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Abstract—Image manipulation has become commonplace in 
today's social context. One of the most common types of 
image forgeries is image compositing. In recent years, 
researchers have proposed various methods for detecting 
such splicing. Most prior approaches to detecting blur 
post-processing operation suffer from their inability to 
identify the spliced region when the background region 
contained nature blur. In this study, we propose a novel 
algorithm of detecting splicing in blurred images. We use 
blur parameters estimation through the cepstrum 
characteristics of blurred images in order to restore the 
spliced region and the rest of the image. We also develop a 
new measure to assist in inconsistent region segmentation in 
restored images that contain large amounts of ringing effect. 
Experimental results show efficacy of the proposed method 
even if the images to be tested have been noised with 
different levels. Compared with other existing algorithms, 
the proposed method has better robustness against gaussian 
noise. 
 
Index Terms—Image forgery detection, Photo composites, 
Blur estimation, Image cepstrum 

I. INTRODUCTION 

Tampering images has become extremely easy due to 
the easy accessibility of advanced image editing software 
and powerful computing hardware. Various types of 
forgeries can be created and in recent years, image 
forgery detection using passive techniques has become a 
hot area of research [1], [2]. 

One of the most common types of image forgeries is 
the image compositing, where a region from one part of 
an image is copied and pasted onto another part of 
different images, thereby concealing the image content in 
the latter region. Such concealment can be used to hide an 
undesired object or increase the number of objects 
apparently present in the image. In recent years, 
researchers have proposed various methods for detecting 
such composite and spliced images. These include 
techniques for resampling artifacts [3]; JPEG 
compression estimations [4]; color filter-array aberrations 
[5]; chromatic aberrations [6]; disturbances of a camera’s 
sensor noise pattern [7]; camera response functions [8]; 
and lighting inconsistencies [9]. Many of these 

techniques have an implicit assumption that the image 
has not undergone any post-processing. With the 
appearance of sophisticated photo manipulation software, 
such an assumption is unlikely to hold for most 
believable forgeries. Therefore, significant research has 
gone into circumventing postprocessing of images, such 
as blurring. Some researchers have proposed various 
methods for detecting this image forgeries using local [10] 
or edge [11] blur estimates.  

It is shown in Fig.1 that the background region 
contains nature blur. In such case, the big issue consists 
in detecting efficiently the spliced region that has blur 
introduced. Introducing blur region into a spliced object, 
in general, depends on the perception of the person 
creating the forgery and hence, is unlikely to be 
completely consistent with the blur in the rest of the 
image. Researchers use this fact to present a solution to 
this tampering detection problem. Some techniques [12], 
[13] use discrepancies in defocus blur to discover 
forgeries. Others [14], [15] use motion blur estimation to 
detect image forgeries. Each of the methods mentioned 
above are limited to handle merely one kind of spliced 
blurred image. 

There are two common types of blurs (defocus or 
motion) for most camera systems. According to the best 
of our knowledge, non of the existing works is suitable 
for both spliced defocus blurred image and spliced 
motion blurred image. In this paper, we use blur 
parameters estimation through the cepstrum 
characteristics of forged images in order to restore the 
spliced and the background regions. The faked regions 
could be detected thanks to the inconsistent ringing effect 
in the restored image. Experimental results show that our 
technique provides good segmentation of regions with 
inconsistent blurs and is suitable for both defocus blur 
and motion blur. 
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Figure. 1. Forged image 

. Ⅱ DEFOCUS AND MOTION BLUR ESTIMATION 

There are two common types of blurs for most camera 
systems. One is the defocus blur (such as Fig. 2(a)) due to 
the optical system's defocus phenomenon and the other is 
the motion blur (such as Fig. 2(c)) due to the relative 
movement between the objectives and the camera. For a 
blurred image, the blurring process is modeled as the 
convolution of a sharp image with a blurring kernel: 

( , ) ( )( , ) ( , )I i j F H i j N i j= ∗ +       (1) 
where ( , )I i j  is the blurred image, ( , )F i j  is the 
sharp image, ( , )H i j  is the blurring kernel, and 

( , )N i j  is the noise present. i  and j  are  the pixel 
coordinates. 

Taking the Fourier transform of (1) 

I F H N= +                (2) 

where I , F , H  and N  represent the Fourier 
transform of I , F , H  and N  respectively. 

A. defocus blur model  

For a typical defocus blur, the blurring kernel dH  
can be modeled as 
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where the continuous-time dH  is a circular symmetric 

cylinder function. And its Fourier transform dH  is 
expressed: 
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where, 1( )J ⋅  denotes the first order of first kind Bessel 

function. ( , )dH ⋅ ⋅  resembles the shape of 

two-dimensional sin ( , )c ⋅ ⋅ , as shown in Fig. 2(b).  

B. motion blur model 

For a horizontal uniform velocity motion blur, the 
continuous-time mH  is described as follow as: 
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where d  is the length of the kernel. Note that a 
directional blurring kernel can be formulated by rotating 

mH  by θ  degrees about the x-axis. Taking the Fourier 
transform of (5) 
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where ( , )mH ⋅ ⋅  has a series of parallel gratings, as 
shown in Fig. 2(d).  
 

 
Figure. 2. Blurred images and DFT s. (a) Defocus blurred image 

( 5R = ). (b) DFT for (a). (c) Motion blurred image ( 10d = , 045θ = ). 
(d) DFT for (c). 

III. PROPOSED FORGERY DETECTION METHOD 

We propose a method to detect blurred image 
forgeries using blind image restoration. Blur parameters 
are first estimated from the cepstrum of the given image, 
as defined in Section III-A. Our technique then restores 
the image based on these parameters, segmenting the 
regions with inconsistent ringing effect. The proposed 
method is especially useful for exposing the possible 
forgeries in blurred regions, such as spliced objects with 
artificial blur perceptually close to the background blur, 
making the inconsistency in blur difficult to detect. 

A. Blur Parameter Estimates   
In general, we address compositing in a 

nature-blurred (such as defocus or motion blur) image, 
with the artificial blur introduced in the spliced part 
similar to the background blur, so that the inconsistency 
is difficult to perceive visually. But, the spectrum of the 
forged images still have the shape of two-dimensional 
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sin ( , )c ⋅ ⋅ , as shown in Fig. 3. Instead of employing the 
spectrum characteristics directly, we use a variant of the 
widely recognized cepstral method [16] in order to 
estimate defocus and motion blur. Such an approach has 
been shown to be more robust to noise than just using the 
spectrum of the image. 

Omitting the noise N , the cepstrum of the blurred 
image I  is defined as 

( ) logC I I=              (7) 

Notice that the cepstrum is additive under convolution, 
that is, 

( )
( ) ( )

log log logC I F H F H

C F C H

= ∗ = +

= +
    (8) 

which has a circular symmetric distribution or some 
symmetric spike pairs along the direction of motion, as 
shown in Fig. 4. For a spliced defocus-blurred image, the 
first centered ring in the cepstrum shown in Fig.4 (a) 
usually has the radius 2 1Cr R= − [16]. Here, an peak 

detection method for the radius Cr  is proposed in this 
paper. The proposed approach firstly extracts the 
diagonal line of the cepstrum image, and then detects the 
peaks along the direction of the diagonal line. At last, the 
radius Cr  is detected by the distance between the 
middle point and the maximum peak, as shown in Fig.5 
(a). The parameter Cr  is obtained with 9Cr =  from 

Fig. 5(a). Further, the defocus blur radius R  can be 
estimated with 5R =  for the forged image in Fig. 3 (a). 
For a spliced motion-blurred image, instead of directly 
detecting the cepstral peaks, the Radon transform, which 
is widely used for detecting straight lines in noisy images, 
is used. Fig. 5 (b) gives the peak curve image, where 
shows the maximum value of the Radon-transformed 
images in each column. As can be seen, the peak point of 
peak curve images just refers to the motion direction θ , 
here, 045θ = for the forged image in Fig. 3 (c). The 
second parameter of motion blur is the motion length d , 
which can be obtained by the distance between the half 
of two bright points, as shown in Fig. 4 (b). The 
proposed approach firstly rotates cepstrum image by an 
angle of θ  using the estimated motion direction, and 
then detects the peaks along the direction of the middle 
column. At last, the parameter d  is detected by the 
distance between the center point and its nearest spike, as 
shown in Fig. 5 (c). Here, 9d =  for the forged image 
in Fig. 3 (c). 
 

 
Figure. 3. Forged images and DFT s. (a) Spliced image for Fig. 2(a). (b) 

DFT for (a). (c) Spliced image for Fig. 2(c). (d) DFT for (c). 

 
Figure. 4. Comparison of cepstrums. (a) and (b) are the cepstrums C(I) 

of forged images in Fig. 3 (a) and (c) respectively. 

 

 
Figure. 5. Estimated the blur parameters for Fig. 4. (a) is half the 

diagonal line of cepstrum images in Fig. 4 (a). (b) is the peak curve of 
Radon-transformed image for Fig. 3(d). (c) is half the middle column of 

rotated image for Fig. 4(b). 

B. Blind Image Restores 
The blurring kernels of the spliced blurred image are 

constructed by estimating the blur parameters in section 
III-A. Then with the constructed blurring kernels, the 
forged images are restored by performing the R-L blind 
restoration method. 

In this section, we use classical R-L blind restoration 
method to restore the forged images (such as Fig. 3(a) 
and (c)), where the iteration times is 20, obtaining the 
restored images which are shown in Fig. 6. From Fig. 6, 
the spliced regions suffer serious ringing effect due to 
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inconsistent blur parameters in the forged region and 
background region. Hence, the spliced regions can be 
accurately segmented by measuring the ringing effect in 
the restored image.  

 

 
Figure. 6. Restored images. (a) Restored image for Fig. 3(a). (b) 

Restored image for Fig. 3(c) 

C. Ringing Effect Measures 
For restored images in which certain regions appear 

to have large amounts ringing effect, we propose using 
the sum of absolute pixel gradient, generating a new 
ringing effect measure (REM) method. Firstly, the 
restored images ( , )rI i j , such as Fig. 6, are divided into 

k k×  sub-blocks as 
, ( , ) ( , )(1 ( 1) : ,1 ( 1) : )x y rb i j I i j k x kx k y ky= + − + −  (9) 

where , ( , )x yb i j  denotes sub-block with 

1, 2, , Mx y
k

⎢ ⎥= = ⋅⋅⋅ ⎢ ⎥⎣ ⎦
. Secondly, the REM of the row 

or column in ,x yb is defined: 

, ,
, 1

1 ( , 1) ( , )
k

row x y x y
i j

REM b i j b i j
k =

= + −∑   (10) 

, ,
, 1

1 ( 1, ) ( , )
k

col x y x y
i j

REM b i j b i j
k =

= + −∑   (11) 

Lastly, the larger one of rowREM  and colREM  is 
used to represent the ringing effect of the sub-block. 

,( ) max( , )x y row colREM b REM REM=    (12) 
So, the spliced regions are accurately segmented by 
classifying the ringing effect of each sub-block. 

IV. RESULTS AND COMPARISONS  

In the first experiment, simulations are performed to 
show efficacy of the proposed method. We created a 
database of 12 forged images, shown in Fig. 7, 
containing defocus blur and motion blur. The original 
images were obtained from the popular photo-sharing 
website. We spliced different objects into the blurred 
backgrounds of the images and applied visually similar 
artificial blurs, using the Photoshop image editor. To 
demonstrate validity of the proposed method, an example 
of the detection for spliced regions is shown in Fig. 8. In 
Fig. 8, column (a) gives 3 forged images from the 
database, where the spliced regions undergone Gaussian 
blur, Box blur and Shape blur (from up to down), 

respectively. column (b) in each figure shows the 
corresponding cepstrum image of column (a). The blur 
parameters are estimated from the cepstrum of the forged 
images, as defined in section III-A. Column (c) of each 
figure shows the restored results. The spliced regions are 
accurately detected by performing REM method defined 
in section III-C, as shown in column (d). It is observed 
that the proposed method can correctly indentify fake 
objects with inconsistent blur parameters in 
nature-blurred images even if the spliced regions undergo 
various postprocessing operations. 

 
 

 

 
Figure. 7. Images in our database. 

 

 

 

 

 

(a)         (b)          (c)          (d) 
Figure. 8. Detection for spliced blurred regions. (a) Spliced blurred 
images. (b) C(I) s for (a). (c) Restored images. (d). Detection using 

REM s 

In the second experiment, the proposed algorithm is 
tested on several forged images with different noise 
levels. The purpose of this experiment is to evaluate the 
robustness to noise of our proposed approach against 
available approaches. For the comparison, we choose the 
algorithms proposed in [13], [15] which sequentially 
combines the Fourier transform and parameters 
estimation method. The reason why we choose this 
algorithm is that it is suitable for noisy image. See Fig 9 
and Fig 10 for two noisy samples of the forged images 
shown in Fig. 3 (a) and (c). Fig. 9 compares the results 
from our method against those from the algorithm in [13] 
with strong noise 20 dB. The radius Cr  of centered ring 

is obtained with 8Cr =  from Fig. 9 (b), as defined in 
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Section III-A. Here, the defocus blur radius 4.5R =  
for the noisy image in Fig. 9 (a). However, the defocus 
blur radius 6.24R =  for the noisy image is estimated 
by the algorithm in [13], where the radius of the first 
centered ring in the spectrum shown in Fig.9 (c). 
Simultaneously, Fig. 10 compares the results from our 
method against the algorithm in [15] with strong noise 20 
dB. As can be seen, the motion direction 045θ =  for 
the noisy image is estimated by the Radon transform, as 
shown in Fig. 10 (b). From Fig. 10 (c), the second 
parameter of the motion length d  is detected with 

9d = . However, the motion length 11.6d =  for the 
noisy image is estimated by the algorithm in [15]. From 
Fig 9 and Fig 10, the comparison shows that our 
algorithm is more accurate to parameters estimation of 
noisy image than available algorithms.  

 

 
Figure. 9. Comparison with [13]. (a) is the noisy version of the forged 
image shown in Fig. 3 (a) with SNR 20. (b) is estimated the radius of 

the centered ring in the cepstrum by our algorithm. (c) is estimated the 
radius of the centered ring in the spectrum by the algorithm in [13]. 

 
Figure. 10. Comparison with [15]. (a) is the noisy version of the forged 

image shown in Fig. 3 (c) with SNR 20. (b) is estimated the motion 
direction by Radon transform. (c) is estimated the motion length by our 
algorithm. (d) is estimated the distance between two parallel dark lines 

near zero by the algorithm in [15]. 

Furthermore, We also randomly selected 100 natural 
images from the internet, and each of them was blurred 
by applying a blurring kernel with 5R =  or 10d =  
and 045θ = , respectively. We spliced different objects 
into the blurred backgrounds of the images and applied 
most common Gaussian blur, obtaining 100 spliced 
defocus-blurred images and 100 spliced motion-blurred 
images. Subsequently these spliced images were 
contaminated by zero mean white Gaussian noise with 
different noise levels. Fig. 11 and Fig. 12 compare the 
performance of our algorithm (denoted by R+C method) 
against available algorithms in [13], [15] (denoted by 
R+S method) with different noise levels. The comparison 
shows that our algorithm is more robust to noise than the 
available algorithm. In particular, It is clear that our 
algorithm outperforms the available algorithm by a large 
margin at low signal-to-noise ratio (SNR). 

 

 
Figure. 11. Comparison of the average detection errors. ‘R+S’ denotes 

the method in [13]. ‘R+C’ denotes our method. 

 
Figure. 12. Comparison of the average detection errors. ‘R+S’ denotes 

the method in [15]. ‘R+C’ denotes our method. 

V. CONCLUSION 

We have presented a technique for detecting spliced 
blurred images through blind image restoration. Our 
technique first estimates the blur parameters from the 
cepstrum of suspected image, then restores the given 
image based on constructed blurring kernel. If the 
suspected image undergone artificial blur, in general, is 
unlikely to be completely consistent with the blur 
parameters in the rest of the image. So, the regions of the 
restored image which show inconsistent ringing effect are 
then detected and displayed to the user. We have also 
developed a REM to provide robust segmentation. 
Experimental results show that our technique provides 
good segmentation of regions with inconsistent blurs and 
is suitable for both defocus blur and motion blur. 
Moreover, we could clearly see that our algorithm is 
more robust to noise than the available algorithms. 
However, no method can be perfect and detect all kinds 
of image forgery. Future works will deal with the 
drawbacks presented in our proposition when the 
background regions and the spliced regions have 
consistent blurring kernels. 
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