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Abstract—Recently, Extreme Learning Machine(ELM) has 
been a promising tool in solving a large range of regression 
applications. However, to our best knowledge, there are 
very few researches applying ELM to estimate mixture 
regression model. To improve the estimation performance, 
this paper extends the classical ELM to the scenario of 
mixture regression. First, based on the idea of fuzzy 
clustering, a set of fuzzy factors are introduced in ELM to 
measure the degree of membership for a specific class. 
Furthermore, a new regularization problem is constructed 
and then the optimal fuzzy factors can be calculated after 
multiple iterations. Experiments conducted on toy 
regression data and a structural response prediction data set 
show the effectiveness of the proposed algorithm compared 
to the Support Vector Machine-based algorithm in terms of 
estimation accuracy and computational cost. 
 
Index Terms—extreme learning machine, Mixture 
regression, regularization, fuzzy clustering 
 

I.  INTRODUCTION 

In past decade, extreme learning machine(ELM) [1], 
has received broad attention in the fields of machine 
learning and computer vision. Specifically speaking, 
ELMs extends single-hidden layer feedforward neural 
network(SLFN) to “generalized” hidden node case. With 
randomly initialized input weights and hidden layer 
biases, ELMs seek the minimum of the norm of output 
weights. Different from the conventional gradient-based 
learning algorithms, e.g., back-propagation(BP) methods, 
ELMs analytically calculate the output weights via a 
simple matrix inversion procedure which results in very 
high learning speed as well as good generalization 
performance [2]. Recently, ELMs have shown impressive 
performance in solving a wide range of real-life problems 
[3-5]. 

However, according to our empirical study, ELMs tend 
to get unsatisfactory results when facing non-linear data 
sets with large scale. There are two main reasons. One is 
that a large data set generally contains different models. 

Another is that measuring error is inevitable in practical 
experiments. To overcome this shortcoming, a possible 
solution is using multiple models to describe the data set. 
This kind of approach is called mixture model estimation. 
Different methods, e.g., clustering and fuzzy computing, 
were introduced to solve this problem. As a typical 
approach, maximum likelihood method [6] generally 
obtains good results at a great computational cost. 
Moreover, the applicable probability density function set 
is very limited. On the contrast, expectation maximization 
[7] is computationally inexpensive in spite of low 
convergence speed. Fuzzy clustering is another kind of 
useful approaches. Xue [8] proposed a multiple-model 
identification method based on satisfactory fuzzy C 
clustering. Menard [9] adopted two concepts, ambiguity 
and distance rejects, to switch various regression models. 
But this kind of approaches heavily depend on the initial 
values, and local minimum is unavoidable. Another 
typical approach is to combine machine learning 
algorithm with fuzzy estimation. Sun [10] utilized 
support vector machine(SVM) to conduct fuzzy 
regression estimation, but the decision model’s 
generalization ability and learning speed are two key 
parts blocking the further development. 

According to the above discussion, the most important 
factor of mixture model estimation is developing the 
generalization ability and learning speed of basic learning 
algorithm. If a more efficient learning machine is 
introduced, the performance of mixture regression 
estimation will be improved. Fortunately, ELM can meet 
these requirements. Inspired by [10], this paper tries to 
employ ELM as the basic algorithm, and proposes a new 
algorithm for mixture regression estimation via adding 
fuzzy clustering. This algorithm can identify various 
regression models in high speed and precision. To our 
best knowledge, this research serves as the first attempt to 
generalize ELM from single model to mixture models. 

The paper is organized as follows. In section 2, a brief 
review to ELM is provided. In section 3, we describe the 
extension of ELM to the paradigm of mixture models. 
Section 4 is devoted to computer experiments on two  
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different types of data sets, followed by a conclusion of 
the paper in the last section.  

II.  BRIEF INTRODUCTION OF ELM 

As the theoretical foundations of ELM, [11] studied 
the learning performance of SLFN on small-size data set, 
and found that SLFN with at most N  hidden neurons can 
learn N  distinct samples with zero error by adopting any 
bounded nonlinear activation function. Then based on 
this concept, Huang [2] pointed out that ELM can 
analytically determine the output weights by a simple 
matrix inversion procedure as soon as the input weights 
and hidden layer biases are generated randomly, and then 
obtain good generalization performance with very high 
learning speed. Here a brief summary of ELM is provided. 

Given a set of i.i.d. training samples 
( ) ( ){ }1 1, , , , n m

N N ⊂ ×x t x t" \ \ , standard SLFNs with 

N�  hidden nodes are mathematically formulated as [2]: 

1 1

( ) ( ) , 1,...,
N N

i i j i i i j i j
i i

g g b j Nβ β
= =

= ⋅ + =  =∑ ∑x w x o
� �

  (1) 

where ( )g x  is activation function, 1 2[ , ,..., ]T
i i i inw w w=w  

is input weight vector connecting input nodes and the thi  
hidden node, 1 2[ , ,..., ]T

i i i imβ β β=β  is the output weight 
vector connecting output nodes and the thi  hidden node, 

ib  is bias of the thi  hidden node. Huang [3] has 
rigorously proved that then for N  arbitrary distinct 
samples and any ( , )i ibw  randomly chosen from n ×\ \  
according to any continuous probability distribution, the 
hidden layer output matrix H  of a standard SLFN with 
N  hidden nodes and is invertible and 0− =Hβ T  with 
probability one if the activation function :g \6\  is 
infinitely differentiable in any interval. Then given 
( , )i ibw , training a SLFN equals finding a least-squares 
solution of the following equation [2]: 

=Hβ T                                 (2) 

where: 
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Considering most cases that N N� � , β  cannot be 
computed through the direct matrix inversion. Therefore, 
Huang [2] calculated the smallest norm least-squares 
solution of (2): 

                                      †ˆ =β H T             (3) 

where †H  is the Moore-Penrose generalized inverse of 
matrix H [2]. According to Bartlett’s theory [12] that the 
generalization performance of SLFN will be improved by 
minimizing training errors as well as the norm of output 
weights, the solution β̂  can pledge the generalization 
ability of SLFN in the theory. 

Based the above analysis, Huang [3] proposed ELM 
whose framework can be stated as follows [2]: 

Step 1. Randomly generate input weight and bias 
( , )i ibw , 1, ,i N= �" . 

Step 2. Compute the hidden layer output matrix H . 
Step 3. Compute the output weight †ˆ =β H T . 
Therefore, the output of SLFN can be calculated by 

( , )i ibw  and β̂ : 

1

ˆ ˆ( ) ( ) ( )
N

j i i i j i j
i

f g b hβ
=

= ⋅ + =∑x w x β x
�

i
 

The rigorously theoretical analysis can be found in [2]. 

III.  MIXTURE REGRESSION ESTIMATION BASED ON ELM 

In this section we will first build up the regularization 
formulation for ELM, and then estimate the the mixture 
ELM models. As a result, a new approach of mixture 
model estimation based on ELM is derived. Although the 
work is somewhat similar to [10], this approach is still 
specific for ELM. 

Huang [2] showed that ELM can be extended to SVM 
in linear case with less optimization constraints and 
simpler random kernel. As stated in Section Introduction, 
the classical ELM seeks the solution with zero training 
error, e.g., ( ) 0i ih t⋅ − =β x . However, considering the 

acceptable minimal training error, e.g., ( )i i ih t ε⋅ = −β x , 
which exists in many applications, the objective of ELM 
can be rewritten as minimizing the training error as well 
as the norm of output weights [2]: 

                  ( )
1

min
N

i i
i

h t
=

 ⋅ −∑ β x                (4) 

and 

                            min  β      (5) 

From the regularization method point of view, (4) and 
(5) can be combined into the following formulation: 

               
( )

2 2

1

1min
2

. .

N

i
i

i i i

C

s t t h

ε

ε
=

  +

    = − ⋅

∑β

β x
    (6) 

where C  is regularization parameter which controls the 
tradeoff between the training error and generalization 
ability. Note that (6) is similar to LS-SVM except ( )ih x  
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is generated randomly and the bias b  in LS-SVM is not 
required here. 

Now consider that the whole data set 
( ) ( ){ }1 1, , , , n m

N N ⊂ ×x t x t" \ \  is composed of 
multiple models. Without loss of generality, we focus on 
regression model where the output dimension is one here. 
The scenario of multiple-dimensional output can be 
naturally extended. Denote by M  the number of models. 
To estimate various models, we construct the following 
optimization target based on (6): 

( )

2 2
, ,

=1 =1 1

, , ,

,
=1

1min
2

. .

=1, =1,2, , , =1,2, ,

M M N
m

i i j i j
i i j

i j i j i i i j

M

i j
i

L C

s t t h

i M j N

μ ε

ε

μ

=

  = +

    = − ⋅

               

∑ ∑∑

∑

β

β x

" "

 (7) 

In (7), M Nμ ×∈\ , and ,i jμ  means the membership 
value of the thj  sample belonging to the thi  model. 

>1m  controls the ambiguity of clustering results. 
Generally speaking, =2m  is applicable in most 
applications.  

Applying the method of Lagrange multipliers to this 
problem, we arrive at the following dual optimization 
problem: 

( )( )

2 2
, ,

=1 =1 1

,
=1 1

,
1 =1

1
max min  

2

+

1
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m

i i j i j
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i j i i i, j i, j i, j
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N M

j i j
j i

L C
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μ ε
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η μ

=

=

=
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                  − ⋅ −

⎛ ⎞                  − −⎜ ⎟
⎝ ⎠

∑ ∑∑

∑∑

∑ ∑

β

β x  (8) 

Getting the partial derivative of the parameters 
respectively, we can obtain: 

             ( ),
=1

=0 =
N

i i j i i, j
ji

L hα∂  ⇒ 
∂ ∑β x
β

  (9) 

            , , ,=0 2 =0m
i j i j i j

i, j

L C -μ ε α
ε
∂  ⇒  

∂
              (10) 

            -1 2
, ,

,

=0 - =0m
i j i j j

i j

L Cmμ ε η
μ
∂  ⇒ 

∂
             (11) 

According to (11), we have: 

                   
( )1 -1

, 2
,

=
m

j
i j

i jCm
η

μ
ε

⎛ ⎞
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             (12) 

Substituting (12) into the constraint of (7), we have: 

            

( )-1

1
-1

2
=1 ,

1=
1

m

j
mM
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η

ε
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              (13) 

Then the following formula can be obtained: 

         
( ) ( ) ( ) ( ), 2 -1 2 1-

, ,
=1

1=i j Mm m

i j i j
i

μ
ε ε∑

              (14) 

On the other side, we have the following formula 
according to (10): 

                      ,
,

,

=
2

i j
i j m

i jC
α

ε
μ

                             (15) 

Therefore, according to (9), (15) and the constraint of 
(7), we have: 

( ) ( ), , , ,
=1

, 1,2, , , 1,2, ,
N

i k i i,k i i j i j i j
k

h h t i M j Nα ε⋅ + =  =  =∑ x x " "  

After introducing ELM kernel [2]: 
( ) ( ) ( ), ,,ELM i,k i j i i,k i i jK h h= ⋅x x x x , the above equation can 

be rewritten as the following linear case: 

               1
2i i im

i

I
C

⎡ ⎤
+ =⎢ ⎥

⎣ ⎦
K α T

μ
              (16) 

where iK  are the ELM kernel matrix, iμ , iα , iT  are the 
vectors of ,i jμ , ,i jα  and ,i jt  for the thi  class, respectively, 
and I  is the N N×  identity matrix. 

Based on the discussions above, we try to estimate 
different regression models via alternating  optimization. 
This approach includes two steps. First is calculating the 
Lagrange multipliers iα  for each class using the fixed 
membership iμ . Second is obtaining the value of iμ  by 
means of the errors between real and predictive outputs. 
These two steps continue in turn until convergence occurs.  

The algorithm of mixture regression estimation for 
ELM is listed as follows: 
Algorithm 1 Mixture regression estimation based on 
ELM 
Input: Class number M , m , regularization parameter 

C , number of hidden neurons N�  
Output: iμ , iα , =1,2, ,i M"  
Step 1. Initialize iμ  and the input weights iw . Calculate 

the ELM kernel matrix iK , =1,2, ,i M"  
Step 2. For =1i  to M  
                 Fix iμ . Calculate the Lagrange multipliers iα  

by solving (16) 
            End for 
Step 3. Identify the membership iμ  using (14) 

while fixing iα  as: 
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(a) ( )1f x  

(b) ( )2f x  

Figure 1.  Modeling performance of FC-ELM on two simulation data 
sets. 

( ) ( ) ( ) ( ), 2 -1 2 1-

, ,
=1

1
i j Mm m

i j i j
i

μ
ε ε

←
∑

 

Step 4. Go to Step 2 or stop if the change of either iμ  or  

iα  between two consecutive iterations is less than a 
threshold.            

 
It is worth noting that, although this algorithm has 

similar derivation process with [10], there still exist two 
apparent differences. One is that the Lagrange multipliers 

iα  are directly calculated via the linear system (16) 
rather than the quadratic problem in [10]. Another is that 
the proposed approach has more simple form which 
doesn’t have the bias parameter b  and the kernel matrix 
K  can be computed directly from inner product between 
any two nonlinear piecewise continuous functions rather 
than a fixed kernel function. Therefore, the proposed 
approach applies especially to ELM. 

IV. EXPERIMENTS 

In this section, we run experiments to test the proposed 
method. For better comparison, we examine two types of 
regression data sets whose samples come from different 
models in simulation case. One is toy data and another is 
an engineering data set, named as structural response 
prediction data. Our goal is to demonstrate the 
effectiveness of the proposed algorithm. For comparison, 
we choose two baselines. First is the traditional fuzzy 
clustering, called as FC, proposed in [13]. The second is 
the fuzzy clustering SVM proposed in [10]. For short, it 
is called FC-SVM in this paper. Correspondingly, the 
proposed algorithm is named as fuzzy clustering ELM, 
FC-ELM for short. In two baselines, the Gaussian RBF 
kernel is used and defined as 

( )2 2(x , x ) exp x xi j i jK σ= − [14], where σ  is kernel 

parameter and set 0.2. In FC-SVM and FC-ELM, m  is 
set 2, the regularization parameter C  is set 100, and the 
number of classes is set 2. The number of hidden neurons 
is set 10. Each of input and output variables are rescaled 
linearly to the range [ ]1, 1− + . All programs are carried 
out in MATLAB2010a environment running in a Core 2, 
2.66GHz CPU and 3.37GB RAM.  

A.  Toy Data 
The first data set is constructed using the following 

mixture function: 

( ) ( )
( )1

sinc ,         [ 2,2]
, ~ (0,0.02)

0.1sin 0.1 +0.4 ,      [ 2,2]

x e x
f x e N

x x e xπ
+ ∈ −⎧⎪=    ⎨

+ + ∈ −⎪⎩
 

And the second data set comes from the following 
mixture function: 

( )2

10sin ,     [0,10]
 ,  ~ (0,0.5)

0.1sin 2 ,    [0,10]
2

x e x
f x e Nx e xπ

+ ∈⎧
⎪= ⎨ ⎛ ⎞ + + ∈⎜ ⎟⎪ ⎝ ⎠⎩

 

For better illustration, we choose the single-
dimensional input. In each data set, the training set of 140 
data points ( ){ },i ix y  is generated with ix  drawn 

uniformly from input space. ie  is a Gaussian noise term. 
The other 60 data points are randomly selected as test set. 
According to our empirical study and the results in [10], 
mixture regression estimation is a NP-hard problem. So, 
we run experiments 30 times. Here two error evaluations 
are introduced. One is RMSE, and another is correct 
classification ratio that means the percentage of getting 
right classification results. All the experimental results 
are the mean values of 30 trails. 

The modeling performance of the proposed algorithm 
is given in Fig.1. 

Obviously, the proposed algorithm can estimate 
accurately two regression models in each data set. In 
Fig.1, we use two symbols ‘*’ and ‘diamond’ to describe 
the different models. According to the illustration, two 
regression models are nearly identified, which 
demonstrates that the proposed algorithm can effectively 
solve the mixture regression estimation using ELM and 
fuzzy clustering. Note that in our experiments, we 
observed in some trials the experiments fail which had 
also been reported in [10]. For example, Fig.2 provides a 
incorrect modeling results. 

The main reason is the membership factors are 
initialized randomly. It will bring about the incorrect 
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(a) ( )1f x  

(b) ( )2f x  

Figure 2. Incorrect modeling results of FC-ELM on two simulation data 
sets 

classification results. However, we observed that these 
wrong results also emerged more frequently in other two 
baselines than FC-ELM. It can be explained that, in spite 
of random initial membership factors, the good 
generalization ability of ELM can adjust the negative 
affect of randomly initial values. On the contrary, the 
performance of SVM heavily depends on the choosing of 
hyper-parameters, i.e., regularization parameter and 
kernel parameters. It makes FC-SVM cannot improve the 

results in a flexible manner like ELM. The numerical 
results of test error also reflect these comparison, as listed 
in Table I and TableⅡ. 

The results reported in Table I and Table Ⅱ have show 
the comparative advantage of the proposed algorithm. At 
three error indexes, the proposed algorithm all gets better 
predictive performance than other two approaches. 
Especially speaking, FC-SVM and FC-ELM both 
improve the identification performance than the 
traditional FC approach. The reason is that these two data 
sets contain the nonlinear regression model which can not 
be tackled effectively by the traditional FC approach. On 
the contrast, SVM and ELM are both good at establishing 
the nonlinear model, which will provide more useful 
information or domain knowledge for training. This 
comparison shows the benefits using nonlinear learning 
algorithm to estimate the mixture regression models. 
Moreover, FC-ELM gets higher precision and less 
computational time than FC-SVM, which demonstrates 
the effectiveness of ELM in mixture regression 
estimation problem. Especially at computational time, it 
will give us an engineer choice---an algorithm with high 
precision and very little computational burden. 

B.  Structural Resoponse Prediction Data 
Our previous work [15] has proved theoretically that 

the response signals of a structure can be predicted by the 
response of same structure with different boundary 
condition. Here this method is called as structural 
response prediction. It is of important significance in the 
fields of mechanical manufacturing and aero-craft design, 
etc. The procedure can be summarized in three steps. 
First, it needs to select several groups of response signals 
at different measuring nodes. Second, the training 
samples should be constructed using the response under 
one boundary condition as input and another boundary 
condition as output. Finally, a regression model is 
established to predict the response by means of the 
response under other boundary conditions. Note that this 
method can work in time and frequency domain.  

If the amount of response signals is low, the prediction 
performance cannot be guaranteed due to less domain 
information. From another perspective, we can gather 
some neighboring points to establish regression model 
together. In this scenario, domain knowledge will be 
increased than single point. According to the dynamic 
theory, the response at one point will be affected by the 
neighboring points, which indicates multiple regression 
models exist in the response at these points. Therefore, 
the mixture regression method is applicable to solving 
this problem because it can not only reduce predictive 
error but also shorten prediction time. 

Simplified from many engineering structure, e.g., 
aircraft and car, cylindrical shell is widely used as a 
typical structure. Same with our previous work [15], a 
cylindrical shell vibration system was established to 
research structural response prediction. The finite element 
model and corresponding stochastic vibration 
experimental setup of this cylindrical shell system are 
shown in Fig.3, which is same with [15]. 

TABLE I.   
TEST ERRORS ON THE 1f  DATA SET WITH STANDARD DEVIATION IN 

BRACKET 

 FC FC-SVM FC-ELM 
RMSE 0.6251(0.31) 0.2561(0.23) 0.0574(0.048)
Correct 
ratio(%) 26.67 60.00 96.67 

Time(s) 2.853 0.538 0.151 

TABLEⅡ. 
TEST ERRORS ON THE 2f  DATA SET WITH STANDARD DEVIATION IN 

BRACKET 

 FC FC-SVM FC-ELM 
RMSE 8.651(4.18) 5.392(2.73) 3.764(2.14) 
Correct 
ratio(%) 33.33 73.33 86.67 

Time(s) 3.145 0.721 0.244 
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(a) X direction 

(b) Y direction 

(c) Z direction 

Figure 4.  Comparative results on shock acceleration response of 
cylindrical shell in (a) X direction, (b) Y direction and (c) Z direction.

 
Figure 3. Cylindrical vibration system containing (a)stochastic 

experimental setup, (b) finite element model and (c)map of measuring 
points 

 
Our previous work [15] provides the specific 

parameters of this system. Here a brief introduction is 
given. The cylindrical shell in Fig.3 is assembled at 
bottom by a clamp. Specifically, steel and magnesium 
aluminum (Mg-Al) alloy clamps(shown in Fig.3(a)) are 
provided to represent two different boundary conditions, 
respectively. As shown in Fig.3(c), 144 measuring points 
are placed at the shell’s surface in 8 turns. The ‘+’ mark 
in Fig.3(b) is impulse point, where 30 groups of half a 
sine pulse loads are acted to produce simulation response 
in time domain. Note that all simulation response are 
added by a Gaussian noise term with signal-to-noise ratio 
3:1. To imitate the true engineering environment, we also 
set up an experimental platform (Fig.3(a)). This system is 
used to generate stochastic vibration data in frequency 
domain. Correspondingly, 30 groups of simulation 
impulse in time domain and test acceleration response 
signals in frequency domains are collected in X, Y, Z 
directions, respectively. We use LMS Virtual.Lab to pre-
process the collected signals.  

For better illustration, we choose randomly the 23th 
group of response in total 30 groups for prediction. That 
means this group is used as test sample while the rest 29 
groups of response are used as training samples. We set 
the response under Mg-AI clamp is prediction target by 
means of the response under steel clamp. As analyzed 
above, we choose three neighboring points to construct 
training samples with the input dimension is 1. 
Experiments are repeated 30 trials to exclude the 
stochastic effect.  

For better comparison, we randomly choose one 
measuring point(on circle 4) to draw the prediction curve. 
We fist check the effectiveness of the proposed approach 
in time domain. To evaluate the performance, we add the 
tradition ELM for comparison. The ELM code is at  
http://www3.ntu.edu.sg/home/egbhuang/elm_codes.html.
The comparative results on X, Y, Z directions as shown 
in Fig. 4. 

Obviously, FC-ELM gets very similar curve with the 
true prediction curve, which demonstrates the proposed 
approach works efficiently. Note that FC-ELM is 
generalized from classical ELM and FC-SVM is extended 
from traditional SVM. In Fig.4, FC-ELM works better 

than FC-SVM in all three directions, which means the 
proposed approach has better generalization ability. This 
observation also verifies the theoretical analysis in 
Section Ⅲ . Similar comparative result can be found 
between FC-ELM and ELM. It is obvious that ELM 
works unstable due to its randomness. And FC-ELM 
performs much better than ELM because it can exploit 
the domain knowledge from the response at other points. 
Therefore, we can claim the proposed algorithm is a 
feasible method to solve the problem of structural 
response prediction. At some peaks, the prediction curve 
of FC-SVM is even closer to the real curve than ELM. 
Obviously, FC-ELM and FC-SVM both get significantly 
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(a) First point at circle 3 

(b) Second point at circle 3 

(c) Third point at circle 6 

Figure 5.  Comparative results on stochastic vibration response of 
cylindrical shell at three measuring points. 

better predictive performance than single learning 
approach, which also demonstrates the effectiveness of 
mixture regression approach.. The reason is, as discussed 
above, when facing few observations, mixture regression 
approach can exploit much useful information from other 
models(time points) in order to compensate the negative 
effect caused by limited number of training samples. 

We also evaluate the performance of the proposed 
approach in frequency domain. In this test, we choose 
three measuring points at different positions to evaluate, 
two at circle 3 and one at circle 6. The comparative 
results are shown in Fig.5. Due to the limitation of test 

equipment, we can only collect the response in Z 
directions. Note that in experimental system, additional 
noise will submerge some response signals at some point 
near to the shaking table.  

As shown in Fig.5, at three measuring points the 
proposed approach all gets lower predictive error than 
FC-SVM and ELM. At main peak, FC-ELM gets 
predictive curve more close to the true curve. And ELM 
generally fluctuates sharply due to its randomness. FC-
SVM also gets better performance than ELM, but it still 
tends to obtain higher errors than FC-ELM. The reason is 
the model obtained by FC-ELM has lower model 
freedom and better generalization ability. These 
comparative results are very similar to the results in Fig.4, 
which demonstrates the effectiveness of the proposed 
approach and the significance of mixture regression 
approach. Note that the comparative results shown in 
Fig.5 are more distinct than the results in time domain. 
The reason is in frequency domain the response signals 
contain more measuring noise while the simulation 
response signals only contain Gaussian noise. Other 
measuring points have similar results. Due to the 
limitation of paper’s space, these comparative results are 
omitted here.  

The numerical results also demonstrate the benefit of 
the proposed approach in terms of mean RMSE and 
average percentage error(APE) on all 144 measuring 
points, as listed in Table Ⅲ. It is very obvious that the 
proposed approach get lowest predictive error in whole 
test environment. And the mixture regression approach 
can work better than the single regression approach. The 
relative improvement reaches 27.89%. 

V.  CONCLUSIONS 

The initial idea of this work is to improve the 
estimation performance for mixture regression models. In 
this paper, a new algorithm for mixture regression 
estimation is proposed. This approach is an extension of 
classical ELM from single-model to multiple models. The 
extension includes two steps. The first step is extending 
classical ELM to the scenario of multiple models in the 
form of fuzzy clustering. The second step is calculating 
the membership factors by the error variables which are 
obtained after estimating the models in each iterative step. 
These two steps allow us to exploit the inner model’s 
structure hidden in the mixed data through a more 
effective way. The experimental results on two 
simulation data sets demonstrate the effectiveness of the 

TABLE Ⅲ.  
NUMERICAL RESULTS ON ALL MEASURING POINTS 

 
Simulated shock data Stochastic vibration data 

ELM FC-
SVM

FC-
ELM ELM FC-

SVM
FC-

ELM
Mean 
RMSE

2.46e-
004 

5.82e-
005 

3.14e-
005 

1.19e-
002 

7.39e-
003 

5.72e-
003 

Mean 
APE 19.46 11.82 8.65 27.50 19.72 14.22
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proposed algorithm.  
Totally speaking, this paper has two innovations. In 

theory, this paper gives an efficient method to solve 
mixture regression estimation. From engineering 
perspective, this paper provides a modeling approach for 
complex regression problem which is generally with 
small-scale observations. One potential problem is how to 
overcome the negative effect of randomly initial values of 
membership factors[16]. This should be achieved by 
introducing some domain knowledge, and will be studied 
in our future research. 
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