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Abstract—A novel single-channel color image encryption 
algorithm is proposed, which utilizes the reality-preserving 
fractional discrete cosine transform in YCbCr space. The 
color image to be encrypted is decomposed into Y, Cb, and 
Cr components, which are then separately transformed by 
Discrete Cosine Transform (DCT). The resulting three 
spectra sequences, obtained by zig-zag scanning the spectra 
matrices, are truncated and the lower frequency coefficients 
of the three components are scrambled up into a single 
matrix of the same size with the original color image.  Then 
the obtained single matrix is encrypted by the fractional 
discrete cosine transform, which is a kind of encryption with 
secrecy of pixel value and pixel position simultaneously. The 
encrypted image is convenient for display, transmission and 
storage, thanks to the reality-preserving property of the 
fractional discrete cosine transform. Additionally, the 
proposed algorithm enlarges the key space by employing the 
generating sequence as an extra key in addition to the 
fractional orders. Simulation results and security analysis 
demonstrate the proposed algorithm is feasible, effective 
and secure. The robustness to noise attack is also 
guaranteed to some extent. 
 
Index Terms—single-channel, color image encryption, 
reality-preserving fractional discrete cosine transform, 
generating sequence, spectrum truncation 
 

I.  INTRODUCTION 

The reason of the use of color in image processing not 
only is that color is a powerful descriptor to provide 
beauty in vision, but also is that humans can discern 
thousands of color shades and intensities compared with 
about only two dozen shades of gray. Thus, color images 
contain more information than gray images do and are 
widely used in real life. Color image encryption has 
become a major task for information security since the 

issues about illegal data access on Internet are becoming 
more and more serious. 

Past two decades we have witnessed the appearance of 
various encryption methods for gray images. Amongst, 
the most famous and widely used one is the double 
random phase encoding (DRPE) given by Refregier and 
Javidi[1], which applies two random phase masks 
arranged separately in the input and the Fourier planes to 
encrypt the image into a stationary white noise. The two 
random phase masks are uniformly distributed in the 
interval [0,2π]  and the second one is taken as the main 
cipher key. Except the Fourier domain, other different 
domains such as fractional Fourier transform (FrFT) 
domain[2-5], Fresnel transform domain[6,7], Hartley 
transform domain[8,9] and Gyrator transform domain[10-12] 
are explored for more new encryption methods. However, 
the decrypted images resulting from optical 
cryptosystems would lose their color information, which 
makes these encryption algorithms inappropriate to 
encrypt color images. In response to this demand, many 
image encryption schemes especially for color images 
have been designed, where three components of color 
image are encrypted using the traditional gray image 
encryption methods separately[13]. In that case, it renders 
the cryptosystems sophisticated, since three channels 
must be involved. To address this problem, various 
single-channel color image encryption techniques have 
been put forward successively[14-17]. Zhou et al.[14] 
proposed a single-channel color image encryption 
algorithm based on chaotic scrambling and the FrFT in 
HSI space, the output of the encryption system is not a 
color image but a gray and a phase matrix. Wu et al.[16] 
made full use of the complex number mode to realize a 
single-channel color image encryption in fractional 
Fourier domain.  

Although the above discussed encryption methods 
belong to single-channel, the encrypted images are 
complex-valued possessing amplitude information as well 
as phase information, which makes them inconvenient to 
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display, transmit and store. In this paper, a novel single-
channel color image algorithm based on the fractional 
discrete cosine transform (FrDCT)[18], which inherits the 
reality of the discrete cosine transform (DCT) matrix, is 
proposed. The original color image is converted into the 
YCbCr space, where the Y component denotes the 
brightness, and the Cb and the Cr components 
respectively denote the color differences of red and blue 
[16].  Since human eyes are more attuned to brightness and 
less to color differences, hence the YCbCr color model 
allows more attention to be paid to the Y component, and 
less to the others. It is well known that the discrete cosine 
transform (DCT)[19] has the property of energy 
concentration, namely, the energy of an image after DCT 
concentrates towards the top left corner — the low 
frequency, which human vision is more sensitive to. With 
the help of spectrum truncation, the low frequency 
spectra truncated from the corresponding cosine spectra 
in accordance with the ratio of 2:1:1 are scrambled up 
into one single matrix and sequentially encrypted by the 
FrDCT, which has a character of altering the pixel value 
and the pixel position simultaneously. The resulting 
cipher-text is a real gray-scale image, which is convenient 
for display, transmission and storage, and has camouflage 
property to some extent. Furthermore, generating 
sequence (GS), which results from the multiplicity of 
FrDCT matrices’ roots, is introduced as an extra cipher 
key. Spatiotemporal chaotic map[20] is utilized to generate 
the random GS. Thus the high sensitiveness to initial 
values and system parameters inherent in any chaotic 
system provides high security naturally. Since the 
fractional orders are not so sensitive compared with the 
chaotic maps, they can be abandoned or be used merely 
as auxiliary keys. Simulation results and security analysis 
verify the effectiveness and feasibility of the algorithm. 
Robustness to noise attack is also validated. 

The rest of this paper is organized as follows. Section 
II describes the theoretical background about the reality-
preserving fractional discrete cosine transform. Section 
III gives the details of the proposed algorithm including 
the color model, spectrum truncation and the 
spatiotemporal chaotic map. The procedures of the 
proposed algorithm are also described in Section III. 
Simulations and discussions are given in Section IV. 
Finally, conclusion is drawn in final section followed. 

II.  THEORETICAL BACKGROUND 

The fractional discrete cosine transform (FrDCT) is a 
generalization of the DCT. In current literatures, even 
though several versions of fractional cosine transform 
have been derived, the FrDCT[18] different from those 
defined in [21,22] possesses the mathematical properties 
of reality in addition to linearity, unitarily and additivity. 
And the reality is of importance for image encryption, 
which ensures the outputs are real for real inputs. 

The FrDCT is derived based on the eigen-
decomposition and eigenvalue substitution of the DCT-II 
kernel denoted as: 

( )2 11= cos 2
4k

n k
NN

ε π
+⎛ ⎞

⎜ ⎟
⎝ ⎠

C                (1) 

 

  
where , 0,1, , 1n k N= −…   and 0 1ε = , 2kε =   
for nonzero k. 

The eigen-decomposition of an N N×  DCI-II matrix 
C is: 

                       

* nj
n

n
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where U  is a unitary matrix, composed of columns 
(eigenvectors) nu , *

m n mnδ=u u , and Λ  is the diagonal 

matrix with diagonal entries, i.e. eignvalues nλ , 
nj

n e ϕλ =   with 0 nϕ π< < .   

The FrDCT matrix αC  can be written in a compact 

form by substituting nj
n e ϕλ =  with their thα  powers 

n
αλ , i.e., the matrix Λ  by its thα  power 

αΛ : 

                                 *
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The matrix αC  given by (3) can be rewritten in an 

alternative form according to the eigenstructure of C : 
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where ( )1 1 2K N μ μ−= − − , 1μ  and 1μ−  represents 
the multiplicities of the eigenvalues 1 and −1, 
respectively. 1V collects the 1μ matrices nU   

corresponding to the eigenvalue 1 and similarly for 1−V . 

For 04N N=  and real α , the FrDCT matrix αC  
becomes a real-valued matrix because of the absence of 
the eigenvalues 1±   and can be written as: 
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where n n n
∗U = u u , [ ]2n n= ℜA U , [ ]2n n= − ℑB U  

and 

( )1 2 2, , , Nq q q=q … , introduced due to the multiplicity 

of the thα  power of nλ  and called as generating 
sequence (GS) of the FrDCT, is an arbitrary sequence of 
integers depending on the nature of the fraction and has 
strong effect on the results of the FrDCT since different 
q  leads to different αC , so by taking the GS q  as 
secret key can provide a huge key space. Readers can 
refer to the [18] for more information about q . The 
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expansion of the FrDCT for a two-dimensional signal is 
straightforward and simple through two FrDCTs 
successively by rows and by columns. 

III.  DESCRIPTION OF THE METHOD 

A.  Color Image Model 
In essence, a color model is a specification of a 

coordinate system and a subspace where each color is 
represented by a single point. There are numerous color 
models in use today due to the fact that color science is a 
broad field that encompasses many areas of application. 
The most widely used is the RGB model, which is based 
on a Cartesian coordinate system. Images represented in 
the RGB color model consist of three component images, 
one for each primary color. Since the color image is not 
simply synthesized by three primary-color images to one 
image in practice, RGB model cannot be adapted well to 
the color understood by human [13]. In addition, the R, G 
and B components are equivalent and have strong 
correlation, which makes the changes in one component 
will affect the others. While the YCbCr model, where Y 
represents the brightness component, Cb and Cr 
components respectively represent the color difference of 
red and blue, has the ability to vary each component 
independently without affecting the others. Furthermore, 
human vision is more sensitive to Y component than to 
the other two. Thus, the key Y component can be 
encrypted with high-strength encryption methods, and the 
Cb, Cr components are subsidiary encryption components. 
The two models can be transformed with each other and 
the mathematical transform formulations are given by the 
following equations [16]. 

0.299 0.587 0.144
0.16875 0.33126 0.5

0.5 0.41869 0.08131

Y R
Cb G
Cr B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦     

(7) 

1 0 1.402
1 0.34413 0.71414
1 1.772 0

R Y
G Cb
B Cr

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦    

(8) 

          

B.  Spectrum Truncation 
Since human vision is more sensitive to the low 

frequency, which contains most of the image information, 
the low spectrum is usually used to reconstruct the 
original image, thus to realize the image compression. 
The idea will be introduced into the proposed algorithm 
in the preprocessing stage. Because of the reality and 
energy concentration, the discrete cosine transform (DCT) 
is a more reasonable choice for the spectrum truncation. 
And since the energy of an image concentrates towards 
the left top corner in the DCT domain, the zigzag 
scanning is utilized prior to spectrum truncation to extract 
the low frequency of the 2-D image spectrum. The lower 
indexed coefficients of a 1-D array obtained from the 2-D 
DCT coefficient matrix through the zigzag scanning 
mean the lower frequencies. Then the 1-D array can be 

truncated at an appropriate position to realize the low 
frequency extraction. As described before, the Y 
component contains more image information, thus, the 
three corresponding spectra, of Y, Cb, and Cr, are 
truncated by a ratio of 1/2, 1/4, and 1/4, respectively, and 
scrambled up into a single combined spectrum for 
encryption. Thus a single channel encryption can be 
realized. 

C.  Spatiotemporal Chaotic System 
Spatiotemporal chaotic system maintains more 

complex behavior and more abundant characteristic, 
which makes it excellent candidate for encryption 
compared with the low-dimensional chaotic systems. A 
coupled map lattice with time delays (DCML)[20] 
consisting of the logistic map is adopted to construct the 
spatiotemporal chaotic system. Its mathematical 
representation is expressed as: 

( ) ( ) ( ) ( ) ( ) ( )( )
1

1 1mod 1 1 ,1

i
k

i i i i
k k k k

x

g x g x g x g xτ τε ε γ γ
+

− −
− −

=

− + + − +
 

(9) 
where i

kx  represents the state variable for the thi  site at 

time k , 1, 2, ,i L= …  ( L  is the length of the DCML) 
is the lattice site index, ε  and γ  are the coupling 
coefficients ranging in [0,1] . The periodic boundary 

condition 0 L
k kx x=  is assumed for any valid k . τ  is the 

time delay and =5τ  in this paper. Given an initial 
sequences of length L , a spatiotemporal chaotic matrix 
can be generated by (9). Logistic map is used as the 
nonlinear map ( )g x  to generate the initial sequences 
and given by: 

                   ( )1 1k k kx x xμ+ = ⋅ ⋅ −                     (10) 

with the system parameter [ ]3.5699456, 4μ ∈  and the 

initial value [ ]0 0,1x ∈ , the system exhibits chaotic state. 

D.  Encryption Process 
The flowchart of the proposed color image encryption 

algorithm is illustrated in Fig. 1; the whole encryption 
procedure includes two stages: preprocessing and 
encryption. The specified encryption procedures for the 
original color image of size 3M N× ×   are explained 
hereafter: 
1) Preprocessing stage. The original color image I  based 

on RGB space is firstly converted into YCbCr space, 
then a spectrum matrix I ′  of size M N×  is 
constituted from three low frequency parts, truncated 
by a ratio of 1/2, 1/4 and 1/4, respectively, from the Y, 
Cb and Cr components gotten by the discrete cosine 
transform. 

2) Encryption stage. The interim result I ′  is transformed 
by the reality-preserving FrDCT, where two generating 
sequences are needed for the row and the column 
transform respectively. The procedures are described 
as follows: 
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Step 1: Iterate (9)-(10) to obtain two random 
sequences whose lengths respectively are 2K M+  and 

2K N+ , using the two initial values 1
0x , 2

0x  and the 

coupling coefficients ε , γ . The system parameter μ  of 
the Logistic map is set to be 3.9999. Then discarding the 
previous K  values to avoid the harmful effect, we

I I′ C

 
Figure 1. Flowchart of the Encryption Procedures 

obtain two sequences ( ){ }1 1 | 1,2, , 2X x n n M= = … , 

( ){ }2 2 | 1,2, , 2X x n n N= = … . 1
0x , 2

0x , the random 

coupling coefficientsε , γ  and the arbitrary integer K  
are used as cipher keys. 

Step 2: Generate the random GS 1q  for the rows 
with integers limited to 0 and 1 for the sake of brevity by 
defining a threshold function: 

( )
( )
( )

1
1

1

0, 0 0.5
, 1, 2, , 2

1, 0.5 1

x n
q n n M

x n

< ≤⎧⎪= =⎨
< <⎪⎩

… (11)  

Step 3: Generate the random GS 2q  for the 
columns in a similar way.  

Step 4: Perform two 1-D FrDCTs with the 
fractional order α  and GS 1q , the fractional order β  

and GS 2q  for each row and each column of I ′  , 
respectively.  α , β  are the given fractional orders         
for the rows and the columns respectively. The      
obtained result is denoted as C  . 

The decryption procedure is similar to that of the 
encryption process but in the reversed order, and the 
fractional orders need to be modified as α α′ = − , 
β β′ = − .  

IV.  DIGITAL SIMULATION AND DISCUSSION 

The typical color image Lena of size 512 512×  and 3 
8-bit R, G and B components is chosen as the plain-text. 

A.  Encryption and Decryption Simulations 
Two fractional orders of the rows and the columns are 

fixed as 0.7689 and 0.4578, respectively. Two generating 
sequences are generated under the coefficients =0.2ε , 

=0.92γ ; and 1
0 0.345678921x = , 2

0 0.456789321x = . The 
constant K  is set to be 1000. Fig. 2(b) shows the 
encrypted output, which is completely rough-and-tumble 
and does not reveal any information about the original 
image. Besides, the encrypted image is a single 

component rather than three components, which can 
bewilder others in a sense. The decrypted image with all 
correct keys is shown in Fig. 2(c).  

For a color image, the peak signal-to-noise ratio 
(PSNR) is calculated as： 

( )10
255 255 3PSNR=10log dB

MSE MSE MSER G B

⎛ ⎞× ×
⎜ ⎟+ +⎝ ⎠

   (12) 

where the MSE represents the mean square error 
between the decrypted component and the corresponding 
original component. The PSNR is 37.0238 dB in this 
simulation, which declares a sufficiently good visual 
quality of the decrypted image and the feasibility of the 
proposed algorithm. 
 

      

(a)                          (b)                        (c)  
Figure 2. The results of color image encryption and decryption: (a) 
Original color Lena; (b) Encrypted Lena; (c) Decrypted color Lena 

with correct keys. 

B.  Key Sensitivity 
The high sensitive to initial conditions and system 

parameters is inherent to any chaotic system. Fig. 3 
shows the decrypted images using incorrect keys. As 
illustrated in Figs. 3(a)-(d), one cannot recognize the 
content of the decrypted image visually, even when the 
deviation of the initial values is so small as -1610 , which 
is mainly due to the high sensitivity to initial values and 
system parameters of chaotic maps. Moreover, Figs. 3(g) 
and (h) show that even if the parameter K  is 1 less or 
more than the correct value, the decrypted images still 
are completely incomprehensible and do not leak any 
information about the original image. Thus the cipher 
keys are highly sensitive in the proposed algorithm. 
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 (a)                                 (b) 

           
                         (c)                                 (d) 

          
                          (e)                                 (f) 

Figure 3. Decrypted images with  (a) incorrect coupling coefficient 
1310ε ε −′ = +  ; (b) incorrect coupling coefficient 

1310γ γ −′ = + ; (c) 

incorrect initial value 1 1 16
0 0 10x x −′ = +  ; (d) incorrect initial value 

2 2 16
0 0 10x x −′ = + ; (e) incorrect constant =1001K ′ ; (f) incorrect constant 

=999K ′ . 

C. Key Space Analysis 
A good cryptosystem should provide large key space to 
make any brute-force attack ineffective. The fractional 
orders are not used as cipher keys because of its low 
sensitivity and small key space. Thus our cryptosystem 
actually has the following secret keys: (1) 1

0x , 2
0x ; 

(2)ε ,γ ; and (3) K . From Fig. 3, it is easy to know that 
these parameters maintain 13 and 16 digits after decimal 
point respectively. Thus, the key space comes to be about 

5810 . It is worth to mention that K  also has an effect on 
the quality of decrypted image. Therefore, a sufficiently 
large key space is ensured in the proposed algorithm. 

D.  Statistical Analysis 
Two aspects are tested on the histograms and 

correlations of the original image and its cipher-text, 
demonstrating its superior confusion and diffusion 
properties which strongly resist statistical attacks. Figs. 
4(a) and (b) show the histograms of the cipher-texts of 
the color image “Lena” and “Peppers” respectively under 
the same conditions. They are quite similar and the 
cipher-texts of different plain images have such similar 
histograms that illegal attackers cannot obtain any useful 
information with this statistical analysis. 

The correlation coefficients of horizontally, vertically 
and diagonally adjacent pixels are calculated respectively. 
The formula is expressed as: 

 

  
(a)                                         (b) 

Figure 4. (a) Histogram of cipher-text of “Lena”; (b) Histogram of the 
cipher-text of “Peppers”. 

( )( )

( ) ( )
1

,
2 2

1

l

i i
i

x y l

i i
i

x x y y
C

x x y y

=

=

− −
=

− −

∑

∑
                (13) 

where x , y  are the intensity levels of two adjacent 
pixels, and 

1
/l

ii
x x l

=
⎡ ⎤= ⎣ ⎦∑ , 1

/l
ii

y y l
=

⎡ ⎤= ⎣ ⎦∑  

with l  the number of samples obtained from the image. 
Table 1 indicates clearly that the correlations of adjacent 
pixels in the original and the encrypted images, which 
indicates that the correlation coefficient of the original 
image is significant while that of the encrypted image is 
very small. So the proposed algorithm reduces the 
correlation of the adjacent pixels in the original image. 

TABLE I.   
CORRELATIONS BETWEEN ENCRYPTED AND ORIGINAL IMAGES 

Correlation 
coefficients

Original image  Encrypte
d image R G B 

Horizontal 0.9747 0.9689 0.9323 0.2261 
Vertical 0.9884 0.9835 0.9656 −0.0607
Diagonal 0.9698 0.9529 0.9267 0.0121 

 

E.  Robustness to Noise 
To show the influence of interference in transmission, 

the robustness of the proposed method against noise is 
considered. The model of noise attack is defined as 
follows: 

                          ( )1C C kG′ = +                         (14) 

where C  and C ′  represent the original color image 
component before and after adding noise, respectively. 
k  is the coefficient of the noise intensity of the Gaussian 
random noise G  whose mean value and standard 
deviation equal 0 and 1, respectively. Decrypted images 
with noise intensities 0.1, 0.5 and 1 are illustrated in Fig. 
5. As observed, the decrypted images can still be visible 
despite of some noise interference, and even when the 
noise intensity increases to 1. Consequently, the 
proposed encryption algorithm can resist the noise attack 
to some extent. 
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               (a)                          (b)                          (c) 

Figure 5. Decrypted images: (a) 0.1k = ; (b) 0.5k = ; (c) 1k = . 

V.  CONCLUSION 

We have represented a single-channel color image 
encryption by use of the reality-preserving fractional 
discrete cosine transform in YCbCr space, which is a 
kind of encryption with secrecy of pixel value and pixel 
position simultaneously. Unlike the RGB model, the 
YCbCr color model allows more attention to be paid on 
the Y component and less to the Cb and Cr components. 
Thus with spectrum truncation, a single combined cosine 
spectrum matrix is then encrypted by the FrDCT. The 
final gray scale cipher-text is convenient for display, 
transmission and storage due to the reality of the FrDCT. 
Besides, the generating sequences determined by 
spatiotemporal chaotic map are introduced to enlarge the 
key space. The simulation results indicate that the 
proposed encryption algorithm is feasible and effective. 
Performance in noisy channel demonstrates the 
encryption is robust to noise attack to some extent.  
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