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Abstract—Proper data placement schemes based on erasure 
correcting code are one of the most important components 
for a highly available data storage system. A new class of 
Maximum Distance Separable (MDS) array codes is 
presented for correcting triple storage failures, which is an 
extension of the double-erasure-correcting EVENODD code 
and is called the HDD-EOD code. The encoding and 
decoding procedures are described by geometrical line 
graph, which are easily implemented by soft hardware. Our 
analysis shows that the HDD-EOD code provides better 
decoding performance and higher reliability compared to 
other popular codes. Thus the HDD-EOD code is practically 
very meaningful for storage systems. 
 
Index Terms—fault tolerance,  high availability,  MDS array 
codes, triple node failures 
 

I.  INTRODUCTION 

The recent great advances in the networking storage, 
and in information technologies have paved the road for 
the introduction of new applications that put online huge 
amount of multimedia information, particularly in a 
business environment. It is essential to have highly 
available and reliable multiple hard disks to store huge 
amounts of data. Redundant Arrays of Inexpensive Disks 
(RAID) is an efficient approach to supply high reliability 
and high performance storage services[1], such as in 
many companies, universities, and government 
organizations. However, the chance of the disks’ failure 
in RAID increases because of random damage and other 
reasons. To protect the data in RAID, constructing 
erasure codes for tolerating multiple disk failures is very 
important.  

  There are many schemes based on various erasure 
coding technologies [2-3]. Theoretically, in order to 
tolerate triple disk failures, we need at least triple 
redundant disks (in coding theory, this is known as the 
capacity of erasure channel, called Maximum Distance 
Separable (MDS) code).The well known Reed-Solomon 
code [4] is MDS code, which  have been proposed in 
RAID, but the encoding and decoding of Reed-Solomon 
code require finite field arithmetic. On the other hand, the 

computational complexity of using RS code poses a 
significant problem.  

Array codes are perhaps the most desirable codes that 
only involve XOR operations for disks storage systems, 
which can be more easily and efficiently implemented in 
hardware and/or software. In particular, array codes tend 
to require less complexity than the codes based on finite 
fields[5-18].  

A few classes of MDS array codes have been 
successfully designed to recover double (simultaneous) 
storage node failures[5-8]. The recent ones include the 
EVENODD code[5], the X-Code[6],  the B-Code [7] and 
the HD code[8]. However, the array codes for triple disk 
failure are yet to be developed. HDD1 code and HDD2 
code[9]can tolerate three disk failures, but  MDS property 
of the two code is not proved completely, and the 
encoding and decoding algorithms is used by Gaussian 
elimination. The Grid code[10],the Hover code[11],the 
WEAVER code[12] can recover multi storage node 
failure, but three array codes are not MDS code and 
storage efficient is about 50%. Gui-Liang Feng et al. 
propose the two array codes[13-14] and the papers 
present the Blaum code[15] and T code[16]. These codes 
are MDS code and can tolerate three failures, but the 
array codes do not easily implement by software and 
hardware. 

In this paper we develop a new class of binary MDS 
array codes for three storage node failures, which is 
called HDD-EOD code. The HDD-EOD code is an 
extension of the EVENODD code, which has Horizontal 
and Dual Diagonal Parity. The property of a simple 
geometrical construction for HDD-EOD code leads to 
faster and easier encoding and decoding procedures.  

The rest of this paper is organized as follows. Section 
II first briefly describes encoding of the HDD-EOD code. 
Section III gives the detailed decoding procedure of our 
scheme. We then analyze and discuss storage efficiency, 
encoding and decoding complexity in the HDD-EOD 
code and make comparisons with two related codes in 
Section IV. Finally, Section V concludes the paper. 

II.  THE HDD-EOD CODE ENCODING 
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A.    EVNODD Code and Encoding 
The HDD-EOD code is an extension of the double-

erasure-correcting EVENODD code, we first briefly 
describe the EVENODD code, which was initially 
proposed to address disk failures in disk array systems. 
Each codeword of the EVENODD code  represents a  
two-dimensional array. The parity symbols of the 
EVENODD code are algebraically constructed as follows: 
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5m = ,the following example gives a construction of 
EVENODD Code of size 4×7(see TABLEⅠ). 

 

B.   Geometric Encoding Description of the HDD-EOD 
Code 

Extending from the EVENODD code, The HDD-
EOD code uses the exact same encoding rules of the 
EVENODD code for the first two parity columns. The 
extension lies in the last parity column, which is 
constructed along diagonal of slope 2 instead of slope 1. 
Algebraically, the encoding of the last parity column  can 
be represented as:     
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= ⊕ , called the adjusters.  

From the (1)-(3) equations, three parity columns of 
HDD-EOD code are composed of  the horizontal parity 
column m and the two diagonal parity columns 1m + , 

2m + , thus the proposed code is called the HDD-EOD 
code.  
  The following example gives a construction of HDD-

EOD Code, Let 5m = , the codeword is a 4 8×  array, 
(see TABLE II). 

 
For simplicity, the encoding procedure is depicted in 

Fig. 1. Geometrically speaking, the adjusters 1S and 2S  
are just the checksums along diagonals of the slope from 
the coordinate ( )1,0m − , each symbol of the parity 
column is just the checksums along diagonals of 
slopes 0 ,1, 2 and the adjuster, respectively. 

 

III.  ERASURE DECODING ALGORITHM 

We can give an efficient erasure decoding algorithm 
for the proposed code by using the geometric description. 
As the encoding algorithm of the code, decoding 
algorithms do not require any finite field operations. 
Instead, the only operations needed are just cyclic shifts 
and XORs, which can be implemented very efficiently 
with software and /or hardware. 

  The decoding process of the HDD-EOD code can be 
divided into cases based on different erasure patters: 1) 
decoding without parity erasures, where all erasures are 
information columns; and 2) decoding with parity 
erasures, where at least one erasure is a parity column. 
Since extending from the EVENODD code[5], the HDD-
EOD code uses the exact same decoding rules for the 
recovery from arbitrary twice erasures. In the section the 
main case of decoding algorithm with three erased 
information columns is given.  

TABLE II  
ENCODING OF THE HDD-EOD CODE 

a00 a01 a02 a03 a04

a00⊕a01

⊕a02⊕
a03⊕a04 

a00⊕a14

⊕a23⊕
a32⊕S1 

a00⊕a31

⊕a12⊕
a24⊕S2 

a10 a11 a12 a13 a14

a10⊕a11

⊕a12⊕
a13⊕a14 

a01⊕a24

⊕a33⊕
a01⊕S1 

a10⊕a22

⊕a03⊕
a34⊕S2 

a20 a21 a22 a23 a24

a20⊕a21

⊕a22⊕
a23⊕a24 

a02⊕a34

⊕a11⊕
a02⊕S1 

a20⊕a01

⊕a32⊕
a13⊕S2 

a30 a31 a32 a33 a34

a30⊕a31

⊕a32⊕
a33⊕a34 

a03⊕a12

⊕a21⊕
a30⊕S1 

a30⊕a11

⊕a23⊕
a04⊕S2 

   where S1=a04⊕a13⊕a22⊕a31, S2=a21⊕a02⊕a33⊕a14 

TABLE I.   
ENCODING OF THE EVENODD CODE 

a00 a01 a02 a03 a04 
a00⊕a01⊕a02

⊕a03⊕a04 
a00⊕a14⊕a23

⊕a32⊕S1 

a10 a11 a12 a13 a14 
a10⊕a11⊕a12

⊕a13⊕a14 
a01⊕a24⊕a33

⊕a01⊕S1 

a20 a21 a22 a23 a24 
a20⊕a21⊕a22

⊕a23⊕a24 
a02⊕a34⊕a11

⊕a02⊕S1 

a30 a31 a32 a33 a34 
a30⊕a31⊕a32

⊕a33⊕a34 
a03⊕a12⊕a21

⊕a30⊕S1 
   where S1=a04⊕a13⊕a22⊕a31 

⊕
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（a)Horizontal parity column ，a horizontal 
symbol can be calculated by XOR operations 
among the corresponding data symbol in the same 
row.For example, a05=a00+a01+a02+a03+a04

（b)Diagonal parity column（the slope 1）：a 
diagonal symbol can be calculated by XOR operations  
among the corresponding data symbol in all columns 
and the adjusts S1，where S1=a04+a13+a22+a31，For 
example a06=S1+a00+ a14 + a 23 + a 32

（c)Diagonal parity column（the slope 2）：a diagonal 
symbol can be calculated by XOR operations  among the 
corresponding data symbol in all columns and the adjusts S2，

where S2=a02+a21+a33+a14. For example,a02=S2+a00+ C31 +a12 + 
a24
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Figure 1．HDD-EOD code encoding procedure. 

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2903

© 2013 ACADEMY PUBLISHER



A.    Decoding without Parity Erasures 
  We consider the recovery of triple information 

column erasures at position i , j , k .  

Firstly, we can recovery the two adjusters 1S and 2S  in 
equations 1-3 by three parity columns. In general, this 
step of adjusters recovery can be summarized as: 
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Where 'S is denoted by the XOR sums of all the 

symbols in first parity column, i.e., 
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   Secondly, Let to be 0 1u m≤ ≤ − ,we define the 
syndrome only including triple information column 
erasures i , j , k . (0) (1) (2)

, ,S S S be calculated by 
following as: 
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  From the geometric description of encoding, we can 
also descript the syndrome equations. 

For example, let 5m = , the missed triple information 
columns 1i = , 2j = , 4k =  as shown in  TABLE Ⅲ. 
The erased information symbol is represented by "?". 

 

   According the equations(4)-(8), the
(0)

S , 
(1)

S and 
(2)

S can be calculated. From the geometric description of 
encoding, we can also descript the syndrome equations by 
geometric graph as shown Fig. 2 . 

 

 

   According to the Fig. 2, it is easy to show that every 
syndrome includes two unknown symbols at least, and at 
most the one unknown symbol of the same missed 
column. We cannot solve the unknown symbols directly. 
So, we can eliminate two column erasures by the 
elimination method of iterative syndromes. The middle 
erased column can be recovered by a group of cyclic 
equations with at most two unknown symbols in the 
middle column erasures. Before proving the correct of the 
algorithm, we give an example of decoding process. 

  Suppose that columns 1, 2 and 4 have been erased in 
Fig. 3.  

 

 

The recovery procedure of the middle column consists 
of the following steps. 

Firstly, unknown symbols of the 1th and 4th column 
erasures can be eliminated by the syndromes, and the 
cyclic linear equations with the 2th column erasures can 
be given.  

(1) The two graph circuits a b c d→ → → and 
' ' ' 'a b c d→ → → in Fig. 3 are mapped by the 

overlapping of several syndrome linear equations. Thus, 
we can get the equation only includes the unknown 
information symbols of the middle column, as followed 
respectively: 
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TABLE Ⅲ  
THE MISSED TRIPLE INFORMATION COLUMNS 

a00 ? ? a03 ? 
a00⊕a01⊕
a02⊕a03⊕

a04 

a00⊕a14⊕
a23⊕a32⊕

S1 

a00⊕a31

⊕a12⊕
a24⊕S2 

a10 ? ? a13 ? 
a10⊕a11⊕
a12⊕a13⊕

a14 

a01⊕a24⊕
a33⊕a01⊕

S1 

a10⊕a22

⊕a03⊕
a34⊕S2 

a20 ? ? a23 ? 
a20⊕a21⊕
a22⊕a23⊕

a24 

a02⊕a34⊕
a11⊕a02⊕

S1 

a20⊕a01

⊕a32⊕
a13⊕S2 

a30 ? ? a33 ? 
a30⊕a31⊕
a32⊕a33⊕

a34 

a03⊕a12⊕
a21⊕a30⊕

S1 

a30⊕a11

⊕a23⊕
a04⊕S2 

   where S1=a04⊕a13⊕a22⊕a31, S2=a21⊕a02⊕a33⊕a14 
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Figure 3.  Decoding procedure of the HDD-EOD Code. 
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Figure 2． Decoding syndromes of the HDD-EOD code. 
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 (2) Next, the foregoing two graph circuits in Fig. 3 are 
overlapped and mapped the equation with two unknown 
symbols at most in the 2th column erasures. Thus, we can 
get: 
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4,2 3,2 2 1 0 1

(2) (1) (0)(1)
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a a S S S S
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(3) Repeating this process, the other cycle equations 
with two unknown symbols at most in the 2th column 
erasures are obtained as follows: 
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  (4) According to the foregoing assumption, we can 
known that 4,2a  is imaginary symbol 4,2 0a = . 

Thus we can the information symbol 3,2a .We can get 
all the symbols of the 2th column erasures in turn: 

3,2 2,2a a→  1,2 0,2a a→ → . 

Theorem 1.  If three columns i , j , k  have been erased, 
where 0 1i j k m≤ < < ≤ − ,Let r j i= − , 

s k j= − , an positive integer dl ,1 dl m≤ < always 

exists , where dl  is determined by the equation 

0d m
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Proof. From the equations(6)-(8), we have : 
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                 , ,dm mu s j u l r ja a+ +=                             (21) 
thus, the equation (15) is proved. 
 From theorem 1, we can first get the unknown 

information symbol 1 2 ,mm s ja − + because imaginary 

symbol 1, 0m ja − = .Thus we can recovery all the 
information symbols of the middle erased column in 
turn 1 2 ,mm s ja − + , 1 4 ,mm s ja − + , , 1 2( 2) ,mm m s ja − + − .  

B.    Decoding with Parity Erasures 
We consider the recovery of two information column 

erasures and one parity column erasures at position i , j , 
k ,where 0 1i j m≤ < ≤ − , 2m k m≤ ≤ + .We 

have three case: 
Case1: 2k m= + ,i.e., the last parity column 2m +  

has failed. The HDD-EOD code uses the EVENODD 
decoding rules for the recovery from arbitrary erasures of 
the columns i , j  by the horizontal parity column m and 
the one diagonal parity columns 1m + .  

Case 2: 1k m= + , namely, the parity column of slope 
1 are failed, we can reconstruct the failed columns by the 
horizontal parity column m and the one diagonal parity 
columns, 2m + , the recovery algorithms is modification 
of the EVENODD decoding, we do not give in detail. 

Case 3: k m= , the horizontal parity column m has 
failed. We can reconstruct the failed columns by the two 
diagonal parity columns 1m + , 2m + . 

  In this case, 0 1i j m≤ < ≤ − , k m= ,we can get 

two adjusters 1S , 2S  by the following as: 

  (1) Firstly, we can get 1 2S S⊕  by the following 
equation: 

 
2 2

, 1 ,2 201 0

m m

u m u mu u
S aS a

− −

+ += =
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⎝ ⎠ ⎝ ⎠

          (22) 

  (2) Next, we can divide into three cases: 0i =  or 
0,i i j m> + = , or 0,i i j m> + ≠ . 

 If 0i = , from the definition of 2S , we can get 2S  by 
the following equation: 

JOURNAL OF COMPUTERS, VOL. 8, NO. 11, NOVEMBER 2013 2905

© 2013 ACADEMY PUBLISHER



                 1, 1 ,2 1 2j m j mS a a− + − +⊕=                     (23) 

If 0,i i j m> + = , from the definition of 2S , we can 

get 2S  by the following equation: 

                1, 1 ,2 1 1i m i mS a a− + − +⊕=                         (24) 

If 0,i i j m> + ≠ , from the definition of 2S , we can 

get 2S  by the following equation: 

             1,2 1 1, 1 1, 2i m i m i mS a a a− + − + − +⊕ ⊕=          (25) 
From the geometric description of encoding, we can 

also descript the recovery process of 2S . 

 

For example, the missed one parity column 5k = , the 
two missed information column have three case. The first 
case is 0i = , 3j = as shown in  Fig. 4(a).The second 
case is 0i ≠  and 5i j+ =  in  Fig. 4(b).The third case 
is 0i ≠  and 5i j+ ≠  in  Fig. 4(c). 

 (3) From the equations (21)-(24), the adjuster 1S  can 
recover. The next step is similar to the decoding of the 
case without parity erasures. we leave to interested 
readers. 

 According all the above cases together, we can get the 
following theorem: 

Theorem 2.The HDD-EOD code can recover any 
triple column erasures and  it is a MDS code. 

IV.  THE PROPERTY OF HDD-EOD CODE 

In this section we explore three metrics of storage 
efficiency, encoding and decoding performance and 
update complexity .We then compare the HDD-EOD 
code to other codes with respect to these metrics. 

The storage efficiency represents the fraction of the 
storage space that can be used for independent data.  

According to the theory terminology, we know the 
HDD-EOD code gives the optimal storage efficiency 
because it is the MDS code. 

Encoding and decoding complexity is particularly 
crucial parameter when the codes are used in storage 
systems. Due to special properties of array codes, the 
encoding and decoding procedures are performed with 
pure XOR and shift operations, we compare the 

complexity of HDD-EOD code with a Reed Solomon 
(RS)[17], Blaum Codes[15]. 

We assume that the every symbol is a bit.  The 
encoding complexity is defined that the ratio of all XOR 
operations for encoding to all information blocks in the 
array. According to the encoding procedure in sectionⅡ, 
the number of XORs operation is 2( 1)m −  in  the first 
parity column. The number of XORs in other two parity 
column is 22( 1) 2( 2)m m− + − . By adding the total, 
we conclude that the HDD-EOD Code needs a total of 

23( 1) 2( 2)m m− + − XOR operations. Thus, the 
encoding complexity of the HDD-EOD code is 
3 ( 1) / ( 1)m m m− + − . 

 The decoding complexity is defined that the ratio of 
all XOR operations for decoding to all information blocks 
in the array. According to the decoding procedure in 
sectionⅢ, In step 1, the syndrome calculations of any 
parity direction for a code block without erasures take 
3( 3)( 1) 2( 1)m m m− − + − . In step 2 the number of 

XORs is (4 1)( 1) ( 2)dl m m− − + − . In summary, the 
total number of XORs required to decode triple 
information column erasures  takes 
(4 2 3 )( 1) 3dl m m− + − − . Thus ,we can get the 
decoding complexity is 
3 (4 ( 1) 2) / ( 1)dl m m m+ − − − . 

 

 

We compare the erasure decoding complexity of the 
HDD-EOD code to two other XOR-based codes in Fig 
5.,one proposed by Blaum et al.,and the other code by 
Blomer et.al. The erasure decoding of the Blaum code 
require the total number of XORs is (3 21)( 1)m m+ −  
[15], The XOR-Based codes decoding algorithm in[17] 
involves 2krL and 2r  operations in finite field 

(2 )LGF .Thus, the RS codes normalized decoding 
complexity is kL . 

Comparison results with HDD-EOD code are shown in 
Fig. 5,where can see that the complexity of the Blaum 
code is rather high for small k  values, and the 
complexity of HDD-EOD code decoding fairly constant, 
and the complexity of The XOR-Based codes is the 
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highest. The HDD-EOD code is thus probably more 
desirable than other two codes. 

V.  CONCLUSIONS 

We have proposed a new MDS array code for triple 
storage nodes in this paper. The HDD-EOD code has 
lower complexity encoding, erasure decoding than RS 
code and the Blaum code have. 

  We will present an extension of the HDD-EOD code 
to a more general case in a sequel paper. 
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