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Abstract—This paper presents a two-stage fingerprint 
filtering (FF) approach for the received signal strength (RSS) 
based location matching in Wi-Fi area. With the popularity 
of ubiquitous computing and location-based services in a 
recent decade, the Wi-Fi RSS-based location matching has 
been one of the most widely recognized method to locate 
users’ positions due to its low cost of deployment and 
maintenance. However, the indoor or urban wireless 
channel is characterized by time varying, non-line-of-sight, 
and multi-path interference. The efficiency of fingerprints is 
significantly deteriorated. Therefore, constructing a reliable 
radio map for the location matching becomes a key and 
unavoidable challenge. The experiments conducted in the 
real Wi-Fi environment indicate that the FF approach can 
yield better location precision (or the probability of locating 
the test position at matching position) and accuracy (or the 
cumulative distribution functions of errors) compared with 
the conventional neighbor matching. 
 
Index Terms—Wi-Fi localization, fingerprint filtering, 
correlation coefficient, neighbor matching, radio map. 

I.  INTRODUCTION 

Motivated by the intelligent ubiquitous computing and 
context-awareness applications in the past ten years, the 
location-based services have been recognized as an 
effective way to satisfy the requirements of the location-
enhanced sensing and body-based human-computer 
interaction in wireless personal networks (WPNs) [1], [2]. 
However, for the consideration of urban or indoor 
localization, the Global Navigation Satellite System 
(GNSS) technology suffers from low received signal 
power and low visibility of satellites. The most popular 
GNSS includes the Global Positioning System (GPS) in 
USA [3], GLONASS in Russia [4], Galileo in Europe [5] 
and Beidou system in China [6]. Among non-GNSS 
technologies, such as the radio frequency identification 
[7], ultra-wideband [8], ultrasonic wave [9], assisted GPS 
[10], infrared ray [11], Bluetooth [12] and Zigbee [13] 
based location systems, the Wi-Fi RSS-based location 
matching has been demonstrated as a better way to locate 
users’ positions in the aspects of localization precision, 
accuracy, system deployment and maintenance cost. 

Different from the conventional localization techniques, 
such as the arriving time, angle and model based location 
matching, the Wi-Fi RSS-based localization consists of 
the off-line and on-line phases. After the cumbersome 
work for the construction of radio map in off-line phase, 
the users’ positions are localized by the fingerprint 
matching during on-line phase [14]. Until now, there are 
three most remarkable localization systems in the area of 
Wi-Fi RSS-based fingerprinting: 1) RADAR, which is 
recognized as the world’s first RSS-based location 
matching between the pre-stored fingerprints and new 
recorded RSS data (or user datagram protocol signal 
strength) [15]; 2) Nibble, which is considered as world’s 
first signal-to-noise ratio (SNR) based location matching 
technique by using the Bayesian network [16]; 3) Horus, 
which proposed world’s first small-scale compensation 
solution to the multi-path interference [17]. 

Since the wireless channel responds varies over time 
due to the movement of objects (or people) in indoor 
environment, the measurements of Wi-Fi RSS values at 
one location can vary erratically [18]. As a result, the 
conventional radio map will be seriously deteriorated. To 
solve this compelling problem, a two-stage FF approach 
is proposed in this paper to assist the construction of a 
more reliable distance-dependent radio map by 
eliminating the burst noise from the raw data set. In 
general, the FF approach consists of two stages: 1) 
neighboring correlation difference (NCD) calculation and 
2) iterative modification of fingerprints. 

The remainder of this paper is organized as follows: 
Section 2 gives an overview of the related work on Wi-Fi 
RSS-based location matching. Section 3 describes the 
details of FF approach during Wi-Fi RSS-based location 
matching. In Section 4, we present the experimental 
results conducted in real Wi-Fi area to verify the 
efficiency of FF approach in location matching; Then, 
Section 5 discusses some interesting directions for our 
future work. Finally, Section 6 concludes this paper. 

II.  RELATED WORK 

Initially from the significant supplement to the outdoor 
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GPS localization for the indoor location-based services 
(LBSs) to the recent human navigation and pervasive 
computing applications, the indoor localization is always 
playing an active role of research around the world. 
Given all the factors of the localization accuracy, system 
scalability, infrastructure and laboring cost, the RSS-
based localization systems perform better than the other 
conventional systems in Wi-Fi environment. 

A. Deployment of Infrastructures 
The earliest localization systems always rely on some 

special infrastructures. For instance, Cambridge’s Active 
Bat calculates the user’s positions based on the TDOA 
between the ultrasound and radio frequency (RF) using 
signal multilateration technique [19]. MIT’s Cricket relies 
on the ultrasound devices and provides a practical 
solution to the system scalability, privacy and tracking 
agility [20]. MSU’s LANDMARC is with the idea of the 
active RFID-based reference tags [21]. However, the Wi-
Fi RSS-based location matching only depends on the 
existed 802.11b/g devices. Therefore, the infrastructure 
cost involved by the RSS-based localization systems will 
be significantly lower. 

As far as we know, there are mainly three strategies for 
access point (AP)s’ deployment: (i) random deployment 
[22] which has the lowest site-survey and laboring cost; 
(ii) the coverage priority-based deployment [18] which 
relies on the coverage levels of different regions and the 
predicted attenuation models, while the highest cost for 
the site-survey is resulted; (iii) the “Zigzag” deployment 
[23] is with the idea of maximizing the RSS difference 
between each pair of reference points (RPs). In our 
experiments, the target localization area is selected in a 
straight corridor and the corresponding APs are randomly 
distributed in several offices. 

B. Establishment of Radio Map 
The establishment of radio map normally consists of 

three key steps: (i) calibration of RPs; (ii) collection of 
fingerprints; (iii) fingerprint filtering and saving. In the 
first step, the strategy of uniform calibration is widely 
used by a large amount of research work on Wi-Fi RSS-
based localization [15], like the uniform interval of 1m or 
2m and room-level granularity. Then, in the second step, 
the RSS samples from hearable APs are collected as the 
fingerprints. 

Finally, in the third step, there are two typical methods 
for the fingerprint filtering. One is to calculate the mean, 
median, maximum, minimum and standard deviation of 
raw samples and save them into the radio map with the 
corresponding coordinates. Another method is based on 
the curve fitting of RSS distributions at each RP and save 
the curve parameters into the radio map. Therefore, for 
the previous method, the user is located at the position 
which has the smallest RSS distance to the new collected 
samples. But for the latter one, the RP with the largest 
posterior probability by Bayesian theory will be selected 
as the user’s estimated position. 

B. Location Matching Process 
The earliest Wi-Fi localization system which depends 

on the distance matching is the RADAR system [15]. It 
calculates the distance between the new collected samples 
and the pre-stored fingerprints and selects the RP with the 
smallest distance as the estimated position. Following the 
RADAR system, another remarkable localization system 
Horus is also proposed in 2005. The Horus estimates the 
user’s locations by the maximum likelihood estimation 
[17]. Meanwhile, Idaho National Laboratory presents a 
new idea of using the pattern matching method to locate 
the user’s real-time locations. The pattern matching-based 
location matching not only improves the tracking speed, 
but avoids the calculation of attenuation models [25]. In 
general, the location matching approaches can be divided 
into three categories: distance-based, Bayes probability-
based and pattern-based approaches. 

The distance-based location matching is based on the 
idea that the similar fingerprints are more likely to be 
collected at the physically adjacent RPs. In this paper, the 
“similar fingerprints” are defined as the fingerprints with 
small RSS distance and the same hearable APs. However, 
it is demonstrated that the performance of distance-based 
location matching will be significantly deteriorated by the 
serious multi-path effect. 

The probability-based location matching assumes that 
the RSS distributions at RPs can be effectively modeled 
by the Gaussian, Rayleigh or Rice fitting models. Based 
on the Bayes theory, the probability of each RP to be 
selected as the user’s estimated position equals to the 
multiplication of the priori probability for each hearable 
AP. However, the accuracy of Bayes probability-based 
location matching cannot be effectively guaranteed in the 
condition of small number of pre-stored fingerprints. 

The fuzzy logic, support vector machine and artificial 
neural network are normally suggested as three typical 
machine learning methods for the pattern-based location 
matching. This approach is with the assumption that there 
is an inherent mapping relationship between the RSS 
fingerprints and physical coordinates and this relationship 
can be revealed by the machine learning. However, the 
off-line sample set for the machine learning will seriously 
influence the localization accuracy. 

III.  STEPS OF TWO-STAGE FF APPROACH 

Besides the multi-path interference, the variations of 
RSS fingerprints are also influenced by the man-made 
burst noise (e.g., the body shadowing, adjacent-channel 
interference and unexpected door opening or closing). 
Meanwhile, the burst noise is more likely to appear in the 
off-line phase, last for long time duration and cannot be 
easily described by any statistical models. Therefore, if 
we use the raw samples without fingerprint filtering for 
the RSS-based location matching, the accuracy will be 
significantly deteriorated. In response to this compelling 
problem, we address the autocorrelation coefficient (AC) 
of the Wi-Fi RSS sequence in this paper as a new metric 
to eliminate the unexpected man-made burst noise by the 
proposed FF approach in this paper. 
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A. NCD Calculation 
Compared to Gaussian sequences, the AC values ,i iC +  

of the real Wi-Fi RSS sequences calculated by Equation 
(1) are much larger in the small lag situations. As shown 
in Fig. 1, in the condition of 1 5≤ ≤ , we can obtain 

, 0.85i iC + ≥  in real Wi-Fi RSS sequences, which means 
over a short period of time (e.g., 5 lags), the Wi-Fi RSS 
sequences from a given access point (AP) should appear 
to be very stable. In other words, the samples varying a 
lot compared to the time-adjacent ones are more likely to 
be recognized as the samples which are interfered by the 
burst noise. 

 
where ( )E ir  and ( )D ir  are the expectation and 

deviation of ( ) ( ){ }1 ,  ,  sNr r ; ( ),r i i +  is the auto-

covariance with  lags; sN  is the sample number. 
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Figure 1.  AC values of the real Wi-Fi and Gaussian sequences. 

Based on the inherent autocorrelation property of the 
real Wi-Fi RSS sequences as shown in Fig. 1, the NCD 
values are calculated by the following four steps. 

Step 1: collection of raw fingerprints. 
The Wi-Fi sequences ( ){ }k

j ir at each reference point 

(RP) kR  is collected, where 1,  ,  si N= , 1,  ,  j M=  
and 1,  ,  rk N= ; M  and rN  are the number of 
hearable APs and RPs in the target location area 
respectively. 

Step 2: calculation of AC values. 
Given by Equation (1), the AC value ( )k

jC  with  

lags of sequence ( ) ( ){ }1 ,  ,  k k
j j sNr r  is calculated. 

Step 3: determination of correlated maximum-lags. 
By selecting a proper autocorrelation coefficient 

threshold (ACT) k
jh , the maximal correlated lags k

j  of 

sequence ( ) ( ){ }1 ,  ,  k k
j j sNr r  is determined by the 

constraint of ( )k k
j jC h³  where 0 1k

j sN£ £ £ - . 
Step 4: calculation of NCD values. 
The NCD value ( )k

jD i  of each RSS sample is 
calculated by Equation (2). 

The NCD of two real Wi-Fi RSS sequences with 

300sN = , 900 and 9000 are shown in Fig. 2. The IDs of 
samples which are interfered by the burst noise are from 
6300 to 6600 and from 8500 to 9000. We denote these 
samples as the ( ){ ( ) ( )6300   6600 ,  8500  k k k

j j jr r r  

( )}9000k
jr . k

jh  is set to be 0.85.  
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(a) Sequence with 300sN = . 
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(b) Sequence with 900sN = . 
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(c) Sequence with 9000sN = . 

Figure 2.  NCD values of the real Wi-Fi RSS sequences. 

From Fig. 2, we observe that: 1) the growth of sample 
number reduces the mean of NCDs. In this experiment, 
when the sample number rises from 300 to 900 and from 
900 to 9000, the mean of NCDs decreases by 17.4% and 
38.6% respectively; 2) the NCDs of samples interfered by 
burst noise are always proportional to the mean of NCDs. 
Taking the sample with ID 600 as an example, the 
corresponding NCDs (0.4 and 0.2) are eight times of the 
mean of NCDs (0.05 and 0.025) in the sequences with 
900 and 9000 samples; 3) the samples interfered by burst 
noise are much larger than the other samples. 

B. Iterative Modification of Fingerprints 
After obtaining NCDs from the first stage, we then 

eliminate the RSS samples with large NCDs from the raw 
set in the fingerprint filter by conducting the following 
six steps in the second stage. 

Step 1: define the parameters k
j  and k

jq  where k
jq  is 

the maximum number of iterations. 
Step 2: eliminate the -thl  sample ( )k

j tr l  which 

has the largest NCD value ( ( )k
jD tl ) in the -tht  

iteration, and then increase the number of iterations by 
one where 1,  ,t =  1sN - . 

Step 3: If 1st N> - , go to step 6; otherwise, go to 
step 4. 

Step 4: conduct the ( )1 -tht +  iteration given by 

{ } { } ( ){ }1 \k k k
j j jt t tr r r l+ = . 

Step 5: update the NCDs of samples ( ){ }1k
jD i t +  

and go to step 3. There are four updating criteria stated as 
follows. 

1) If 1 k
ji≤ ≤  and { },  ,  1k

ji λ λ∈ − − , we have 

( ) ( ) ( )
1 1

,
,

0, 0,

1
k k
j j

i i
L t L t

j kk k
j i jD i t C

λ λ

ω
− −
− −= ≠ϒ = ≠ϒ

+ = Δ∑ ∑    (3) 

2) If 1k k
j s ji N+ ≤ ≤ −  and { ,  ,  1,k

ji λ λ∈ − −  

}1,  ,  k
jλ λ+ + , we have 

( ) ( ) ( )
1 1

,
,

, ,

1
k k
j j

k i k i
j jL t L t

j kk k
j i jD i t C

λ λ

ω
− −
− −=− ≠ϒ =− ≠ϒ

+ = Δ∑ ∑  (4) 

3) If 1k
s j sN i N− + ≤ ≤  and { }1,  ,  k

ji λ λ∈ + + , 
we have 

( ) ( ) ( )
1 1

0 0
,

,
, ,

1
k i k i
j jL t L t

j kk k
j i jD i t C

λ λ

ω
− −
− −=− ≠ϒ =− ≠ϒ

+ = Δ∑ ∑  (5) 

4) Otherwise, ( ) ( )1k k
j jD i t D i t+ = . 

where 1L t -  is defined as the set 1 { :  ( )k
jL t r- =  

is the RSS sample eliminated before the -tht  iteration}; 
( ) ( ) ( ),
,
j k k k

i j ji iρ ρΔ = − +  and { }1 1i
L t i L tλ λ−

−ϒ = − −∪ . 
Step 6: terminate the fingerprint filtering procedure. 
For the 9000 sample sequence (in Fig. 2(c)) recorded 

in the real Wi-Fi area, the relations of the number of 
iterations and the eliminated samples are presented in Fig. 
3. We set 0.85k

jh = , 5k
j = , 10 and 20. It can be 

observed that as the number of iterations increases, the 
RSS samples without interference are more likely to be 
eliminated in small k

j . 
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(c) 20k

j = . 
Figure 3.  Relations of the iteration numbers and eliminated sample IDs. 

Furthermore, Fig. 4 depicts the variations of the RSS 
statistics (RSS mean, median, maximum and minimum) 
with the increase of iteration numbers. Obviously, the FF 
approach can effectively decrease the standard deviations 
of the RSS distribution at RPs by eliminating the samples 
which are interfered by the burst noise. 
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(b) 10k
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(c) 20k

j = . 
Figure 4.  Variations of RSS statistics with respect to iteration numbers. 

IV.  EXPERIMENTAL RESULTS 

A. Environmental Setup 
To verify the efficiency of FF approach in the location 

matching, we carry out the following experiments in a 
typical straight corridor environment indoor with 
dimensions of 31m×2m, as described in Fig. 5. There are 
three line-of-sight (LOS) APs (Linksys WAP54G) 
located at the corners with 2m height. The two rows of 
RPs (with ●’s) are uniformly calibrated with the interval 
of 1m. The RPs in the 1st and 2nd rows are denoted by 
{ }1 32,  ,  R R  and { }33 64,  ,  R R . The test positions 
(with +’s) are randomly selected in this area. 

 
Figure 5.  Deployment of APs, RPs and test positions. 

There are 300 and 100 RSS samples recorded at each 
RP and test point for the purposes of the map 
construction and precision evaluation. Our receiver is a 
laptop (ASUS A8F) with self-developed RSS recording 
software “HITWLAN” (China Patent: 2010SR013873). 
Moreover, the test positions are categorized into three 
sets as S1, S2 and S3 (see Table 2 in Appendix). The test 
positions in S1 have the smallest neighboring distances 
(NDs), while the ones in S3 have the largest NDs. The 
NDs is defined as the physical distance between the test 
position and its most nearest RP. 

B. Modification of Fingerprints 
Based on the two-stage FF processing on the raw RSS 

fingerprints recorded in the uniformly calibrated RPs, the 
modified RSS mean, maximum and minimum will 
become much more correlated to the distance from the 
corresponding AP. Taking the RSS fingerprints from AP1 
as an example, we show the modified results by FF 
approach with  10k

j =  and 100k
jq =  in Fig. 6. 
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Figure 6.  Results of modified RSS fingerprints by FF approach. 

C. Localization Precision 
In order to examine the variations of location 

precision by FF processing, we first define the probability 
of each RP being selected as the estimated position in 
Equation (6). The RP with the largest probability is 
named the matching position (MP). Then, we define the 
location precision as the probability of selecting the MP 
as the estimated position, given by 

( )( ) ( )( )TP TP
1 1

1

r
M

MNk k u
j ju j

j

p p i p iρ ρ
= =

=

= ∑∏ ∏         (6) 

where kp  is the probability of RP kR  with a given 

sample vector ( ) ( ) ( )( )TP TP TP
1 ,  ,  Mi i ir r r=  recorded 
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at the test position; ( )TP
j iρ  is the -thi  sample value from 

the -thj  AP; ( )( )TPk
jp iρ  is the probability of ( )TP

j iρ  

recorded from the -thj  AP at kR . Localization precision 
of each test position is presented in Table 1. In our 
experiments, the localization precision of 84.8% test 
positions is improved after FF. 

TABLE I.  
LOCATION PRECISION BEFORE AND AFTER FF PROCESSING 

Test positions Location precision 
MP before FF MP after FF 

IDs RSS mean (dBm) IDs Probability IDs ProbabilityAP1 AP2 AP3 
1 -59.5 -52.3 -51.8 1 0.99899 1 0.99999 
2 -57.3 -58.3 -57.6 4 0.72971 4 0.96728 
3 -56.2 -55.9 -56.6 34 0.82423 34 0.99464 
4 -58.9 -53.0 -54.4 1 0.99835 1 0.99964 
5 -53.1 -61.0 -61.3 3 0.5556 12 0.99823 
6 -60.5 -66.3 -62.4 43 0.61386 12 0.9959 
7 -56.0 -63.5 -60.6 7 0.99835 7 0.99963 
8 -57.6 -67.8 -59.9 11 0.96304 12 0.94752 
9 -58.2 -63.8 -62.3 7 0.96149 7 0.98707 
10 -58.9 -67.3 -64.5 12 0.99439 12 0.9994 
11 -58.3 -62.8 -62.6 7 0.48174 44 0.67959 
12 -59.9 -65.4 -61.4 11 0.86246 12 0.54209 
13 -61.2 -67.5 -63.0 12 0.92536 12 0.99961 
14 -54.4 -69.8 -64.6 12 0.89827 12 0.96167 
15 -59.8 -70.4 -62.4 11 0.80542 12 0.96632 
16 -55.2 -76.7 -64.5 10 0.99623 10 0.99812 
17 -51.8 -74.3 -72.7 52 0.70569 21 0.78827 
18 -57.8 -70.1 -65.0 51 0.51786 54 0.58667 
19 -52.5 -80.7 -68.8 21 0.95376 21 0.97721 
20 -57.3 -76.3 -71.6 15 0.78313 20 0.79138 
21 -42.2 -77.1 -74.9 28 0.97068 28 0.97411 
22 -55.7 -78.9 -69.3 23 0.97766 23 0.63411 
23 -53.3 -77.8 -69.2 59 0.5936 21 0.82792 
24 -45.8 -81.3 -68.4 28 0.53607 27 0.79201 
25 -44.0 -79.9 -67.7 28 0.8831 28 0.98733 
26 -39.9 -77.5 -65.9 64 0.7156 64 0.99916 
27 -58.2 -71.1 -69.8 51 0.91372 51 0.96805 
28 -65.9 -74.4 -72.6 15 0.96037 15 0.98735 
29 -59.1 -73.5 -70.7 15 0.39382 50 0.67999 
30 -55.1 -76.6 -69.8 59 0.57281 59 0.45062 
31 -52.9 -77.6 -66.1 10 0.29744 21 0.94428 
32 -53.9 -76.0 -62.7 10 0.99761 10 0.99908 
33 -38.1 -77.9 -70.5 28 0.95417 31 0.4162 

A. Localization Accuracy 
Location precision can be considered as an effective 

way to examine the uncertainty (or ambiguity) of location 
matching. However, the higher precision can not 
guarantee the smaller location errors because the MP 
could be physically far apart from the test position. 
Therefore, we will use the localization accuracy as an 
alternative metric to evaluate the efficiency of FF 
processing. In this paper, the location accuracy is defined 
as the distance between the test position and its 
corresponding MP (or errors). Using the minimum RSS 
as fingerprints, we can obtain the cumulative distribution 
functions (CDFs) of errors, as shown in Fig. 7. 
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(a) Test positions in set S1. 
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(b) Test positions in set S2. 
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(c) Test positions in set S3. 

Figure 7.  Location accuracy before and after FF processing. 

From Fig. 7, we observe that: 1) the CDF of errors in 
8m is significantly increased after FF processing for the 
entire test positions in S1, S2 and S3; and 2) the 
localization accuracy of test positions in S1 performs 
better than the ones in S2 and S3 after FF processing. 
Therefore, we can make a reasonable conjecture that the 
increase of RPs’ granularity (or decreasing the distance 
between the test position and its corresponding MP) 
could be suggested as an effectively way to improve the 
efficiency of FF processing in the location matching. 

V.  INTERESTING DIRECTIONS AND DISCUSSIONS 

1) Performance evaluation. In this paper, we use the 
probability of MP and distance between the test position 
and its corresponding MP to evaluate the location 
precision and accuracy by FF processing. However, there 
is a variety of other performance metrics need to be 
discussed for the Wi-Fi RSS-based location matching 
(e.g., the distance between the test position and the 
weighted sum of the coordinates of neighbors by the K-
nearest neighbor algorithm, and the error between the real 
output and the target coordinates by the neural network 
algorithm). 
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2) Parameter optimization. Based on the steps 
involved in the iterative modification of fingerprints, we 
can find that the performance of FF heavily relies on the 
parameters k

j  and k
jq . For instance, the small values of 

k
j  imply that the RSS samples can only remain stable in 

a short time interval and the large values of k
jq  may 

result in a serious distortion of fingerprints, since a large 
number of samples is eliminated from the raw radio map. 

3) Noise detection. Our experiments are conducted 
based on the assumption that the burst noise exists in the 
raw radio map. If the fingerprints are not interfered by the 
burst noise and a large value of k

jq  is selected, the radio 
map could be significantly deteriorated by FF because a 
large number of correct samples (or samples which are 
not interfered by the burst noise) will be eliminated in the 
large k

jq  condition. Thus, the existence of burst noise has 
to be identified correctly before FF processing. 

VI.  CONCLUSION 

A two-stage fingerprint filtering approach is proposed 
in this paper to improve the reliability of radio map for 
the Wi-Fi RSS-based location matching. The two 
significant contributions from this paper are to reveal the 
inherent autocorrelation property of the actual Wi-Fi RSS 
sequences and eliminate the burst noise by the iterative 
modification of RSS fingerprints. The objective of FF 
processing conducted in the real Wi-Fi coverage area is to 
yield a more precise and accurate Wi-Fi RSS-based 
location matching in future. 
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