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Abstract—In this study, an Electronic nose (Enose) 

instrument used indoor for monitoring formaldehyde is 

designed. In mass production of this instrument, because of 

the inherent variability in the sensor manufacturing process, 

the Enose instruments give different outputs. It is impossible 

to train an individual prediction model on each instrument 

to have uniform output. A new on-line calibration method 

based on prediction model without real master instrument is 

proposed. This method avoids the problem that if the real 

master instrument behaves drift, the calibration of the other 

batch of instruments would lose its effect. In this paper, the 

prediction model is radial basis function (RBF) neural 

network and particle swarm optimization (PSO) is used to 

determine the parameters in RBF. The results show that the 

responses of the same type sensors are uniform after 

calibration, and this new method is easy and robust.  

 

Index Terms—on-line calibration; electronic nose; radial 

basis function neural network; particle swarm optimization 

I.  INTRODUCTION 

   Electronic nose (Enose), which is composed of 

semiconductor gas sensors, has been studied for many 

years and used in many fields [1-14].  

   Our project is devoted to design of Enose instrument  

used indoor for monitoring formaldehyde so that many 

these instruments should be produced for extensive users. 

However, inherent variability in the sensor manufacturing 

process leads to slight differences in the reactivity of the 

tin oxide substrate of individual sensors [15]. These slight 

differences will lead to different outputs of instruments. 

In mass production of Enose instruments, it is impossible 

to train an individual prediction model on each 

instrument to have uniform output. Some calibration 

transfer methods [16-21] are proposed for 

spectrophotometers instruments standardization. Because 

of the complexity and robustness, these methods are not 

very suitable for on-line using in our Enose instruments. 

An easy way to overcome this problem is to calibrate the 

same type sensor responses in different instruments. In 

Ref. [22], a simple and robust method is proposed for 

on-line calibration transfer among multiple Enose 

instruments. But this method always needs a master 

Enose instrument when calibration, if gas sensors in this 

master instrument behave drift, the calibration of the 

other batch of instruments would lose its effect. Moreover, 

there is no effect method to detect and completely 

overcome drift.  

In this paper, a new on-line calibration transfer 

method based on prediction model without real master 

instrument is proposed. For each sensor in master 

instrument, a concentration prediction model is built. A 

temporary master instrument is selected among new 

instruments that are need to be calibrated. Different batch 

of instruments are calibrated to master instrument by 

using this temporary master instrument and the prediction 

models of sensors in master instruments. Because of no 

real master instrument, there is no effect on calibration 

when the master instrument behaves drift.  

II.  MATERIALS AND EXPERIMENTS 

In construction as a gas sensor array which is used in 

our instrument, three semiconductor gas sensors from 

Figaro Engineering Inc. are selected. They are TGS2620, 

TGS2602 and TGS2201 with two outputs named A and B 

(TGS2201A/TGS2201B). In addition, a module 

(SHT2230 of Sensirion in Switzerland) with two 

auxiliary sensors for temperature and humidity is also 

used. These sensors are mounted on a custom designed 

printed circuit board (PCB), along with associated 

electrical components. An analog-digital converter is used 

as interface between the FPGA processor and the sensors. 

A flash memory is added to save data which can be 

uploaded to a personal computer (PC) via the joint test 

action group (JTAG) cable. 

All the experiments were performed in a Constant 

Temperature and Humidity chamber (LRH-150S) in 

which temperature and humidity can be effectively 

controlled in the range of 5-50℃ and 0-100%, 

respectively. 

First, the dataset of master instrument is obtained. 

The master instrument should be exposed to 

formaldehyde in different concentrations and 

environment conditions. Totally, 125 samples named 

dataset 1 are obtained. These samples are measured 

through different combinations of target temperature of 

15, 25, 30 and 35℃ and target humidity of 40, 60 and 

80%. The total measurement cycle time for a single 

measurement was set to 10 min, i.e., 2 min for reference 

air (baseline) before formaldehyde was injected into 
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chamber, and then another 8 min for formaldehyde. 

Between each measurement, clean air was injected for 

more than 10 min to clean the chamber. 

The second is calibration experiment. There are eleven 

other instruments that will be calibrated, named #1, #2, 

#3, #4, #5, #6, #7, #8, #9, #10 and #11. The instrument 

#11 is selected as temporary master instrument. The 

calibration experiment for these instruments is almost the 

same with the first experiment, but the concentrations of 

formaldehyde is unnecessary to be known. So the 

calibration experiment is very easy. It is worth noting that 

these eleven instruments, especially the temporary master 

instrument, would employ the experiments together at the 

same time in the chamber to ensure the condition of 

experiment is the same for these instruments. The dataset 

obtained from this experiment is named dataset 2.  

The third is the experiment of temporary master 

instrument. This experiment is the same with the first 

experiment, 6 samples named dataset 3 are obtained with 

different concentrations of formaldehyde. In this 

experiment, the concentrations of formaldehyde should 

be known.  

III.  CALIBRATION TRANSFER 

  Fig. 1 shows the correlation between TGS2620 in 

instrument 01 (#01) and instrument 11 (#11). From Fig. 1, 

we can see that the correlation between the same type gas 

sensors is approximately linear except some divergent 

points that stay away from most of the points when they 

are in the same condition. These divergent points in Fig. 1 

are the points in the adsorption slope of gas sensor which 

is a short stage (less than 40s) and have very little effect 

on calibration.  
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Figure 1. The correlation of TGS2620 between instrument 01 (#01) 

and instrument 11 (#11). 

 

   From Fig. 1, the calibration model can be described 

by linear relationship and it is shown as follow, 

y ax b= + ,                  (1) 

where x  denote the response of one sensor measured on 

the other instrument, and y  is the calibrated response 

from x  to the master instrument, a  and b  are the 

calibration transfer coefficients. 

The problem in the above calibration model is that if 

gas sensors in master instrument behave drift, the 

calibration of the other batch of instruments would lose 

its effect. A new on-line calibration method based on 

prediction model is proposed. The details on this method 

are given as follows. 

Step 1: 

 The first experiment for mater instrument is performed 

and dataset 1 is obtained.  

Step 2: 

Radial basis function (RBF) [23-24] neural network is 

trained as concentration prediction model of master 

instrument using dataset 1. The temperature, humidity 

and response of sensor are used as inputs of RBF, and the 

concentrations of formaldehyde are used as outputs. 

Two-thirds of dataset 1 is used as train dataset, and the 

rest is used as test dataset. The parameters in RBF are 

optimized by using PSO. Finally, four prediction models 

for TGS2620, TGS2602, TGS2201A and TGS2201B are 

obtained. 

Step 3: 

A temporary master instrument is selected among new 

instruments that are need to be calibrated. 

Step 4: 

The second experiment, namely, calibration experiment, 

is performed and dataset 2 is obtained.  

Step 5: 

The same batch instruments are calibrated to temporary 

master instrument by using (1) based dataset 2. Because 

the condition of experiment of same batch instruments is 

the same with temporary master instrument, so (1) can be 

used.  

Step 6: 

Repeat steps 4-5 until all batch instruments are 

calibrated.  

Step 7: 

The third experiment is performed and dataset 3 is 

obtained.  

Step 8: 

Based on dataset 3, the temperature, humidity, and 

concentrations of formaldehyde are used to calculate the 

responses of sensors in master instrument by using the 

prediction models in step 1. The calculated master 

instrument responses are in the same condition with 

temporary master instrument. Because of computation 

complexity, PSO is used to search the responses instead 

of straight calculation. The particle in PSO is the 

response of one sensor in master instrument. The value of 

particle, temperature and humidity are inputted to 

corresponding prediction model. The absolute value of 

the difference between the output of prediction model and 

real concentration is used as the fitness value of PSO. 

Thus, PSO can find the response of each sensor in master 

instrument by minimizing the fitness value. 

Step 9: 

The temporary master instrument is calibrated to 

calculated responses (master instrument) by using (1).  

Step 10: 

The other instruments are calibrated to master 

instrument according to the temporary master instrument. 

IV.  RESULTS AND DISCUSSION 

For concentration prediction, absolute value of mean 

relative error (AMRE) is used. AMRE is defined as 

follow: 
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where pred

iy  
is the predicted concentration, true

iy  
is the 

actual concentration, n is the number of samples .  
The AMRE of four models for TGS2620, TGS2602, 

TGS2201A and TGS2201B are shown is TABLE Ⅰ. 

 
TABLE  I 

AMRE OF FOUR MODELS FOR TGS2620, TGS2602, TGS2201A 

AND TGS2201B 

 TGS2620 TGS2602 TGS2201A TGS2201B 

AMRE (%) 41.33 183.04 126.93 58.56 

 

Because of only one sensor, the results of each model 

in TABLE Ⅰ are not very good. But, We have tried our 

best to give the best prediction model for each sensor.  

The calibration results are shown in Fig. 2 - 5. 
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  Figure 2. Response of TGS2620 before (a) and after (b) calibration. 
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   Figure 3. Response of TGS2602 before (a) and after (b) calibration. 
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 Figure 4. Response of TGS2201A before (a) and after (b) calibration. 
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Figure 5. Response of TGS2201B before (a) and after (b) calibration. 

 

The absolute value of mean relative distance (AMRD) 

of each sensor is used to evaluate the effect of the 

proposed calibration method. 
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Where, N  is the number of samples, M  is the 

number of instruments, 
,i jx  is the ith sample of jth 

instrument, 
,11ix  is the ith sample of #11 instrument. 

Because of no real master instrument, we calculate the 

AMRD between temporary master instrument and other 

instruments. The AMRD of each sensor is given in 

TABLE Ⅱ. 

 
TABLE  Ⅱ 

AMRD OF EACH SENSOR 

sensor AMRD 

Before calibration After calibration 

TGS2620 0.0989 0.0334 

TGS2602 0.1457 0.0278 

TGS2201A 0.1290 0.0017 

TGS2201B 0.1442 0.0373 

 

From Fig. 2-5 and TABLE Ⅱ, we can see that the 

responses of the same sensors in different instruments 

become uniform. This calibration method is effective. 

The temporary master instrument does not have to be 

selected. If the temporary master instrument dose not be 

selected, the third experiment is directly performed and 

the concentration of formaldehyde should be known. In 

mass production, this experiment should be performed 

many times, and this is very time-consuming and 

complicated. So it is best to select a temporary master 

instrument, and the third experiment is only performed 

one time.  

In this method, we just keep the prediction models of 

master instruments instead of real master instrument, and 

other instruments are calibrated to master instruments 

according these prediction models. We do not use real 

master instruments, so there is no effect on these 

prediction models if the master instrument behaves drift.  

V. CONCLUSIONS 

   In mass production of Enose instruments, calibration 

is quite necessary. One of the main disadvantages of 

calibration using real master instrument is that if the 

sensors in the master instrument behave drift, the 

calibration of the other batch of instruments would lose 

its effect. In this paper, a new on-line calibration method 

is proposed. Using this method, the real master 

instrument is not needed, so there is no need to care about 

the drift. This new calibration method is robust. It is 

worth noting that the prediction model used in this paper 

is RBF, other prediction models with good accuracy and 

generalization can also be used. The gas used in 

calibration is formaldehyde, but we believe that the 

calibration coefficients also work in other gases like 

benzene, carbon monoxide, alcohol etc. The main reason 

is that the features we used in this calibration method are 

steady state responses of semiconductor gas sensors, but 
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it still needs a further research to prove it.  
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