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Abstract—The network reliability analysis based on Binary 

Decision Diagram (BDD) consists of three steps: edge 

ordering, BDD generation and BDD evaluation. The BDD 

generation process using edge expansion technique should 

recursively decompose the network and construct the edge 

expansion subnet in a top-down manner. There is large 

number of useless or redundant subnets generated in this 

decomposition, which causes numerous inefficient 

computations. Thus, it is extremely important to optimize 

the edge expansion technique. In this paper, the notation of 

useless edge expansion and redundant edge expansion is 

formally defined. The original reason of them being created 

is identified, and the improvement algorithms based on 

graph traversal are used to eliminate all these inefficient 

edge expansion. According to the experimental data, 

compared with the unimproved BDD generation process, 

our proposal can dramatically reduce the running time and 

memory usage and makes possible the analysis of large 

network. 

 

Index Terms—Binary Decision Diagram (BDD), Network 

Reliability, Edge Expansion 

I.  INTRODUCTION 

Many complex physical, technological, social, 

biological and economical systems can be represented in 

the form of networks, where vertices are the entities of 

the system and the edges represent the relational links 

among the entities. Since complex networks display a 

high degree of tolerance to random failures, errors and 

attacks, network reliability has always been a 

challenging task in system reliability analysis for last 

three decades. Reliability means probability of success 

between two nodes connected by several branches. 

Knowing the reliability of each branch, one can 

determine the terminal reliability between any two nodes. 

The network reliability has been approached and 

resolved with different methods in the literature. Two 

kinds of computations exist for network reliability: exact, 

and approximate. The exact methods provide an exact 

reliability; in contrast, the simulation methods provide an 

approximate result.  

In literature, two classes of exact methods are often 

used to compute the network reliability. The first class 

deals with the enumeration of all minimal paths or cuts. 

A path is defined as a set of network components so that 

if these components are all reliable, the system is up. A 

path is minimal if it has no proper sub-paths. Conversely, 

a cut is a set of network components such that if these 

components fail, the system is down. If the probability of 

failure of nodes and edges is known, the reliability 

expression can be calculated using different techniques, 

like inclusion-exclusion or sum of disjoint products (SDP) 

methods because this enumeration provides non-disjoint 

events. Numerous works related to this kind of analysis 

have been done, [1]-[3]. However, in min-paths and min-

cuts methods, as the number of edges become large, the 

number of minimal paths and cuts will be large and 

SDPs or inclusion-exclusion expression for min-paths 

and min-cuts will be increased too large to be stored and 

be processed. 

In the second class, the algorithms are based on 

reducing process in graph topology. The first process 

consists of reducing the graph by replacing some special 

substructures by smaller ones. The replaced substructures 

can be elementary, such as two adjacent edges (series-

parallel reductions), or more complex as a sub-graph [4], 

and delta-to-star reductions [5]. Thee reductions allow us 

to compute the reliability of series-parallel networks in 

linear time; the reductions are recursively applied until 

resulting in a single edge. Nevertheless, for general 

networks, such substructure can not be found. In this 

case, the factoring process is applied. The idea is to 

choose a component, and decompose the problem into 

two sub-problems: the first assumes the component has 

failed, and the second assumes it is functioning. 

Satarayana & Chang [6], and Wood [7], have shown that 

the factoring algorithms with reductions are more 

efficient at solving this problem than the classic path or 

cut enumeration methods. In factoring algorithm the 

number of factored reliability graphs will increase 

exponentially with the number of edges increases thereby 

computational time becomes prohibitive for large 

networks. 

The increased complexity of the real-life networks 

such as infrastructure and lifeline networks requires new 

analytical methods to evaluate their behavior. In the last 

decades, Binary Decision Diagrams (BDD) has provided 

an extraordinary efficient method to represent and 

manipulate Boolean functions. Akers [8] proposed BDD 

as a powerful representation of truth tables with an easy 

implementation. Since his work, there has been a 

tremendous amount of literature in which BDD have 

been utilized for different applications. Bryant [9] 
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applied the BDD concept to Boolean function 

manipulation. Rauzy [10], Coudert & Madre [11] and 

Sinnamon & Andrews [12] applied BDD to reliability 

analysis of fault trees.  

To the best of our knowledge, two classes of 

algorithms have been proposed in the literature to derive 

directly the reliability function in the form of a BDD, 

without deriving the corresponding logical expression. 

The first class of algorithms presented by Kuo et al. [18]-

[20] where the success path function of a given graph is 

constructed based on BDD by traversing the graph with 

edge expansion diagram and the graph reliability is 

obtained by directly evaluating on this BDD recursively. 

Performing several case studies, they showed that their 

algorithm has an efficient performance even for a 2×100 

lattice network. The second class of algorithms presented 

by Sekine & Imai[13]-[15], revised by Hardy et al. [16], 

[17], are based on a suitable factorization algorithm, 

consisting in pivoting along a complete sequence of 

edges and deriving the right sub-graph when the edge 

functions and the left sub-graph when the edge fails. 

Both papers indicate a lattice of 12×12 (144 nodes and 

264 edges) as an upper limit to computational power of 

the method. 

In this paper, we focus on the first line of research, i.e., 

improve the performance of network reliability analysis 

based on BDD and edge expansion technique. The aim 

of this paper is to try to answer following question: 

Question: will there be useless or redundant expansion 

by applying the edge expansion technique? What is the 

original reason of these useless or redundant expansions 

being created? And how can we remove them efficiently? 

Compared with previous work on the network 

reliability analysis based on BDD and edge expansion 

technique [18]-[20], this research has the following 

advantages:  

Advantage #1: The notation of useless edge expansion 

is formally defined. The original reason of them being 

created is identified, and the connectivity testing 

algorithm (i.e., graph traversal algorithm) is used to 

eliminate all the useless edge expansion. 

Advantage #2: The notation of redundant edge 

expansion is formally defined. The original reason of 

them being created is identified, and a modified depth 

first traversal algorithm is used to eliminate all the 

redundant edge expansion. 

The rest of this paper is organized as follows: Section 

II gives a brief introduction to terminal pair reliability of 

network and binary decision diagram. Section III 

introduces the edge expansion technique and formally 

defines the notation of useless edge expansion and 

redundant edge expansion. Section IV introduces the 

method to eliminate all the useless edge expansion and 

proposes our experimental results to show the significant 

performance improvement. Section V introduces the 

method to eliminate all the redundant edge expansion 

and illustrates its efficiency by our experimental results. 

Finally, section VI concludes our paper. 

 

II. PRELIMINARIES  

A. Terminal-pair reliability  

Assume the natural numbers set V is finite and non-

empty. E is a relationship between V and V. P is a 

function from E to the interval (0, 1), P: E->(0, 1). 

Definition 1 (network): A two-tuple G= (V, E) is a 

network, if  

 V Í V is a node set 

 E Í E is a edge set. 

For convenience, we name the node pair <a, b> as 

edge ei. 

Definition 2 (terminal-pair network): A four-tuple G= 

(V, E, s, t) is a terminal-pair network, if 

 V Í V is a node set 

 E Í E is a edge set. 

 s∈V is the source node 

 t∈V is the sink node. 

The terminal-pair network G in Fig.1 is correspond to 

the four-tuple ( { n0, n1, n2, n3, n4, n5 },{e1, e2, e3, e4, e5, e6, 

e7, e8, e9}, n3, n5). 
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Figure1. Network G 

 

Each edge ei of the network G is subject to failure with 

known probability qi (qi ∈ [0, 1]). The probability that 

edge ei functions can be obtained from pi = 1 − qi. In the 

following, we consider the nodes as perfect. In classical 

enumerative methods, all the states of the network are 

generated, evaluated as a failing state or as a functioning 

state, then probabilistic methods are used to compute the 

resulting reliability. Since there are two states for each 

edge, there are 2m (m=|V|) possible states for the network 

G. Let Xi be the binary random variable state of the edge 

ei in G, defined by Xi = 1 when edge ei is operational, 

and when Xi = 0 edge ei is down. X = (X1, X2,...,Xm) is the 

random network state vector. A state x of G is denoted 

by x = (x1, x2, ..., xm) where xi stands for the state of edge 

ei, xi = 0 if ei is down and xi = 1 if it works. Probability of 

x is can be computed by: 

1

Pr( ) ( (1 ) )
m

i i i i

i

X x x p x q


                              (1) 

The terminal-pair network reliability is defined by:  

    

( ; ) Pr( )K

x is a functioning state

R p G X x        (2) 

 

B. BDD  

BDD is a compact encoding of the truth tables of 

Boolean formulae. The BDD representation is based on 
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the Shannon decomposition: Let F be a Boolean function 

that depends on the variable x, then the following 

equality holds. 

( [ 1]) ( [ 0])

( , [ 1], [ 0])

F x F x x F x

ite x F x F x

     

  
                     (3) 

BDD has two sink nodes, labeled 0 and 1, representing 

the two corresponding constants 0 and 1. Each non-sink 

node is labeled with a Boolean variable x and has two 

outgoing edges that represent the two corresponding 

expressions in the Shannon decomposition. These two 

edges are called 0-edge (or else-edge) and 1-edge (or 

then-edge), respectively. The node linked by the 1-edge 

represents the Boolean function F[x←1]; 0-edge 

represents the Boolean function F[x←0]. Thus, each 

non-sink node in a BDD encodes an ite format. 

An ordered BDD is a BDD with the constraint that the 

variables are ordered and every source-to-sink path in the 

ordered BDD visits the variables in ascending order. A 

reduced ordered BDD is an ordered BDD where each 

node represents a distinct Boolean expression.  

In the Boolean function to equivalent BDD conversion, 

following ordinary BDD operation BDDOp is 

recursively performed on the higher priority edge x as 

1 0 1 0

1 1 0 0

1 0

( , , )

( ( , , ), ( , , ), )

( , ( , , ), ( , , ))  

( , ( , , ), ( , , ))  

BDDOp F G op

BDDOp ite x F F ite y G G op

ite x BDDOp F G op BDDOp F G op if x y

ite x BDDOp F G op BDDOp F G op if x y

 

  

    
 

    

(4) 

where <op> is an AND or OR Boolean operator. 

Fig.2 shows the reduced ordered BDD for the Boolean 

function (x1∧x2)∨(¬x1∧x3) under the orderings x1 < x2 

< x3. 
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Figure2. The equivalent BDD for (x1∧x2)∨(¬x1∧x3) 

The reliability measure can be calculated by recursive-

ly evaluating the probabilities of all the nodes in the 

BDD as 

1 0 1 0Pr( ) Pr( ( , , )) *Pr( ) (1 )*Pr( )F ite x F F p F p F        (5)  

where p is the successful probability of variable x. 
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Figure3. Edge expansion diagram of G 
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Figure4. Edge expansion diagrams of G with the useless subnet removement 

 

III. EDGE EXPANSION SUBNET 

The network reliability analysis basing on edge 

expansion should recursively decompose the network 

and construct the edge expansion subnet in a top-down 

manner.  

Definition 3 (edge expansion subnet): Given a 

terminal-pair network G=(V, E, s, t), for any source pair 

<s, s’> belonging to the edge set E, the network G has a 

edge expansion subnet G'=(V', E', s', t), where 

 V'=V-{s} 

 E'=E-{(x, y) | (x, y)∈E, x=s∨ y=s}. 

Assume the edge ei (i=1, 2, ..., k) is connective to the 

source s. Traverse the network with ei  (i=1, 2, ..., k) and 

constructing k subnets G*ei (i=1,2,...,k). According to the 

definition 3, the construction rule is merging the source s 

and the other end of ei. Meanwhile, delete all the edges 

connecting to the source s originally.  

The edge expansion process of the network G in Fig.1 

is shown in Fig.3. For example, by expanding the edge e4, 

we can get the subnet G1=( { n0, n1, n2, n4, n5 },{e1, e2, e4, 

e5, e9}, n1, n5). But when it turns to e9, the corresponding 

subnet T=({ n0, n1, n2, n4, n5 }, {e1, e2, e4, e5, e9}, n5, n5). 

From the edge expansion diagram, we can find two 

kinds of special subnets. They can be defined formally as 

follows: 

Definition 4 (s-t-combined edge expansion subnet): A 

edge expansion subnet G'=(V', E', s', t) is s-t-combined s-

ubnet, if s'= t. 

For convenience, we denote all s-t-combined subnets 

as T. 

Definition 5 (s-isolated edge expansion subnet): A ed-

ge expansion subnet G'=(V', E', s', t) is s-isolated subnet, 

if 

 G' is not a s-t-combined subnet 

 Degree(s') =0, where Degree(s') is the number of 

nodes connected to s'.   

For convenience, we denote all s-isolated subnets as F. 

With the definition of s-isolated subnet, useless and 

redundant edge expansion subnets can be defined as 

follows: 

Definition 6 (useless edge expansion subnet): A edge 

expansion subnet G'=(V', E', s', t) is useless, if  
 G' is not a s-isolated subnet 

 no s-t-combined subnet T can be expanded from it. 

Consider edge expansion diagram shown in Fig.3 of 

the network G in Fig.1. Subnets G6, G7, G8, G12, and G13 

are useless.  

Denote all the expansion paths leading to s-t-combined 

subnet T starting from Gi' with PSi, and all the paths 

leading to s-t-combined subnet T starting from Gj' with 

PSj. For any path Pi in PSi, there is a path Pj in PSj and 

that: any subnet G’ (after discarding those nodes with 0 

JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013 2193

© 2013 ACADEMY PUBLISHER



degree) included by Pi has an identical subnet G’’ (after 

discarding those nodes with 0 degree) in Pj, and vice 

versa. Then, we say PSi and PSj are the equivalent. 

Definition 7 (redundant edge expansion subnet): 

Given two edge expansion subnet Gi' and Gj', if the two 

set of expansion paths leading to s-t-combined subnet T 

starting from Gi' and Gj' are equivalent, these two 

subnets are redundant with each other.  

Consider edge expansion process shown in Fig.3 of 

the network G in Fig.1. Subnets G5 and G10 are redundant 

with each other, and subnets G9, G11, and G14 are 

redundant with each other. 

IV. REMOVEMENT OF USELESS SUBNETS 

In order to improve the performance of reliability 

analysis, some removement algorithms should be 

designed to fulfill the elimination of the computation of 

useless edge expansion subnets. 

By checking these useless subnets we can simply find 

that: the original reason of these useless subnets being 

created is that they are s-t-unconnected subnets. A 

network is said to be s-t-unconnected if the network does 

not contains a path from source s to sink t. 

Table I gives the classic graph depth first traversal 

algorithm. Depth first traversal tends to create very long, 

narrow trees. It is a generalization of preorder traversal. 

Starting at some node n, we process n and then 

recursively traverse all nodes adjacently. This traversal 

creates a spanning tree that can be used to determine if a 

network is s-t-unconnected.  

 
TABLE I．  

GRAPH DEPTH FIRST TRAVERSAL ALGORITHM 
 

1 Algorithm DFS(G, s): 

 

2         mark s 

 

3         for all nodes v connected to s do 

 

4                if v is not marked: 

 

5                         DFS (G, v) 

 

 

Using the depth first traversal algorithm DFS, we can 

determine if a subnet G' is useless or not. If G' is useless 

(i.e., s-t-unconnected), the s-isolated subnet F is used to 

replace it and the following expansion starting from G' 

can be avoided. With the removement of useless subnets, 

the edge expansion process for the network in Fig.1 is 

illustrated in Fig.4. Notice that there is no useless subnet 

at all. 

In order to study the performance improvement 

achieved by the removement of useless subnets, we 

choose 3×N lattice networks to analyze the terminal-pair 

network reliability. All network nodes are numbered left-

to-right, top-to-bottom, starting with 0. Assume that 

source s has a number m*n/2-2 and the sink t has a 

number m*n/2. We use the breadth-first search strategy 

to get the edge ordering. 

The experimental results of the 3×N network are listed 

in Table II. The columns give the value of network size 

parameter N, the calculated reliability measures (Relib), 

the performance improvement measure ⊿T/T1, ⊿T=T1-

T2, where T1 is the running time of reliability analysis 

without any improvement and T2 is the running time with 

the useless subnet removement, and ⊿NG/NG1, 

⊿NG=NG1-NG2, where NG1 is the number of generated 

subnets without any improvement and NG2 is the number 

of generated subnets with the useless subnet removement. 

From the results in Table II, it can be concluded that:  

Conclusion #1: The application of useless subnet 

removement technique can significantly reduce the 

running time of reliability analysis and the number of 

generated edge expansion subnets. With the increase of 

network size, the performance improvement measure 

⊿T/T1 and ⊿NG/NG1 increases quickly from 3.13% and 

20.00% to 77.84% and 81.06%.  

TABLE II 

  PERFORMANCE IMPROVEMENT WITH THE USELESS SUBNET 

REMOVEMENT 

Net 
 

Relib ⊿T/T1 (%) ⊿NG/NG1(%) 

5 0.99651766656 3.13 20.00 

6 0.99669526401 12.06 31.17 

7 0.99687151399 19.77 40.56 

8 0.99688815593 32.35 49.46 

9 0.99690478515 41.87 54.30 

10 0.99690639111 50.83 61.21 

11 0.99690799696 56.98 65.69 

12 0.99690815233 63.42 70.67 

13 0.99690830769 69.32 74.47 

14 0.99690832273 74.00 78.04 

15 0.99690833776 77.84 81.06 

 

TABLE III 
 REDUNDANT NODE REMOVEMENT ALGORITHM   

 

1 Algorithm RemoveNode(G, s): 

 

2        mark s 

 

3        for all nodes n connected to s do 

 

4                if n is not marked: 

 

5                         RemoveNode (G, n) 

 

6         if G. degree (n)=1 

 

7                 delete n 

 

V. REMOVEMENT OF REDUNDANT SUBNETS 

By checking the edge expansion diagram in Fig.4, we 

can find that subnets G5 and G7 are redundant with each 

other, and subnets G6, G8, and G9 are redundant with 

each other. That is to say, they have the same reliability 

measures, though they have different structures. Further, 

we can simply find that: the original reason of this kind 

of redundant expansion being created is the appearance 

of redundant nodes included by subnets. 

Definition 8 (redundant node): A node n of G=(V, E, s, 

t) is redundant, if  

2194 JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013

© 2013 ACADEMY PUBLISHER



  n≠s and n≠t 

 Degree(n)=1. 

In order to improve the performance of reliability 

analysis, some removement algorithm should be 

designed to remove all the redundant nodes included by a 

subnet and make possible to merge redundant subnets.  
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 Figure5. Edge Expansion Diagrams of G with redundant subnet and node removement 

 

 

 

Table III gives the RemoveNode algorithm, slightly 

revised from the graph depth first traversal algorithm, to 

remove all the redundant nodes within one-pass traversal. 
 

With the removement of both useless subnets and 

redundant subnets, the edge expansion process for the 

network in Fig.1 is illustrated in Fig.5. Notice that the 

redundant subnets are identified and merged. The total 

number of subnets decreases from 12 to 9. 

Now, consider the performance improvement achieved 

by redundant subnet and redundant node removement. 

The experimental results of the 3×N network are listed in 

Table IV. From the results in Table IV, it can be 

concluded that:  

Conclusion #2:  By removing all the redundant nodes 

included by a subnet to enhance the subnet isomorphism, 

the performance can be improved further. With the 

increase of network size, the performance improvement 

measure ⊿T/T1 and ⊿NG/NG1 increases quickly from 

35.02% and 66.25% to 99.33% and 99.84%. It makes 

possible the analysis of large network. 

 

 
TABLE IV 

 PERFORMANCE IMPROVEMENT WITH REDUNDANT SUBNET AND NODE 

REMOVEMENT 

Net 
 

Relib 
⊿T=T1-T2 

(%) 
⊿NG/NG1(%) 

5 0.99651766656 35.02 66.25 

6 0.99669526401 35.08 76.11 

7 0.99687151399 58.55 86.55 

8 0.99688815593 66.58 91.37 

9 0.99690478515 81.00 94.83 

10 0.99690639111 86.64 97.11 

11 0.99690799696 92.96 98.22 

12 0.99690815233 95.23 99.08 

13 0.99690830769 97.68 99.44 

14 0.99690832273 98.61 99.72 

15 0.99690833776 99.33 99.84 

VI. CONCLUSION 

Edge expansion technique is one widely-used BDD-

based network reliability analysis technique proposed by 

Kuo et al. Experiments have shown that the terminal-pair 

network reliability analysis method based on edge 

expansion has a lot of advantages, such as more efficient 

calculation, more accurate results and easy 

implementation.  

The network reliability analysis basing on edge 

expansion should recursively decompose the network 

and construct the edge expansion subnet in a top-down 

manner. There is large number of useless or redundant 

subnets appearing in this decomposition. In order to 

avoid the numerous inefficient computations and 

improve the performance, it is extremely important to 

optimize the edge expansion technique. In this paper, the 

notation of useless edge expansion and redundant edge 

expansion is formally defined. The original reason of 

them being created is identified, and the removement 

algorithm based on graph traversal algorithm is used to 

eliminate all these inefficient edge expansion. According 
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to the experimental data of the 3×N network, with the 

increase of network size, the performance improvement 

of running time and number of subnets increases quickly 

from 3.13% and 20.00% to 77.84% and 81.06%. It 

makes possible the analysis of large network. 
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