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Abstract—Forecasting of gas emission rate in mine is a 
complicated problem due to its nonlinearity and the small 
quantity of training data. Support vector regression (SVR) 
can solve the problem with small samples, nonlinear and 
high dimensions. However, the precision of SVR is 
significantly affected by its parameter. In order to improve 
the mine gas emission rate accurately, an optimal selection 
approach of support vector regression parameters is 
proposed based on the chaotic particle swarm optimization 
algorithm (CPSO）. A model based on the CPSO-SVR to 
predict the mine gas emission rate is established and the 
optimal parameters of SVR is searched by CPSO. The 
experimental data from a coal mine in China is used to 
illustrate the performance of proposed CPSO–SVR model. 
The results show that the proposed prediction model has 
better results than the artificial neural network (ANN) and 
traditional SVR algorithm under the circumstances of small 
sample. This indicates that the precision can meet the 
requirement of practical production and demonstrates that 
the CPSO is an effective approach for parameter 
optimization of SVR.  
 
Index Terms—support vector regression, chaotic particle 
swarm optimization, mine gas emission rate 
 

I.  INTRODUCTION 

In China, 95% of coal mine accidents were gas 
incidents. As the coal mining, gas pressure of coal seam 
was from the relatively stable into pressure instability, 
leading to sudden gas emission increase in the 
moment[1].Therefore, the gas emission rate whose 
characteristics are complex and highly nonlinear has a 
major impact to the mine design, construction and mining.  
At the same time, gas emission rate is the primary 

indicators to determine mine ventilation, so accurate 
prediction of gas emission has important practical 
significance to guide the mine design and production 
safety. Many scholars have used various methods such as 
statistics theory, grey theory, Geological model, different-
source method, regression theory etc. to forecast the coal 
gas emission rate [2-3]. Those methods could not play the 
excellent role in forecasting coal gas emission rate 
because the factors used for forecasting coal gas emission 
rate are known to be nonlinear. To improve the 
performance of nonlinear forecasting coal gas emission 
rate, artificial neural network (ANN) is employed. 
However, the ANN method realizing the dynamic 
prediction has the shortcomings, such as selecting the 
influencing factors of gas emission rate subjectively, have 
difficulties to acquire some accurate parameters. 
Furthermore, when the sample size is small, neural 
network can hardly make good predication [4]. 

Support Vector Machine (SVM) was proposed by 
Vladimir Vapnik [5] and his cooperators at the AT&T 
Bell Laboratory. Support vector machine as a small 
sample method based on statistical learning theory are 
one of the significant developments in overcoming 
shortcomings of ANN mentioned above. SVM not only 
implement the empirical risk minimization (ERM) 
principle to minimize the training error, but also apply the 
structural risk minimization (SRM) principle to minimize 
an upper bound on the generalization error. These 
differences make SVM a greater ability to generalize. It is 
shown that SVM has provided better performance than 
traditional learning techniques [5-6]. SVM is also well 
known for its superiority in solving nonlinear problems 
with kernel function, which automatically carries out a 
nonlinear mapping to a feature space. Originally, SVM 
was developed to solve pattern recognition problems. 
With the introduction of ε-insensitive loss function, SVM 
was extended to solve nonlinear regression estimation 
problems especially in situations where the training 
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samples are small, such new techniques known as support 
vector regression (SVR), which have been shown to 
exhibit excellent performance [7].  

To construct the SVR model efficiently, SVR’s 
parameters must be set carefully [8]. However, the 
feasibility of SVR is effected due to the difficulty of 
selecting appropriate two parameters (C andσ). Although, 
some scholars had given some advices on appropriate 
setting of SVR parameters [9], however, those 
approaches do not simultaneously consider the interaction 
effects among the two parameters. Recently, Kennedy 
and Eberhart [10] inspired by the social behavior of 
organisms such as fish schooling and bird flocking, 
introduced particle swarm optimization (PSO). It is 
initialized with a population of random solutions in 
PSO .A randomized velocity flown through hyperspace to 
look for the optimal position to land is assigned to each 
particle. PSO can find a global optimal, at the same time, 
this method does not require gradient of the objective 
function but use values of the function itself. Nowadays 
PSO has gained much attention and wide applications in 
solving continuous nonlinear optimization problems due 
to its simple concept, easy implementation and quick 
convergence. But PSO is easy to trap into local optimum. 
Chaotic particle swarm optimization (CPSO) is a kind of 
improved PSO, which can not only avoid being trapped 
into local optimum in search , but also can help search the 
optimum quickly by using chaos queues [11].  

This paper applies CPSO algorithm to choose the 
suitable parameter combination for a mine gas emission 
rate forecasting SVR model. A forecasting model of mine 
gas emission rate, called CPSO-SVR model, was 
established. The experiment s showed that the application 
of CPSO-SVR to forecast the mine gas emission rate is 
feasible and preferable.  

II.  SUPPORT VECTOR REGRESSION 

Here give a brief description of SVR. Detailed 
descriptions of SVR can be found in Vapnik [5,12,13], 
Sch�lkopf and Smola [14] and Cristianini and Shawe-
Taylor [15].  

The basic concept of SVR is to map nonlinearly the 
original data x into a high-dimensional feature space, and 
to solve a linear regression problem in this feature space. 
A nonlinear mapping ϕ is defined to map the training 
data set as Eq.(1)  into a high dimensional feature 
space.Then, in the high dimensional feature space, there 
theoretically exists a linear function f to formulate the 
nonlinear relationship between input data and output data. 
Such a linear function, namely SVR function, is as Eq. 
(2). 
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Where xi is the input vectors and yi is the associated 
output values of xi; f(x) denotes the forecasting values; ϕ 

(x) denotes the high-dimensional feature space, w denotes 
the weight vector and b denotes the bias term.  

The generalization accuracy is optimized over the 
empirical error and the flatness of the regression function 
which is guaranteed on a small w by the SRM principle. 
Therefore, the objective of SVR is to include training 
patterns inside a ε-insensitive tube (ε-tube) while keeping 
the norm 2|||| w  as small as possible. An optimization 
problem can be formulated as the following soft margin 
problem: 
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Where C, ε, and iξ  ( *
iξ ) are a trade-off cost between 

the empirical error and the flatness, the size of the ε-tube, 
and slack variables, respectively. Two positive slack 
variables iξ and *

iξ  represent the distance from actual 
values to the corresponding boundary values of the e-tube 
measure the error of the up and down sides, respectively.  

The above formulae indicate that increasing ε 
decreases the corresponding iξ and *

iξ  in the same 
constructed function, thereby reducing the error resulting 
from the corresponding data points. 

By adding Lagrangian multipliers iα  and *
iα , the QP 

problem can be optimized as a dual problem. The dual 
form of this optimization problem is usually obtained 
through the minimization of the Lagrange function, 
constructed from the objective function and the problem 
constraints. This constrained optimization problem is 
solved using the following Lagrangian form:   
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The Karush–Kuhn–Tucker (KKT) conditions are 
fulfilled in this condition. We do not detail this process 
for simplicity; the interested reader can consult [14] for 
reference. The function ),( ji xxK  is formed by the 
evaluation of a kernel function equivalent to the dot 
product )()( ji xx ϕϕ is the kernel matrix.  
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Finally, the decision function of SVR is described as 
follow: 
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Based on the Karush–Kuhn–Tucker’s conditions of 
solving quadratic programming problem, )-( *

ii αα in Eq. 
(10), only some of them are non-zero values. These 
approximation data point errors on non-zero coefficient 
equal to or larger than ε, and are referred to as the support 
vector. That is, these data points lie on or outside the ε-
bound of decision function. According to Eq. (10), the 
support vectors are clearly the only elements of the data 
points employed in determining the decision function as 
the coefficient )-( *

ii αα of other data points are all equal 
to zero. Generally, the larger the ε value, the fewer the 
number of support vectors. Nevertheless, increasing ε 
decreases the approximation accuracy of training data. In 
this condition, ε determines the trade-off between the 
sparseness of representation and closeness to the data 
[16]. 

The kernel function’s  value equals the inner product 
of two vectors ji xx  and  in the feature space. The kernel 
function is intended to handle any dimension feature 
space without the need to calculate )(xϕ  accurately [16]. 
If any function can satisfy Mercer’s condition, it can be 
employed as a kernel function [5]. The typical examples 
of kernel function are the following:  

Polynomial kernel: q
ii xxxxK ]1),[(),( +=           （11） 

RBF kernel:        )exp(),( 2
ii xxxxK −−= γ    （12） 

Sigmoid kernel:    ))(tanh(),( cxxvxxK ii +⋅=   (13） 

It is reported that RBF kernel function produces better 
results than polynomial kernel function and sigmoid 
kernel function in the previous studies[17], so RBF kernel 
function  is selected as the kernel function of SVR in our 
experiments, where σ denotes the width of RBF kernel 
function. 

Here, C and σ are user-determined parameters, the 
election of the parameters plays an important role in the 
performance of SVR. 

III.  THE PREDICTION MODEL BASED ON CPSO-SVR 

A.  Particle Swarm Optimization 
PSO performs searches using a population of 

individuals, named particles that are updated from 
iteration to iteration [18]. 

The particles’ population is initialized. Every particle 
has a random position within the D-dimensional space 
and has a random velocity for each dimension. The D-
dimensional position for the i-th particle  at iteration t can 

be represented as ),...,,( 21 iDiii xxxx =  , xij is limited in 
the range [aj, bj]. The best previous position of particle is 
represented as below: 

),...,,( 21 iDiii pbestpbestpbestpbest = .                 (14) 
The best particle in the population is represented as 

(15): 
),...,,( 21 Dgbestgbestgbestgbest =                       (15) 

The velocity which is also an D-dimension vector  can 
be described as(16): 

),...,,( 21 iDiii vvvv =                                                   (16) 
After finding the two best values, to search for the 

optimal solution, each particle changes its velocity and 
position according to the cognition and social parts as 
follows: 

)()(c 2211 iddidididid xgbestrcxpbestrvv −+−+= ω (17)                      

ididid vxx +=                                                          (18)  

where d is the D-th dimension of a particle, c1 and c2 
are two positive constants, c1 indicates the cognition 
learning factor; c2 indicates the social learning factor ,and 
r1 and r2 are random numbers uniformly distributed in 
U(0,1). [19]  

B.  Chaos Particle Swarm Optimization 
PSO algorithm is easy to realize, but the method is 

easy to trap into local optimum [20-23]. Therefore, in 
order to enrich the searching behavior and to avoid being 
trapped into local optimum, chaotic dynamics is 
incorporated to improve particle swarm optimization 
algorithm. Ergodicity, randomicity and regularity are the 
character of chaos. Chaos queues can experience all the 
states in a specific area without repeat, so chaotic search 
becomes a novel tool used as an optimizer.Logistic 
equation is employed to obtain chaos queues in this paper, 
which is described as follows [24]: 

 Nnzzz nnn ,2,1,0),1(1 ⋅⋅⋅=−=+ μ                          (19) 

Where µ is the control parameter, the system of (19) 
has been proved to be entirely chaotic. Chaos queues z 
(0≤ z≤1) are generated by iteration of Logistic. 

C.  CPSO-SVR Prediction Model 
The election of the parameters C and the width of the 

RBF kernel σ have a great influence on the performance 
of the nonlinear SVR in this study. The 2-dimensional 
parameters influence the number of support vectors. 
Parameters (C,σ) are two attributes of each particle. The 
two attributes determine its position and velocity. C and 
σ are set in the ranges: C = [1,103], σ= [10-3,103]. The 
fitness function is employed to evaluate the quality of 
every particle which must be designed before searching 
for the optimal parameters [25]. Here, Mean Square Error 
(MSE) given by Eq. (20) is employed as the fitness 
function.  
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Where n is the number of forecasting points, yi and fi 

represent the actual and forecasting values, respectively. 
As CPSO algorithm can not only avoid the search 

being trapped in local optimum and but also help to 
search the optimum quickly. Therefore, the method is 
applied to determine the two parameters (C,σ) in the SVR. 
The basic steps of prediction algorithm CPSO-SVR are 
described as Figure 1. 

 

IV  PREDICTION OF MINE GAS EMISSION RATE BASED ON 
CPSO-SVR 

A.  Data Descriptions 
Gas emission rate is variation physical factors with the 

geological condition, coal occurrence, mining technology 
and time, etc. The main controlling factors of gas 
emission rate are different for different mines. According 

Figure 1.  The process of optimizing the SVR parameters with CPSO optimization 

Is the stopping criteria satisfied？

CPSO  Initializing arguments 

PSO is initialized with random particles 
and velocities 

Training SVR model

K fold-Cross validation

Evaluating the fitness of particle 

SVR

Update particle velocity and position 

Optimize the global best gbest by chaos search

Replace the position of one particle 
selected randomly by p*

  

Global optimum of SVR parameters gotten 

Build and retrain the SVR SVR

Forecast gas emission rate  

Y

N 

Preparing data 
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to the analysis of main mining seam in Kailuan coal mine 
which located in Hebei Province, China, the parameters  
affecting gas emission rate were selected including: coal 
seam depth(x1), coal seam dip angle(x2)、 coal seam  
thickness(x3)、 the ratio of diffusion layer within the 
extent of 50 m from coal seam roof(x4)、permeability of 
coal seam roof(x5)、permeability of coal seam floor(x6), 
dip angle variation(x7) 、 thickness variation(x8) and 
major structural(x9). These indexes were quantitated 
using the technology of Kriging interpolation, surface 
spline function interpolation, mathematical model and 

spatial analysis theory. Detailed descriptions of 
quantization process can be found in [2].These nine 
factors were the input factors and the gas emission rate 
was adopted as the target value in our model. In this 
study, the samples are the same data sets as in [2], listed 
in Table 1. There are 14 samples all together. All samples 
in the dataset are divided into two sets, the 1373, 1373W, 
F275 working faces are used for testing samples to 
estimate the predicting capacity of the CPSO-SVR model 
and the remaining 11 are used for training of   the model. 

TABLE I.   
SAMPLES USED FOR GAS EMISSION RATE PREDICTION [2] 

working 
face x1/m x2/m x3（˚） x4 x5 x6 x7 x8 x9 

relative gas 
emission 
rate /(m3/t)

1371 415.195 4.209 10.447 0.062 0.143 0.501 0.462 0.5 1 0.7 

1373 455.611 4.257 9.428 0.123 0.066 0.464 0.589 0.375 1 0.7 

1377 549.071 5.328 7.085 0.098 0.066 0.443 1 0.264 1 0.5 

1378 566.077 4.919 6.278 0.07 0.027 0.416 1 0.53 1 0.5 

1177E 459.725 3.57 10.663 0.119 0.153 0.39 1 1 0 0.8 

1178E 486.449 3.629 11.985 0.028 0.171 0.364 1 1 0 0.8 

1274E 309.299 6.484 5.791 0.258 0.119 0.496 0.369 0 1 0.6 

1277E 373.662 4.72 11.86 0.095 0.147 0.495 0.632 0.667 1 0.5 

1371W 406.638 4.114 9.804 0.186 0.195 0.533 0.45 0.612 0 1.4 

1372W 433.835 4.595 10.033 0.064 0.106 0.478 0.667 0.6 0 1.4 

1373W 461.871 4.558 10.019 0.037 0.122 0.5 0.4 0.358 0 1.4 

F274 339.681 3.983 5.857 0.099 0.017 0.353 1 0.563 0 0.6 

F275 358.032 4.179 6.059 0.062 0.02 0.306 1 1 0 0.8 

F276 376.015 4.211 8.437 0.141 0.079 0.376 1 1 0 1.1 

 

B.  System Implementation Details 
Main parameters of CPSO are set as follows: the 

size of number of particles N is set to 20, particle 
dimension Mis set to 2, set acceleration coefficients c1is 
2 and c2 is 2, number of maximal iterations I is set to200. 
MatlabR2009b which is a mathematical development 
environment is employed as the implementation platform,  
Libsvm version 2.82 which is originally designed by 
Chang and Lin [26] extends MatlabR2009b. 

C.  Data Normalization 
Normalization not only can avoid attributes in greater 

numerical ranges dominating those in smaller numerical 
ranges but also can avoid numerical difficulties during 
the calculation [23, 26]. According to experimental 
results feature value normalization can help increase SVR 
accuracy.  The data of all factors are normalized to the 

range [0, 1] to improve the treatment effect according to 
the following formula: 

)()( minmaxmin
' xxxxx i −−=                           (21)             

Where x' is normalization data. xmax is the maximum in 
the series data, xmin is the minimum in the series data. 
This normalization for original data points will help to 
improve the predicting accuracy. 

D.  Experimental Results and Analysis 
The 11 training samples are inputting into the CSPO-

SVR model, the CPSO algorithm is used to search the 
optimal parameters(C,σ) in the SVR while we set ε is 
0.0001, and the searching process is operated with 200 
generations in total. Figure.2 illustrates the convergence 
process of CPSO for seeking the optimal parameters 
during evolution process.  Figure.2 shows that fitness 
values are decreased as the generations increasing. When 
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the sample evolution to generation 54, the fitness value 
(MSE) of training samples was reached 7.36978e-008. 
Thus, the individual at generation 54 produced the 
optimal parameters, which were C=49.69 and σ=0.21. 

These optimal parameter sets were applied to construct 
the SVR models. Table 2 shows forecasting results in the 
training phases while the optimal parameters (C,σ) = 
(49.69, 0.21). It is observed that the proposed CPSO-SVR 
model fits this particular data set very well. 

The three testing samples are used to examine the 
accuracy of the forecasting model. In order to compare 
the forecasting accuracy with other methods, the results 
of CPSO-SVR model, traditional SVR model and ANN 
model are shown in Table 3. 

Table 3 shows that the average errors were equal to 
17.56%, 16.62%, and 3.99% for the ANN, AVR, and 
CPSO-SVR strategies, respectively. It shows that the 
results made by the CPSO-SVR models have extremely 
small deviations between the predicted and actual values 
and were superior to those from the other models. The 
ability of CPSO-SVR is significantly stronger than that of 
ANN and traditional SVR, its results are stable. Thus 
prove that optimizing the model parameters of SVR by 
CPSO is feasible and superior. If more data were applied 
for ANN model training, ANN will have greater 
generalization ability and study ability. 

 

 

Figure 2.  The fitness alternation during optimization process (60 generations). 

TABLE II.    
FORECASTING RESULTS IN THE TRAINING PHASES 

working face relative gas emission 
3

Prediction relative gas emission 
3

1371 0.7 0.6999 

1377 0.5 0.4999 

1378 0.5 0.4998 

1177E 0.8 0.8001 

1178E 0.8 0.7999 

1274E 0.6 0.6001 

1277E 0.5 0.5001 

1371W 1.4 1.4000 

1372W 1.4 1.4001 

F274 0.6 0.6000 

F276 1.1 1.0997 
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TABLE III.   
COMPARISON OF RESULTS BETWEEN THREE ALGORITHMS (M3/T) 

working 
face 

actual 
value 

ANN[2] SVR CPSO-SVR 
prediction 

value 
error/

% 
prediction 

value error/% prediction 
value 

error/
% 

1373 0.7 0.61 12.86 0.8303 18.6 0.6575  6.07 

1373W 1.4 1.59 13.57 0.9842 29.7 1.3679  2.30 

F275 0.8 0.59 26.25 0.8126 1.58 0.7712  3.6  

Average error/% 17.56 16.62 3.99 

 
But obtaining a sufficiently large set of gas emission 

rate data is often difficult. In that sense, CPSO-SVR also 
has certain advantages that it needs only a small set of 
training data. 

V.  CONCLUSIONS 

The relationship between the factors which affect gas 
emission rate is highly nonlinear and complex and 
difficult to handle. In this paper, CPSO–SVM is applied 
to forecast gas emission rate in coal mine. In the CPSO–
SVM approach, CPSO is used to select suitable 
parameters of SVR, which avoids over-fitting or under-
fitting of the SVR model occurring because of the 
improper determining of these parameters. CPSO is an 
optimization method, which not only has strong global 
search capability, but also is very easy to implement. So 
it is very suitable for parameters selection of SVR. The 
real data sets are used to investigate its feasibility in 
forecasting gas emission rate in coal mine. Results show 
that the CPSO–SVR method for forecasting gas emission 
rate can achieve greater forecasting accuracy than 
artificial neural network and traditional SVR method 
under the circumstances of small sample. CPSO-SVR 
method for forecasting gas emission rate is simple and 
worth being popularized.   
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