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Abstract—As a key factor of logistics distribution, vehicle 

routing problem (VRP) is a hot research topic in 

management and computation science. In this paper the 

principle and algorithm process of firefly algorithm are 

introduced in detail. Then the algorithm process and solving 

steps are designed for vehicle routing problem with time 

windows (VRPTW), including the coding and design of  

disturbance mechanism of elicit fireflies. In the end, the 

testing examples from benchmark and other literatures are 

conducted with good outputs, which prove the validity of the 

firefly algorithm for VRP. 

 

Index Terms—vehicle routing problem; time windows; 

firefly algorithm; optimization 

I.  INTRODUCTION 

Logistics distribution plays an important role in the 

modern logistics management. The vehicle routing 

problem (VRP), as a key issue in logistics distribution, 

has become a hot topic for experts in management and 

computation research fields during the last few decades. 

As we all know, reasonable scheduling of vehicles and 

vehicle routes can reduce distribution costs, thereby 

reducing the whole logistics costs. Since the problems are 

very common in the real world, such as the supermarket 

distribution, freight transportation and so on, therefore, 

VRP is a very practical and interesting issue. 

 
 

Figure 1. A Figure Illustrating VRPTW 

Since Yang [1, 2] proposed the firefly algorithm (FA)  

for multimodal function optimization, FA has been 

applied to other various optimization problems over the 

past four years. Yang has also compared FA with the 

fully-developed particle swarm optimization algorithm 

(PSO) and genetic algorithm (GA)[3,4]. 

Few literatures about FA can be found, but more and 

more scholars abroad begin to pay attention to the 

algorithm. Some of them have made several 

improvements, which enable the algorithm to solve not 

only function optimization problems but also practical 

problems. Sayadi et al.[5] suggested the discrete firefly 

algorithm (DFA）and applied it to solving flow-shop 

problems which belong to production scheduling 

problems. Broersma[6] put forward a multi-objective 

firefly algorithm, a revised FA, to solve the load 

distribution problem in economics. Rampriya et al [7] 

presented a kind of Lagrange FA algorithm, and applied 

it to the combination optimization of electric unit in 

electric power system. In addition, Jati GK and Suyanto[8] 

used DFA to solve TSP problem;  Khadwilard et al.[9] 

used FA to solve job-shop problem in production 

scheduling. They all have obtained good results using 

firefly algorithm. What is worth mentioning here that 

several domestic literatures about FA have appeared. Liu 

and Ye[10, 11] applied FA to the permutation flow shop 

scheduling problems successfully and yielded favorable 

outcome. 

The literatures about FA have showed it is a very 

promising algorithm. Though great progress has been 

made on the algorithm in theory and application since it 

was proposed four years ago, further studies should still 

be developed on the algorithm, especially in the 

convergence analysis and applications to other fields. 

II.  VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 

There’re different kinds of VRP problems according 

to the different constraints. The more variables and 

restrictions there are, the more difficult to solve the 

problem. CVRP is on the basis of the VRP with a 

constraint of the vehicle capacity constraints, which is 

described as follows [12]: a certain number of clients 

whose locations and delivery demands are presented in 

advance; a fleet of identical vehicles with fixed capacity 

leaves from the distribution center and returns after 

finishing all the delivery tasks. The objective is to 

minimize the total costs. Several assumptions are 

provided here: each client will be visited by one vehicle 

for only once and the total demands of visited clients 

should be no more than the vehicle capacity. The vehicle 

routing problem with service time limitation at every 
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client and the distribution center is called VRPTW[12]

（ vehicle routing problem with time windows, 

abbreviated as VRPTW）, developing from the CVRP 

with consideration of time windows. The time window 

refers to a time range within which one client is started to 

be served. If a vehicle arrives earlier than the start point 

of the client’s time window, it has to wait. The objective 

of VRPTW is to complete all the delivery tasks of all 

clients and minimize the total costs of distribution. Figure 

1 illustrates the VRPTW problem.  

Many research results about VRPTW have been made 

since VRP was proposed, which are mainly about the 

solving methods such as: the accurate branch-and-bound 

method, heuristic method based on experience, tabu 

search method, genetic algorithm,  particle swarm 

optimization algorithm, ant colony algorithm [13, 14, 15] and 

so on, every of which adapts to solving some kinds of 

problems. In this paper a kind of firefly algorithm is 

designed to solve VRPTW and it performs very well by 

many computational tests. 

III.  MODEL DESCRIPTION OF VRPTW 

Mathematical model of VRPTW is described as 

follows: we assumes there’re ( 1, 2, , )K k K  vehicles 

at the distribution center and ( 1, 2, , )L i L  customers, 

and 0i   represents the distribution center. The vehicle 

capacity is q ; the demand of every client node is 

( 1, 2, , )
i

g i L ; the delivery costs from client node i  

to client node j is
 ijc ( it could be distance or fees etc);  

time window at client i  is denoted as
 
[ , ]

i i
e l ;  let 

i
se

 
to 

be the time when the service at client node i  begins, 
i

sl  

the time when the service at client node i ends, and 
i

s the 

total service time at client node i , so 
i i i

s sl se  ; 
ij

t
 
is 

the travel time from client node i  to client node j . Here 

we simply take 
ij ijt c  for convenience. Besides,  two 

variables are defined: 

1 the demand of client  completed by vehicle 

0 othersik

i k
y







1 vehicle  travel directly from client  to client 

0 others
ijk

k i j
x 





So the mathematical model of VRPTW is presented as 

follows: 

 

 

s.t.        
1

,                       (1) 
L

i ik

i

g y q k


   

             
1

1,                      (2) 
K

ik

k

y i


   

1

,        ,                             (3)

L

ijk ik

i

x y k j


           

1

    ,        ,                              (4)
L

ijk ik

j

x y k i


 

,

   1, {1, 2... },                        (5) 
ijk

i j S S

x S S L k
 

   

    , , ,                       (6)
i ij j

sl t se k i j   

    ,                        (7)
i i i

e se s i  

    , (0 , 1) .  , ,
ijk ik

x y k i j   

Where S  is the total nodes number in set S . 

Constraint (1) limits the vehicle’s load. Constraint (2) 

makes sure each client is visited only once by each 

vehicle. Constraints (3)、(4)、(5) are designed to ensure 

a complete circuit. Constraint (6) gives the premise for 

the two adjacent tasks on one route. Constraint (7) is 

about time window restriction. 

VRPTW is the most studied type of vehicle routing 

problem since its model is more close to the real life and 

describes the real problem better. VRPTW can be further 

divided into two types: VRP with hard time windows and 

VRP with soft time Windows. Generally speaking, 

vehicle routing problem with time windows, without 

specific explanation, refers to VRP with hard time 

windows. 

IV.  SOLVING VRPTW BY FA   

A. Coding Design 

VRPTW is developed from CVRP with the 

consideration of time windows. Therefore we can adopt 

the same real-coded schema for VRPTW as for CVRP. In 

VRPTW with L client nodes and K vehicles, fireflies’ 

positions are represented by vectors with 
1L K  dimensions so as to match with the final 

distributing solution. 

This paper adopts the real-coded schema, introduced 

by Wu[15] for PSO algorithm in VRP,  for VRPTW 

coding. We mark 1, 2, L， as the client nodes and 0 as 

the distribution center. Since there are K vehicles for 

distribution so at most K  routes are considered. Each 

vehicle starts and ends at the distribution center. 1K   
virtual centers represented by 

1, 2, , 1L L L K    are considered in the coding 

design to describe the distribution routes better. The 

problem is coded in such method that each firefly 

corresponding to a 1L K   dimensional vector , which 

valued sequence conveys the information of distribution 

order on the total delivery routes. The firefly’s position 

vector in such a way matches with the final solution. 
For instance, assume there are 8 clients, and 3 

vehicles,  the  position vector of firefly  x  is: 

Warehouse number: 1    2     3     4     5     6     7     8     9     

10 

x : 4.9   7.0   3.5   1.2   1.3   8.0   4.2   8.7   1.9  6.6 

1 1 1

K L L

ij ijk

k i j

MinZ c x
  


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For the convenience of calculation, rounding 

treatment on x  is given according to the original order of 

each dimensional vector-value. The result is showed as 

follows: 

Warehouse number: 1    2    3    4    5    6    7    8    9    10 

x : 6    8    4    1    2    9    5   10    3    7 

So the position vector of firefly provides a solution of 

total routes in the following sequence: 

0→4→5→9→3→7→1→10→2→6→8→0 ， where 9 

and 10 are virtual centers.  

The distribution route of each vehicle is given here: 

Vehicle 1: 0→4→5→0； 

Vehicle 2: 0→3→7→1→0； 

Vehicle 3: 0→2→6→8→0. 

The total routes set of client nodes sequence has 

1L K  numbers, beginning with zero. Two zeros are 

not allowed to be adjacent. The same as the solution in 

reference [15].  This paper doesn’t consider the cases of 

two adjacent zeros, because there doesn’t exist any 

feasible result at that time and thereby the cases are 

automatically ruled out during the iterations. The two 

zeros at the end of the sequence will be removed at first 

while coding the firefly vector, and added back while 

decoding the firefly vector into client nodes to calculate 

the minimum total costs. The coding process is designed 

in such a way to guarantee a correct optimal solution and 

a quicker search since the dimension of a firefly vector is 

reduced.  

B. Modifying Infeasible Solution 

The position vector of a firefly keeps changing in the 

search process by following the brightest firefly in the 

group. The updated vector cannot guarantee different 

dimensional vector-values after rounded treatment. While 

the effectiveness of solutions requires the values on 

position vector of each firefly to be different and covered 

in the range of coding. Hence only one will be kept 

among each array of duplicate values, if there are, and 

other duplicate values will be replaced with unused 

numbers in the range from 1 to 1L K  . 

C. Constraints 

This paper uses the penalty function method to 

describe the fixed vehicle capacity constraint in VRPTW, 

just as in CVRP. The penalty function is formed by 

adding a large positive number R to the loading capacity 

of each vehicle. Then the penalty function is added to the 

objective function, as shown in formula (8).  

0 0 1 1 1

max( , 0)       (8)
L L K K L

ij ijk i ik

i j k k i

MinZ c x R g y q
    

       

D. Basic Principle of FA 

Fireflies’ attraction to each other depends on two 

factors: its brightness and attraction. Brightness is 

determined by the function value of the fireflies’ position. 

The brighter the firefly is, the better its location is. 

Attraction is associated with brightness. The brighter 

firefly is, the stronger its attraction is to other fireflies 

with a lower brightness. If there is no firefly with higher 

brightness than itself, a firefly just flies randomly. FA 

achieves the global optimization by fireflies’ continuous 

updating position based on the brightness and attraction.  

(1) Distance between fireflies 

Distance between firefly i and firefly j are defined 

by their Cartesian distance, as shown in (9). 

2

, ,

1

 ( )                   (9) , 
d

ij i j i k j k

k

r x x x x


   

 

Where
,i k

x is the k th component of firefly i ’s 

position vector, d  is the position vector’s dimension. 

(1) Relative Brightness  

Brightness of one firefly at the position of x is 

represented by I , its relative brightness is computed as 

follows: 

0
(10)                                       ,ijr

I I e


 

      
Where 

0
I  is its initial brightness, namely its 

brightness at 0r  . 
0

I is associated with the objective 

function value at 0r   and the smaller the function value 

is, the bigger 
0

I will be. 
 
represents the degree of light 

attenuation, reflecting the characteristics that fireflies’  

brightness decreases with distance’s increase and the 

media’s absorption.
 

(2) Degrees of Attraction 

Degrees of attraction can be yielded with the 

following equation: 
2

0
 (11)           ,                                ijr

e


 


 

  
Where

0  is the largest degree of attraction, namely the  

degree of attraction at 0r  .
 

(3) Position Update 

Position update when firefly i  is attracted to the 

brighter one j , which is given as follows: 

2

0
     (12)     ( ) ( 1 / 2) ijr

i i j i
x x e x x rand


 


    

       
Here, 

2

0
( )ij

r

j i
e x x







 
is the attraction of firefly j

 
to 

firefly i .   is the step factor, a random number in the 

range of [0,1] , and rand is a random number uniformly 

distributed in the range of [0,1] .
 

E. Steps of Firefly Algorithm for VRPTW 

Step1:  Defining parameters  

We set the number of fireflies is m , the largest 

degree of attraction is
0

 , the degree of light attenuation 

is  , the step factor is  , and the maximum number of 

iterations is max Gen . 

Step2: Initializing the population randomly 

Take an integer in the range of [1, 1]L K  for each 

dimension vector-value of firefly’s position vector x . 

Then calculate the objective function value (0)
i

F
 
as 
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respective maximum fluorescence brightness 
0

I
 
of the 

fireflies. 

Step3: Finding the best firefly 

Calculate the relative brightness I  and the degree of 

attraction   according to formula (10) and (11) 

respectively. Then we can find the brightest firefly, i.e. 

the most optimal one in the population. 

Step4: Updating position and disturbance testing  

Update the fireflies’ positions based on the formula 

(12) and modify infeasible solutions. Then disturbance 

tests are conducted for the M elite fireflies with bigger 

brightness than others, in order to rule out local optimal 

solutions.  

Disturbance type is designed by mutating a value in a 

randomly-chosen dimension of the elite fireflies’ position. 

If we use a v  as the original value, the new value after 

mutation v  is calculated with the following formula:        

     

 

'

           (13)             
max

max

v t v t t

t Gen
t

Gen
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Figure 2. FA Flowchart 

where "+" or "-" is decided randomly,  is a random 

variable between 0 and 1.  t
 
is a parameter in the 

-tht iteration process and it is correlated negatively  with 

the iteration times. 

Step5:  Termination of the iteration 

If the termination condition is met, output the shortest 

route and the total minimum of distribution routes.  if  not, 

turn back to Step3. 

Figure 2 is the flowchart illustrating the firefly 

algorithm process.  

V.  EXPERIMENTAL  TESTS 

Two examples as the benchmark problems are given 

in this paper to test the proposed FA algorithm. We adopt 

a testing example suggested by Wu et al.[16] and testing 

material by Marius [17] respectively in Example 1 and 

Example2. Testing results show that the firefly algorithm 

converges fast to the optimum and yields good solutions.                          

Example 1：This paper first uses the example in the 

literature [16] for testing. There are 8 clients (number 1, 

2, ... 8) in the example. Demand 
i

g , service time 
i

T
 
and 

time window [ , ]
i i

e l
 
of each client are known,  as shown 

in Table 1. The distances between nodes are shown in 

Table 2. Zero represents the distribution center. Vehicle’s 

maximum load is 8 tones. 
Computations have been performed to test FA for solving 

the problem above, using the MatlabR2008 software running 

under Intel Atom N270 1.6GHz Quad-Core CPU, 1GB Ram, 

and Windows 7.0 operating system. The main parameters 

are set as follows: 

 

 
Figure 3. Convergence of the Best Solution Based on FA in 

                R102 and  R102 

 

The number of fireflies m : 50 

Degree of light attenuation  ：1.0 

Step factor  ：0.4 

Iteration times：300  

After the iterations of 300 times, FA converged to the 

known optimal solution, with total distribution distances 

of 910 and the distribution routes are as follows.   

Vehicle 1: 0→8→5→7→0； 

Vehicle 2: 0→3→1→2→0； 

Vehicle 3：0→6→4→0 . 

 

Example 2: Marius’ six data sets [17] are used as the 

testing material. Nodes in sets R1 and R2 are randomly 

located while nodes in sets C1 and C2 are regional 

aggregated.  

N 

Y 

Add fireflies in solution space 

End  

Reach the maximum 

iteration times? 

; 

 

Start 

Population initialization, set parameters m ,
0

 ,  ,  

Calculate the relative brightness and attraction 

between Firefly and 

 

Update the position of fireflies, make turbulence tests for 

the elite fireflies, and modify illegal solutions 

 

Output the shortest route and optimal disturbance 

route 
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Situations in each set, R101 and R102 for instance, 

have the same nodes’ positions, but different time 

windows.  Reference data are also listed here: the optimal 

solution obtained with an accurate algorithm (absent for 

some situations as shown in the table with “-”) and the 

best approximate solutions yielded by heuristic 

algorithms. The optimal solutions by FA in this paper fall 

somewhere between the exact solutions and the best 

approximate solutions.  

Obviously, for R1 and R2, all results are absolutely 

(100%) better than the known best approximate solutions. 

For C1, results in 7 groups（77.7%）are equal to the best 

approximate solutions, the same to 6 groups（75%）for 

C2.  Overall, our results are all better or equal to the best 

known approximate solutions. 

We provide the convergence speed of the best 

solutions in R101 and R102 by FA in Figure 3. The 

vertical axis represents optimal solution value and the 

horizontal axis represents iteration times (1 unit= 

iteration of 30 times). 

TABLE I.  

CLIENTS’ DEMANDS AND TIME WINDOW 

Client i 1 2 3 4 5 6 7 8 

qi 2 1.5 4.5 3 1.5 4 2.5 3 

Ti 1 2 1 3 2 2.5 3 0.8 

[ei , li] [1,4] [4,6] [1,2] [4,7] [3,5.5] [2,5] [5,8] [1.5, 4] 

TABLE II.  

DISTANCES BETWEEN NODES  

i 

 

j 

0 1 2 3 4 5 6 7 8 

0 
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8 
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75 
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90 
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90 

100 

100 

100 
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100 
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75 

100 

200 
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100 
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100 
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90 

75 

100 

75 

75 

90 
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0 

70 

100 

160 

110 

75 

90 

75 

90 

70 

0 

100 

80 

100 

75 

150 

100 

75 

100 

100 

0 

TABLE III.  

THE TEST RESULTS OF SOLOMON R GROUP AND C GROUP 

Set of R 1 R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 R111 R112 

accurate 

solutions 

1637.7 1466.6 1208.7 
971.5 

1355.3 1234.6 1064.6 - 1146.9 1068 1048.7 - 

best approximate 

solutions 

1645.79 1482.12 1292.68 1007.24 1377.11 1251.98 1104.66 960.88 1194.73 1118.59 1096.72 982.14 

Our solutions 1639.2 1476.7 1256.3 994.31 1368.3 1247.4 1078.3 957.56 1169.7 1094.5 1065.2 971.36 

Set of R2 R201 R202 R203 R204 R205 R206 R207 R208 R209 R210 R211  

accurate 

solutions 

- - - - - - - - - - -  

best approximate 

solutions 

1252.37 1191.70 939.54 825.52 994.42 906.14 893.33 726.75 909.16 939.34 892.71  

Our solutions 1241.23 1186.48 938.40 823.87 993.7 905.67 892.59 724.89 908.32 938.8 891.56  

Set of C1 C101 C102 C103 C104 C105 C106 C107 C108 C109    

accurate 

solutions 

827.3 827.3 826.3 822.9 827.3 827.3 827.3 827.3 827.3    

best approximate 

solutions 

828.94 828.94 828.06 824.78 828.94 828.94 828.94 828.94 828.94    

Our solutions 828.94 827.64 827.53 824.87 827.92 827.67 827.85 828.31 828.98    

Set of C2 C201 C202 C203 C204 C205 C206 C207 C208     

accurate 

solutions 

589.1 589.1 588.7 588.1 586.4 586.0 585.8 585.8     

best approximate 

solutions 

591.56 591.56 591.17 590.90 588.88 588.49 588.29 588.32     

Our solutions 591.56 591.56 589.23 589.67 587.21 588.83 587.35 588.39     
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VI.  CONCLUSIONS 

Vehicle routing problem is an important problem in 

logistics distribution. There are many algorithms such as 

genetic algorithm[18], branch-and-bound algorithm[19]  , 

particle swarm optimization algorithm[20] , artificial bee 

colony algorithm[21] and so on. FA, as a new type of 

swarm intelligence algorithm, has enjoyed rapid 

development since it was introduced.  Its application has 

expanded from function optimization to production 

scheduling, TSP problem and etc. This paper attempts to 

apply FA to solve VRPTW, and provides new 

application possibility of FA. Further researches are 

needed about VRPTW and VRP with interference in the 

future. FA convergence analysis is also an important 

work. Otherwise the algorithm can  be extended to 

address other optimization problems in practice. 
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