. This can improve the
adaptability of the chromosome and the
convergence speed of the algorithm
simultaneously.

Algorithm 1: HF Algorithm

Input: C, F, K, rdp, nt, las
Output: F
1. if F is an empty matrix then
2. n0(F,1)=1, n1(F,1)=1
3. for i=1,…,K-2 do
4. generate a random number r (0≤r≤1)
5. if (r ≤p0(C,1)) then n0(F,1)++
6. else n1(F,1) ++
7. F[1,1]=,…,=F[n0(F,1),1]=0
8. F[n0(F,1)+1,1] =,…,=F[K,1]=1
9. update lb(i), df(i) (i=1,2,…,m)
10. for j=nc+1,…,n do // nc denotes the number of constructed columns in matrix F
11. generate permutation (r1,r2,…,rK) (ri,i=1, 2,…,K) at random
12. for d=1,...,nt do
13. for l=1,…, min{las, n-j+1} do
14. for k=1,…,K do
15. generate a random number r
16. if (r<rdp) then
17. Md[rk, l]=0 with probability p0(CS(rk),j+l-1), and Md[rk, l]=1 otherwise
18. else
19. if (n0(CS(rk), j+l-1)> n1(CS(rk), j+l-1)) then Md[rk,l]=0
20. else if (n0(CS(rk), j+l-1)< n1(CS(rk), j+l-1)) then Md[rk,l]=1
21. else if ES0(j+l-1)< ES1(j+l-1) then Md[rk,l]=0
22. else if ES0(j+l-1)> ES1(j+l-1) then Md[rk,l]=1
23. else Md[rk,l]=rand()%2 //rand() is used to generate a random integer
24. if (C[i, j+l-1]≠Md[rk,l] and df(i)=rk) then update df(i) (mi ,,2,1 …=)
25. if (C[i, j+l-1]≠Md[df(i), l]) then update lb(i) and df(i) (mi ,,2,1 …=)
26. Compute bd
27. F[-, j]=MD[-,1] //D=argmin{bd}(d=1,...,nt)

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2937

© 2013 ACADEMY PUBLISHER

The idea of the recombination operator is based on the
fact that solutions to a problem instance can be
constructed from left to right, as explained in the HF
algorithm, but also from right to left. Given a
chromosome X, a binary variable direction is generated
randomly. If direction=0, dc (a random integer between
1 and n) columns are removed from the right hand side
or from the left hand side otherwise, i.e., the entries of
these columns are deleted. Next, the HF algorithm is
executed on the partial solution X to make it be a
complete solution, and the new chromosome X' is
obtained. The concrete description of the recombination
operator is given in Fig. 3.

Algorithm 2: Recombination operator
Input: an m×n recombinant matrix C, a chromosome X
Output: a new chromosome X'
1. generate variable direction and dc randomly
2. if direction=0 then
3. for j=1 to dc
4. X[i,j]=’ ’(i=1,...,K) // X[i,j] is deleted
5. else if direction=1 then
6. for j=1 to dc
7. X[i,n-j+1]=’ ’(i=1,...,K) // X[i,n-j+1] is deleted
8. the HF algorithm is executed on X to generate X'

Figure 3. Recombination operator

4) Designation of the fitness function: The fitness
function measures how “good” a chromosome is, so that
better chromosomes can be selected. Because each
chromosome represents a viable solution of the
maximum fragment length model, we need to make an
estimate of the results. Given a chromosome X and the
recombinant matrix C, the fitness function Fitness(X) is
defined as Formula (5):

nb
XFitness 1)(= (5)

As mentioned above, chromosome X denotes a
founder matrix of the given recombinant matrix, nb
denotes the number of breakpoints in recombinant matrix
C when given the founder matrix X. The smaller nb is,
the stronger the fitness of chromosome X is.

The PGMFL algorithm for solving the founder
sequences reconstruction problem is summarized in Fig.4.

IV. EXPERIMENTAL RESULTS

In this section, experimental results are presented to
compare the performance of the PGMFL and
BACKFORTH algorithms. All experiments were
performed on a Lenovo Workstation with Pentium(R) D
3.0GHz Processors and 2GB of RAM. The operating
system was Windows XP Professional and the compiler
was Microsoft Visual C++ 2010.

Figure 4. PGMFL Algorithm

In the experiments, we used the following two
measurements to evaluate the performance of the two
algorithms:

(a) nb, the number of breakpoints
(b) aveλ , the average fragment length

A similar benchmark set introduced in Ref. [8] and Ref.
[9] was used. This set is composed of randomly generated
instances with m∈ {30, 50, 100} recombinants and

n∈ {2m, 3m, 5m} SNP sites. The best set of parameters

given in Ref. [9] was used for the BACKFORTH
algorithm. The parameters of the PGMFL algorithm were
set as follows: rdp=0.2, nt=10 (5 in case k=3), las=1,
N=300, which are the same as the BACKFORTH
algorithm. For every experimental instance, we have
limited the CPU time to one hour, which is the same as
Ref. [9].

Table I to Table III show the experimental results of
instances with 30 recombinant sequences, where the
number of SNP sites n is set to 60, 90 and 150

Algorithm 3: PGMFL Algorithm

Input: C, F, K, rdp, nt, las, N, maxtime //maxtime is the maximum of running time
Output: F
1. Generate the initial population pop0={X1(0),…,XN(0)}
2. for i=1,…,N do
3. compute Fitness(Xi(0))
4. tm=0 //tm denotes the actual iteration time
5. gen=0 // gen denotes the actual iteration times
6. If tm<maxtime then
7. select N members from popgen by using selection operator, and add them to popgen+1
8. for i=1,…,N do
9. apply recombination operator on Xi(gen+1) to produce)1(' +genX i

10. If Fitness()1(' +genXi)> Fitness(Xi(gen+1)) then

11. Xi(gen+1)=)1(' +genX i
12. get the value of tm
13. gen=gen+1
14. output the individual with the highest fitness

2938 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

respectively. In each of the three tables, eight sets of
parameters were set in dealing with the bound K for the
number of founders.

From Table I to Table III we can see that with the
increase of parameter K, the nbs obtained by the two
algorithms are both decreased. In Table I, the nb of
algorithm BACKFORTH ranges from 611 to 260, and the
one of algorithm PGMFL ranges from 595 to 247. In
Table II, the nb of algorithm BACKFORTH ranges from
923 to 402, and the one of algorithm PGMFL ranges from
914 to 399. In Table III, the nb of algorithm
BACKFORTH ranges from 1590 to 754, and the one of
algorithm PGMFL ranges from 1555 to 747.

TABLE I.
PERFORMANCE COMPARISONS WITH M=30, N=60.

K aveλ Nb
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.95 3.03 611 595
4 3.57 3.62 504 497
5 4.15 4.17 434 432
6 4.64 4.84 388 372
7 5.28 5.64 341 319
8 5.83 6.12 309 294
9 6.43 6.50 280 277
10 6.92 7.29 260 247

TABLE II.
PERFORMANCE COMPARISONS WITH M=30, N=90.

K aveλ Nb
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.93 2.95 923 914
4 3.52 3.62 768 746
5 4.07 4.28 664 631
6 4.70 4.75 575 569
7 5.14 5.23 525 516
8 5.57 5.78 485 467
9 6.04 6.18 447 437
10 6.72 6.77 402 399

TABLE III.
PERFORMANCE COMPARISONS WITH M=30, N=150.

K aveλ Nb
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.83 2.89 1590 1555
4 3.49 3.52 1290 1278
5 4.11 4.13 1095 1089
6 4.55 4.62 988 975
7 5.07 5.09 887 884
8 5.48 5.53 821 814
9 5.97 6.02 754 747
10 6.39 6.47 704 696

It can be known from Formula (2) that the value of

aveλ is inversely proportional to the value of nb. The
bigger nb is, the smaller aveλ is. Therefore, with the
increase of parameter K, the average fragment length aveλ
obtained by the two algorithms is increased. In Table I,
the aveλ of algorithm BACKFORTH ranges from 2.95 to
6.92, and the one of algorithm PGMFL ranges from 3.03
to 7.29. In Table II, the aveλ of algorithm BACKFORTH
ranges from 2.93 to 6.72, and the one of algorithm
PGMFL ranges from 2.95 to 6.77. In Table III, the aveλ
of algorithm BACKFORTH ranges from 2.83 to 6.39,

and the one of algorithm PGMFL ranges from 2.89 to
6.47.

In addition, in these three tables, with the same running
time budget, the PGMFL algorithm can get fewer
breakpoints and longer average fragment length than the
BACKFORTH algorithm under different parameter
settings.

Table IV to Table VI show the experimental results of
instances with 50 recombinants, where n is set to 100,
150 and 250 respectively. In each of the three tables,
eight sets of parameters were also set in dealing with
parameter K.

TABLE IV.
PERFORMANCE COMPARISONS WITH M=50, N=100.

K aveλ Nb
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.70 2.74 1854 1828
4 3.26 3.27 1536 1530
5 3.60 3.71 1387 1348
6 4.07 4.15 1228 1206
7 4.48 4.51 1116 1108
8 4.84 4.93 1033 1014
9 5.27 5.29 949 946
10 5.61 5.64 891 887

TABLE V.
PERFORMANCE COMPARISONS WITH M=50, N=150.

K aveλ Nb
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.71 2.73 2765 2746
4 3.16 3.20 2371 2346
5 3.54 3.63 2116 2068
6 4.03 4.04 1861 1857
7 4.38 4.47 1711 1678
8 4.81 4.84 1560 1548
9 5.13 5.15 1461 1457
10 5.44 5.47 1379 1370

TABLE VI.
PERFORMANCE COMPARISONS WITH M=50, N=250.

K aveλ Nb
BACKFORTH PGMFL BACKFORTH PGMFL

3 2.65 2.67 4710 4678
4 3.12 3.14 4001 3985
5 3.58 3.59 3489 3478
6 3.97 3.99 3145 3132
7 4.31 4.34 2902 2883
8 4.70 4.73 2657 2644
9 5.04 5.05 2481 2477
10 5.36 5.37 2330 2326

Table IV to Table VI show that with the increase of

parameter K, the number of breakpoints nb obtained by
the two algorithms is decreased. In Table IV, the nb of
algorithm BACKFORTH ranges from 1854 to 891, and
the one of algorithm PGMFL ranges from 1828 to 887. In
Table V, the nb of algorithm BACKFORTH ranges from
2765 to 1379, and the one of algorithm PGMFL ranges
from 2746 to 1370. In Table VI, the nb of algorithm
BACKFORTH ranges from 4710 to 2330, and the one of
algorithm PGMFL ranges from 4678 to 2326.

As mentioned above, in these three tables, with the
increase of parameter K, the average fragment length aveλ
obtained by the two algorithms is also increased. In Table

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2939

© 2013 ACADEMY PUBLISHER

IV, the aveλ of algorithm BACKFORTH ranges from
2.70 to 5.61, and the one of algorithm PGMFL ranges
from 2.74 to 5.64. In Table V, the aveλ of algorithm
BACKFORTH ranges from 2.71 to 5.44, and the one of
algorithm PGMFL ranges from 2.73 to 5.47. In Table VI,
the aveλ of algorithm BACKFORTH ranges from 2.65 to
5.36, and the one of algorithm PGMFL ranges from 2.67
to 5.37.

In Table IV to Table VI, the PGMFL algorithm still
has better performance than the BACKFORTH algorithm
under different parameter settings with the same running
time budget.

In Table VII, four sets of parameters were set in
dealing with parameter K: (1) K=3, (2) K=4, (3) K=5, (4)
K=6. In all of these four cases, the number of
recombinants m was set to 100, and the number of SNP
sites n was set to 200, 300 and 500 respectively.

TABLE VII.
PERFORMANCE COMPARISONS WITH M=100.

K n aveλ Nb
BACKFORTH PGMFL BACKFORTH PGMFL

3
200 2.54 2.55 7860 7843
300 2.52 2.53 11927 11874
500 2.51 2.51 19939 19894

4
200 2.89 2.95 6921 6780
300 2.88 2.92 10416 10285
500 2.86 2.91 17459 17186

5
200 3.23 3.27 6187 6109
300 3.23 3.28 9297 9135
500 3.20 3.27 15613 15298

6
200 3.59 3.60 5566 5551
300 3.58 3.64 8386 8231
500 3.52 3.59 14216 13938

From Table VII we can see that within the same

running time budget, the PGMFL algorithm can obtain
fewer breakpoints and longer average fragment length
than the BACKFORTH algorithm under all parameter
settings. In addition, given a certain value of bound K,
with the increase of SNP sites n, although the absolute
number of breakpoints obtained by the PGMFL algorithm
and the BACKFORTH algorithm increases, the average
fragment length got by these two algorithms keeps almost
unchanged. Hence, the parameter n has little effect on the
performance of the PGMFL and the BACKFORTH
algorithms.

The above experimental results show that the PGMFL
algorithm is able to get better performance than the
BACKFORTH algorithm. During the iteration process,
the BACKFORTH algorithm adopts a meta-heuristic
framework based on iterative greedy algorithm and
makes full use of the effective information of the
obtained solutions. The BACKFORTH algorithm starts
with a single initial solution, and iteratively refines it to
get the optimal solution. However, the BACKFORTH
algorithm uses an optimization mechanism based on a
single initial solution, hence the performance of the
BACKFORTH is sensitive to the quality of the initial
solution. The PGMFL algorithm is based on
parthenogenetic algorithm, which can search multiple
regions of a solution space simultaneously and it is

relatively insensitive to the quality of the initial solution.
In addition, the recombination operator based on the HF
algorithm makes full use of the information in the
recombinant sequences to adjust the chromosomes step
by step, which plays a strong role in evolving towards
higher adaptability for chromosomes. The operator still
plants random information for evolution, which prevents
premature convergence to local optima and improves the
clime ability of the PGMFL algorithm. Therefore, the
PGMFL algorithm can obtain a better solution than the
BACKFORTH algorithm.

V. CONCLUSIONS

In recent years, the problem of reconstructing founder
sequences from a set of recombinant sequences has
received much attention in computational biology. The
maximum fragment length model is one of the important
computational models for solving the founder sequences
reconstruction problem.

In this paper, a parthenogenetic algorithm PGMFL is
presented for solving the model by introducing an
effective recombination operator based on the HF
algorithm. Comparing with the BACKFORTH algorithm,
the PGMFL algorithm can get better solutions within the
same time budget, which were tested by a number of
experiments. Furthermore, the PGMFL algorithm has
high efficiency and is intended to reconstruct long
founders. In conclusion, the PGMFL algorithm is a
practical solution for solving the founder sequences
reconstruction problem.

ACKNOWLEDGMENT

The authors are grateful to Professor Yufeng Wu for
his kindly providing the ADH sample data, and Professor
Qi Zhang for bringing the minimum mosaic problem to
our attention. This research was supported in part by
Guangxi Natural Science Foundation under Grant No.
2011GXNSFB018068, No. 2011GXNSFB018070 and
No. 2012GXNSFAA053219,
the National Natural Science Foundation of China under
Grant No. 61165009, and “Bagui Scholar” Project
Special Funds.

REFERENCES

[1] J. D. Kececioglu, D. Gusfield, “Reconstructing a history of
recombinations from a set of sequences”, Discrete Applied
Mathematics, vol.88, no.1-3, pp.239-260,1998.

[2] T. Pupko, I. Pe'er, R. Shamir, D. Graur, “A fast algorithm
for joint reconstruction of ancestral amino acid sequences”,
Molecular Biology and Evolution, vol.17, pp.890-
896,2000.

[3] G. Tyson, J. Chapman, P. Hugenholtz, et al., “Community
structure and metabolism through reconstruction of
microbial genomes from the environment”, Nature,
vol.428, pp.37-43,2004.

[4] Q. Zhang, W. Wang, L. McMillan, F.P.D. Villena,
D.Threadgill, “Inferring genome-wide mosaic structure”,
In Proceeding of the Pacific Symposium on Biocomputing,
pp.150-161,2009.

2940 JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013

© 2013 ACADEMY PUBLISHER

[5] E. Ukkonen, “Finding founder sequences from a set of
recombinants”, Lecture Notes in Computer Science,
vol.2452, pp.277-286,2002.

[6] P. Rastas, E. Ukkonen, “Haplotype inference via
hierarchical genotype parsing”, Lecture Notes in Computer
Science, vol.4645, pp.85-97,2007.

[7] Y. Wu, D. Gusfield, “Improved algorithms for inferring the
minimum mosaic of a set of recombinants”, Lecture Notes
in Computer Science, vol.4580, pp.150-161,2007.

[8] A. Roli, C. Blum, “Tabu search for the founder sequence
reconstruction problem: a preliminary study”, Lecture
Notes in Computer Science, vol.5518, pp.1035-1042,2009.

[9] S. Benedettini, C. Blum, A. Roli, “A randomized iterated
greedy algorithm for the founder sequence reconstruction
problem”, Lecture Notes in Computer Science, vol.6073,
pp.37-51,2010.

[10] G. Blin, R. Rizzi, F. Sikora, S. Vialette, “Minimum mosaic
inference of a set of recombinants”, In Proceedings of the
17th Computing: the Australasian Theory Symposium,
pp.23-30,2011.

[11] M. J. Li, T. S. Tong, “A partheno-genetic algorithm and
analysis on its global convergence”, Acta Automatic
Sinica, vol.25, pp.68-72,1999.

[12] J. L. Wu, J. X. Wang, J. E. Chen, “A parthenogenetic
algorithm for single individual SNP haplotyping”,
Engineering Applications of Artificial Intelligence, vol.22,
pp.401-406,2009.

[13] M. Mitchell, “Genetic algorithms: an overview”,
Complexity, vol.1, no.1, pp.31-39,1995.

[14] S. A. Ghoreishi, M. A. Nekoui, S. Partovi, S. O. Basiri,
“Application of Genetic Algorithm for Solving Multi-
Objective Optimization Problems in Ro-bust Control of
Distillation Column”, International Journal of
Advancements in Computing Technology, vol.3, no.1,
pp.32-43, 2011.

[15] R.Sivaraj, Dr.T.Ravichandran, “A review of selection
methods in genetic algorithm”, International Journal of
Engineering Science and Technology, vol.3, no.5, pp.3792-
3797,2011.

[16] D.Bhandari, C.A.Murthy, “Genetic algorithm with elitist
model and its convergence”, International Journal of
Pattern Recognition and Artificial
Intelligence,vol.10,no.6,pp.731-747, 1996.

Jingli Wu, born in 1978, an associate professor of the College
of Computer Science and Information Technology, Guangxi
Normal University, Guilin, P.R. China. She received her Ph.D.
degree in Computer Science from Central South University of
P.R. China in 2008. Her current research interests include
biocomputing, algorithm analysis and optimization.

Hua Wang, born in 1985, she is currently working towards his
M.S. degree in College of Computer Science and Information
Technology, Guangxi Normal University. Her research interests
are in the areas of bio-computing and evolutionary algorithm

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2941

© 2013 ACADEMY PUBLISHER

