
A Scalable XSLT Processing Framework based

on MapReduce

Ren Li
College of Computer Science, Chongqing University, Chongqing 400044, China

Email: renli@cqu.edu.cn

Jianhua Luo, Dan Yang, Haibo Hu and Ling Chen
School of Software Engineering, Chongqing University, Chongqing 400044, China

Email: {jianhua.luo, dyang and hbhu}@cqu.edu.cn, rainylily22@163.com

Abstract—The eXtensible Stylesheet Language

Transformation (XSLT) is a de-facto standard for XML

data transforming and extracting. Efficient processing of

large amounts of XML data brings challenges to

conventional XSLT processors, which are designed to run in

a single machine context. To solve these data-intensive

problems, MapReduce paradigm in the cloud computing

domain has received a comprehensive attention in both

academia and IT industry recently. In this paper, a novel

MapReduce-based XSLT distributed processing framework

named CloudXSLT is proposed to implement efficient and

scalable XML data transforming. First, the architecture of

CloudXSLT framework is outlined. Subsequently, several

XML data and XSLT rule representation models which are

suitable for MapReduce paradigm are defined, and several

MapReduce-based XSLT distributed processing algorithms

are proposed. Finally, an experiment on a simulation

environment with real XML datasets shows our framework

is more efficient and scalable than conventional XSLT

processors when processing large size of XML data.

Index Terms—XML transformation, XSLT, MapReduce,

cloud computing

I. INTRODUCTION

Until now, the eXtensible Markup Language (XML) is

widely used in various domains, such as Web Services

and Semantic Web, and it has become a de-facto standard

for data exchange and representation [1]. To implement

automatic XML data transforming and extracting, the

eXtensible Stylesheet Language Transformation (XSLT)

technology is proposed and recommended by the W3C

[2]. However, the increasing size of XML data brings

challenges to these conventional XSLT processors, such

as SAXON and Xalan-Java, which are designed to run in

a single machine context. These tools load the entire

DOM or DOM-like models in memory where the size of

memory can be larger than that of the original XML file

[14]. Therefore, the memory space will be exhausted with

the growing size of XML data, and the transformation

will be failed unavoidably. Considering all above, an

XSLT processing framework with high-performance

computing capability and scalability is in demand.

Recent years, the cloud computing technologies have

received a comprehensive attention in both IT industry

and academia recently [3]. MapReduce [4], which is first

proposed by Google in 2004, has become the dominant

distributed parallel programming paradigm to solve the

data-intensive problems in the cloud computing domain.

MapReduce [21] paradigm is built on the top of the

Goolge File System (GFS) [5]. It processes the data with

the form of key-value pairs in a cluster of commodity

machines. There are three different types of computing

nodes in MapReduce named the master, map and reduce

node, respectively [6]. Among them, the master node

takes charges of the partition and locality of data, fault

tolerance, schedule of tasks, and management of process

communications, etc. The map nodes accept the data

chunks from the master and generate a set of key-value

pairs intermediate output according to the user-defined

map function. All the intermediate data with the same key

are merged and processed in one reduce node according

to the user-defined reduce function [7]. Developers just

need to define the key-value pairs based data models and

implement the computing logic in a map function, a

partition function, a combine function and a reduce

function. Currently, Apache Hadoop platform is the most

popular open source MapReduce implementation. Within

this platform, the GFS has been implemented as the

Hadoop Distributed File System (HDFS), which is a

scalable and reliable data-storage system for storing large

amounts of file in a distributed file environment [8].

Several research literatures about utilizing MapReduce

to solve XML [22] related data-intensive problems have

been proposed. For example, paper [9] proposed a

MapReduce based framework to implement XML

structural similarity searching on large clusters. In order

to analysis large-scale of XML data in a MapReduce

environment, a novel query language called MRQL was

presented in paper [10]. To analyze the large amounts of

XML data in science workflow, an approach for

exploiting data parallelism in XML processing pipelines

through novel compilation strategies within the

MapReduce framework was presented in paper [11].

However, to the best of our knowledge, an efficient and

scalable framework, which combines the MapReduce and

JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013 2175

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.9.2175-2181

XSLT technologies to implement large-scale XML data

transformation, is still in blank [15].

In this paper, we propose a novel MapReduce-based

XSLT parallel processing framework named CloudXSLT

to implement efficient and scalable XML data

transformation. Instead of using streaming processing

solution, the distributed processing approach is adopted

not only because the former one can’t handle special

XML [16], but also cloud computing is widely used

nowadays and processing on a cluster of machines in

parallel can achieve better performance and scalability.

The reminder of this paper is organized as follows. In

section 2, the architecture and workflow of CloudXSLT

framework will be presented. In section 3, several XML

and XSLT representation models suitable for MapReduce

paradigm will be defined. Some MapReduce-based XSLT

parallel processing algorithms will be given in section 4,

followed with the experimental evaluations in section 5.

The conclusions come out in section 6.

II. THE ARCHITECTURE AND WORKFLOW OF

CLOUDXSLT

In this section, we first describe the architecture of the

framework, and then introduce the workflow in detail.

Based on the MapReduce and HDFS technologies in

Hadoop platform, a novel XSLT distributed processing

framework named CloudXSLT is designed as shown in

Fig. 1. The entire framework consists of two logic layers:

1. The Parallel Data Processing Layer. It is the core

component of the framework and consists of the

Central Control Module (CCM), the XSLT Rule

Parsing Module (XRPM), the XML Parsing

Module (XPM) and the XSLT Parallel Processing

Module (XPPM). The first three sub-modules are

designed to run in the master node. The CCM is

responsible for monitoring the workflow. The

XRPM and XPM are used to convert the XSLT

file and XML data into defined data models. The

XPPM works in a cluster of map and reduce nodes

and produces the results fragments.

2. The Distributed Data Storage Layer. We utilize

the HDFS as the repository to support distributed

storage of large-scaled XML data. HDFS creates

multiple replicas of data blocks and distributes

them on computing nodes throughout network to

enable reliable and rapid computations.

As shown in Fig. 2, the workflow of the proposed

framework consists of three steps:

1. First, in the preprocessing phase, the XSLT

stylesheet file is parsed into MR-XSLT models

(defined in section 3) in the XRPM. And then, the

CCM processes on the root node of each XML

data file and calls the XPM to convert the

corresponding XML nodes into the MR-XML

models before uploading them into HDFS via an

input stream.

2. Second, the XPPM takes the MR-XML models

from HDFS as input unit, and transforms them

into the MR-XML-Output models in parallel,

according to the map and reduce algorithms.

3. At last, the CCM outputs the final result files by

assembling the MR-XML-Output models .

Before discussing the MapReduce-based parallel

XSLT processing algorithms in detail, we will define the

fundamental data representation models mentioned above

in the following section 3.

III. THE FUNDAMENTAL DATA MODELS

As discussed, the key-value pairs form the basic data

structure in MapReduce. Hence, the tree structure-based

XML and XSLT files should be parsed and converted

into a novel data model which is suitable for the

MapReduce paradigm. In this section, we first propose

the XSLT and XML data models named MR-XSLT and

MR-XML, respectively.

XMLXSLT

Distributed

Data

Storage

Layer

Parallel Data

Processing

Layer

Hadoop

Cloud

Computing

Platform

XML Parsing Module

 XSLT Parallel

Processing Module

XSLT Rule Parsing

Module

HDFS

Central Control Module

Figure 1. Architecture of the CloudXSLT Framework

2176 JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013

© 2013 ACADEMY PUBLISHER

XML

XSLT

MR-

XML

MR-

XSLT

Control

Center

HDFS

…
…

MR-XML-

Output

MR-XML-

Output

MR-XML-

Output

MR-XML-

Output

Control

Center

Final

Output

Cluster

Figure 2. Workflow of the CloudXSLT Framework

A. MapReduce based XSLT Rule Model

As mentioned in the first step of the workflow, in the

XRPM, each XSLT template rule in the stylesheet file

will be converted into the MR-XSLT model, according to

the Def. 1.

Definition 1 (MR-XSLT). Each XSLT template rule

in an XSLT stylesheet file is defined as a MR-XSLT

model, following the form of: MR-XSLT = < FN, ID,

TTag, CommList >.

Within the MR-XSLT model, the first parameter FN is

used to specify the source XSLT file name. Parameter ID

denotes the sequence number of the template rule in FN

based on the depth-first strategy; TTag records the value

of Xpath pattern, which will be used to match the target

XML nodes. Especially, the parameter CommList stores

the template command of this template rule, and it

consists of some MR-XSLT-Comd model, as showed in

Def. 2.

Definition 2 (MR-XSLT-Comd). MR-XSLT-Comd =

<CID, Op, TLoc, Cont> is a model to present each XSLT

template command in an XSLT template rule.

CID is the sequence number of current command in a

XSLT template rule. We use the parameter Op as the

symbol of command, like Insert, Replace and Foreach.

TLoc denotes the target location of current command to

be executed. The parameter Cont records the new content

of the corresponding Op. The mapping relationship

between MR-XSLT-Comd model and some common

used XSLT commands are summarized in Table.1.

B. MapReduce based XML Data Model

Generally, the XML data [23] to be processed often

consist of a number of XML documents with different

size, and each document can be modeled as rooted

ordered trees since it has a root node and some nested

child nodes. Rather than the root node, the secondary

nodes are more important to us, so for the secondary

XML node and its child nodes, the XSLT template

commands are executed to generate new contents.

Furthermore, although some simple data models and

APIs about XML data splitting and parallel computing

has been provided by MapReduce framework, they

cannot be easily applied to the special situation of XSLT

based XML data transforming. Therefore, we propose a

MR-XML model to represent the tree structure of an

XML fragment in the form of key-value pair, as shown in

Def. 3.

Definition 3 (MR-XML). For a given XML node R

and its child nodes (C1,C2, …, CN) in an XML file F, the

key-value pair based MR-XML model is used to

represent the tree structure of this XML fragment, which

follows the form of: MR-XML = < <FN, ID> , <Tag, AL,

DL, CList> >.

Among the parameters of this key-value pair model,

the key is <FN, ID>, <Tag, AL, DL, CList> denotes the

corresponding value. We use FN to represent the file

name of F; ID is the sequence number of node R in F

follows the depth-first strategy; Tag denotes the tag name

of R. AL is a list of attributes of R, and each attribute is

TABLE1
MAPPING RELATIONSHIP BETWEEN MR-XSLT-COMD AND XSLT TEMPLATE COMMAND

Operator TargetLocation Content XSLT Template Command Example

Insert Local Command data Null <newtext>text</newtext>

Get Value of select attribute null xsl:value-of <xsl:value-of select=”.”/>

Loop Value of select attribute null xsl:for-each <xsl:for-each select=”a”>

Call Value of select attribute null xsl:apply-templates <xsl:apply-template select=”*”>

Insert Local Command data xsl:text <xsl:text>text</text>

JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013 2177

© 2013 ACADEMY PUBLISHER

defined as a key-value pair <AttributeName, Value>.

DL is a string collection which records the data content

of R. The parameter CList denotes a collection of child

nodes (C1,C2, …, CN) of R and CN is represented as a

MR-XML-Node model, as defined in Def.4.

Definition 4 (MR-XML-Node). One XML child node

C in a MR-XML model M is defined as MR-XML-Node

= < NodeID, Tag, AL, DL, FatherID, CList>.

In the MR-XML-Node model, NodeID denotes the

unique sequence number of node C in M following the

depth-first strategy; Tag records the tag name of C. AL is

a collection of key-value pairs for recording the attributes

of C; DL is a string array to record the data content.

FatherID points to the father XML node of current node

C. CList is a collection of its child nodes with the same

definition.

After the XML nodes being transformed in the map

and reduce phase, a new XML node representation model,

as defined in Def. 5, is adopted to represent the output

result.

Definition 5 (MR-XML-Output). The model MR-

XML-Output=<F, ID, NewContent> represents one XML

node in the output files. F is the output file name; ID is

the sequence number of the MR-XSLT to identify the

position where this result fragment should be placed.

NewContent is the output content.

IV. MAPREDUCE BASED XSLT PARALLEL PROCESSING

ALGORITHMS

Given a XSLT stylesheet file, the XRPM is called first

to convert XSLT into a collection of MR-XSLT models

before uploading them to HDFS and waiting for being

fetched by the computing nodes, the pseudo-code is

shown in Alg.1.

Algorithm 1. Convert_XSLT (F)

Input: F, Output: Output_XSLT.

F is a source XSLT stylesheet file; TR is a template rule in F with the

tag “<xsl:template>”; MX is a MR-XSLT model; Cmd is a template

command node in TR; MXC is a MR-XSLT-Comd model;

Output_ XSLT is an output text file consists of a collection of MR-

XSLT models.

1 seq_num=1

2 Foreach(TR in F)

3 Initialize a MX model and assign it with the attributes of TR;

4 Foreach(Cmd in TR)

5 Initialize a MXC model and assign it with the attributes of Cmd;

6 MX.Insert(MXC);

7 EndFor

8 Output_XSLT.Add(MX);

9 seq_num++;

10 EndFor

11 Upload the Output_XSLT to HDFS.

In Alg.1, a MR-XSLT model MX is created firstly for

every template rule node of XSLT files, before assigning

the sequence number, the file name and the match

attribute to it. And then, for each template command node

of current template rule, a MR-XSLT-Comd model MXC

is initialized and assigned with the parameter Operator,

TargetLocation and Content based on the mapping rules

in Table.1. In line 6 of Alg.1, the new command model is

inserted into the CommandList of MR-XSLT. At last, all

MR-XSLT models are outputted to the Output_XSLT

text file, and then this file will be uploaded to HDFS to

wait for being fetched by every computing node of the

framework via a data stream.

After the XSLT file being converted, the CCM parses

the corresponding XML data nodes into MR-XML

models by using a stream based on the XML parsing

technology. The pseudo-code executed in the Central

Control Module is shown in Alg.2.

Algorithm 2. Central_Control (X)

Input: X, Output: Output_XML.

X is the collection of source XML data files; x is one XML file; N is a

node in XML; MX is a MR-XML model; MXN is a MR-XML-Node

model; Output_XML is an output text file consists of a collection of

MR-XML models.

1 Foreach(x in X)

2 Foreach(N in x)

3 if(N is the secondary layer node in x)

4 Initialize a MX and assign it with the attributes of N;

5 Foreach(child in N)

6 Initialize a MXN and assign it with the attributes of Cmd;

7 MX.AddChild(MXN);

8 EndFor

9 Output_XML.Add(MX);

10 EndIf

11 EndFor

12 EndFor

13 Upload the Output_XML to HDFS.

At the beginning of Alg. 2, whether the node is a

secondary layer node in a XML document is checked. For

the matched node, current node is converted into one

MR-XML model, and its children nodes will be added in

the form of MR-XML-Node model, correspondingly. An

Output_XML model is used to collect all the MR-XML

models and uploaded to HDFS finally as the input of

MapReduce program.

And then, the XDPM is called to transform these input

models into MR-XML-Output models in parallel. The

pseudo-code of the processing algorithms are shown in

Alg.3 and Alg. 4, respectively.

Within each job, the map function takes a batch of

MR-XML models as input. And if the matched MR-

XSLT model exists, the intermediate key-value pairs are

constructed with the key as a combination with the file

name of MR-XML and the ID of MR-XSLT, the value is

defined as shown in Line 6 of Alg.3. Otherwise, nothing

will be exported as the XSLT rules can filter the context.

At last, all the intermediate key-value pairs will be sorted

in the MapReduce framework, and values have the same

key are emitted to a reduce function.

2178 JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013

© 2013 ACADEMY PUBLISHER

The reduce function receives the intermediate key-

value pairs have been sorted by key with the key as the

input unit. And then, a MR-XML-Output model is

created and the collection of values is assembled as the

content, before it is outputted to the result files in HDFS.

At last, the CCM combines those output fragments of

Alg.4 to the final output XML files according to both the

XSLT definitions and the attributes-F and ID-in the MR-

XML-Output, because MR-XML-Output has recorded

the mark of locations connected with XSLT.

Algorithm 3. Map(MR-XML)

Input: MR-XML; Output: intermediary <key, value> pairs.

MR-XML is an input <key, value> pair in HDFS; MX is a MR-XSLT

model.

1 Foreach(MR-XML)

2 Foreach(MR-XSLT)

3 If (Tag in MR-XML equals TargetLocaion in MR-XSLT)

4 key = <FN in MR-XML, ID in MX>;

5 Foreach (MR-XSLT-Commd in MR-XSLT)

6 NewContent is accumulated;

7 EndFor

8 value = NewContent;

9 EndIf

10 EndFor

11 EMIT(key, value);

12 EndFor

Algorithm 4. Reduce(key, value)

Input: key, value; Output: Output_XML.

key and value is the result of map function; Output_XSLT is the output

text file based on the MR-XML-Output model.

1 Foreach (key)

2 Initialize a MR-XML-Output model Output_XSLT;

3 Output_XSLT.setF(FN in key);

4 Output_XSLT.setID(ID in key);

5 Output_XSLT.setContent(the combine of all values with this key);

6 OutputToHDFS(Output_XSLT);

7 EndFor

V. EXPERIMENTS

A. Experimental Setup

To simulate the computing performance and scalability,

we have constructed a prototype CloudXSLT framework

in a cloud computing environment which consists of nine

100M/s Ethernet connected commodity machines. The

master node, with 2 cores of Intel Pentium 4 CPU, 1.5

GB of main memory, and 80 GB of hard disk space, is

configured as the Central Control node. While the other 8

machines are working as computing nodes, each has 2

cores of CPU, 1.5 GB of main memory and 80 GB of

hard disk space each. The operating system Ubuntu 12.04

and Hadoop 1.0.3 platform are configured in each

machine.

To compare with the prototype framework, two well-

known XSLT processors, SAXON 9.4 and Xalan-Java

2.7.1 are deployed on a powerful single machine with

Intel i5 2.50 GHz dual core processor, 8 GB main

memory, and 4 TB disk space.

DBLP, which use XML format to store bibliographic

information on major computer science journals and

proceedings, is chosen as the benchmark dataset [12]. To

make our experiments convincible, a group of datasets

with different sizes of 50MB, 100MB, 200MB, 400MB

and 800MB are allocated. However, as there are no

standard XSLT stylesheet files to be tested, a self-defined

XSLT stylesheet file which contain some common used

XSLT commands, such as <xsl:template>, <xsl:apply-

template> and <xsl:value-of>, is defined to transform

DBLP XML data mentioned above. By using this XSLT,

a DBLP XML document will be transformed into another

schema: for each conference paper, a HTML table row is

generated, listing the paper’s key attribute, followed by

the author and the title of the paper. The details of our

self-defined XSLT are given in Fig. 3. This rule extracts

the specified part of information, and then presents them

is a different kind of way from the source document.

B. Experimental Results

In this section, we report the experimental results. For

evaluation purposes, two experiments are conducted. The

first one is a scalability test on CloudXSLT, while the

second is a comparative study between those processors

mentioned in previously.

In the first group, we investigate the scalability of

CloudXSLT by transforming large XML documents

range from 50MB to 800MB. CloudXSLT being as a

parallel processing framework considers the number of

machine as one of the main factors, which affects the

performance, so different numbers of computing nodes

are tested to observe the changes in performance. Fig. 4

gives the corresponding results, and at least three results

can be concluded.

1. First, two main factors affect the performance and

response times: the size of the test data and the

number of computing nodes.

2. Second, when processing a same size of DBLP

data, the more computing nodes participate in, the

CloudXSLT runs faster, especially when the

number of node increases from 2 to 4. However,

the run times couldn’t decrease continuously for

the resource consumption in the framework.

3. At last, when processing various sizes of DBLP

data in a specified number of nodes, the response

time rises with the growing size of the XML data,

obviously. What is more important is that the

speed of the increase of response time is slower

than the speed of the increase of data. That is to

say, CloudXSLT has much more superiority when

processing large-scaled of XML data.

In the second experiment, to compare the performance

with our framework, the conventional single-machine-

based XSLT processors SAXON and Xalan-Java are

tested by processing the same datasets and XSLT rules.

Fig. 5 illustrates the experimental results, where response

time is in seconds, and 4999s denotes out-of-memory

errors.

JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013 2179

© 2013 ACADEMY PUBLISHER

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" indent="yes" />

 <xsl:template match="/">

 <html>

 <body>

 <table>

 <xsl:apply-templates select="/dblp/mastersthesis"> </xsl:apply-templates>

 <xsl:apply-templates select="/dblp/article"> </xsl:apply-templates>

 <xsl:apply-templates select="/dblp/incollection"> </xsl:apply-templates>

 <xsl:apply-templates select="/dblp/www"> </xsl:apply-templates>

 <xsl:apply-templates select="/dblp/inproceedings"> </xsl:apply-templates>

 <xsl:apply-templates select="/dblp/proceedings"> </xsl:apply-templates>

 </table>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="incollection">

 <tr>

 <td>

 <xsl:value-of select="@key"></xsl:value-of>

 <xsl:value-of select="author"></xsl:value-of>

 <xsl:value-of select="title"></xsl:value-of>

 </td>

 </tr>

 </xsl:template>

 <xsl:template match="mastersthesis">

 <tr>

 <td>

 <xsl:value-of select="@key"></xsl:value-of>

 <xsl:value-of select="author"></xsl:value-of>

 <xsl:value-of select="title"></xsl:value-of>

 </td>

 </tr>

 </xsl:template>

 ……

</xsl:stylesheet>

Figure 3. Part of self-defined XSLT

Figure 4. Experimental Results of CloudXSLT with Additional

Compute Nodes

SAXON shows a higher performance when dealing

with small size of DBLP data for 50MB, where only 4

seconds are needed. However, when the size of input

XML data increased to 100MB and larger, out-of-

memory errors are occurred. Therefore, we can conclude

that there is a memory limitation for SAXON since all the

input data are parsed and loaded into memory, and large-

scale XML data cannot be processed.

Xalan-Java achieves better performance than SAXON

in processing larger XML data, because it can handle all

sizes of datasets. When the size of dataset is 50MB,

Xalan-Java takes 8 seconds which is slower than SAXON

Figure 5. Experimental Results-Comparison of CloudXSLT, SAXON

and Xalan-Java

but faster than our framework with 74 seconds. When the

size of dataset increases to 200MB, the response time is

almost equal to that of our implementation with 114

seconds and 112 seconds, respectively. Since then, the

performance of Xalan-Java is getting worse, especially

when processing 800MB of DBLP XML data with an

unacceptable 4520 seconds. The scalability of Xalan-Java

is closely related to the size of main memory as the input

data to be processed will be loaded and processed within

it.

Our CloudXSLT achieves better performance when

processing large-scaled DBLP data. Based on the results

of Fig.5, CloudXSLT has a stable performance. As the

2180 JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013

© 2013 ACADEMY PUBLISHER

size of the data increases, the time to process the data

increases sublinearly.

Based on the experimental results, we can conclude

that when the size of input XML data is small, the

conventional XSLT processors achieve better computing

performance as they execute locally without any network

communication consumption. But when the size of input

data becomes larger, conventional XSLT processors show

limitations in finishing the job normally in a commodity

machine. By contrary, the MapReduce-based CloudXSLT

framework can efficiently process large size of XML data

in an acceptable time and has better performance and

scalability with the growing size of data. Furthermore, the

scalable CloudXSLT framework can gain a better storage

capability and computing performance by adding more

computing nodes.

VI. CONCLUSION

In this paper, we present a novel MapReduce based

XSLT processing framework named CloudXSLT, which

provides efficient and scalable XML data transformation

services. The logic structure of this framework and some

novel MapReduce suitable XML data and XSLT rule

models are defined. And then, several parallel processing

algorithms are proposed according to the workflow.

Through comparing with the existing XSLT processors,

the proposed framework shows superior performance and

more scalable when processing on large size of XML data.

In the future, we plan to integrate the remaining XSLT

template commands in the CloudXSLT framework. In

addition, the strategy for storing XML data in the HBase

distributed database will be researched as well to provide

more flexible data-management service.

ACKNOWLEDGMENT

This work was supported by the National Natural

Science Foundation of China (91118005, 61103114 and

51005260), the Natural Science Foundation of Chongqing

City in China (2011BA2022), and the Fundamental

Research Funds for the Central Universities in China

(CDJXS11181162). We also wish to thank the reviewers

for their valuable comments and suggestions.

REFERENCES

[1] L.O. Moreira, F.R.C Sousa, and J.C. Machado, “A

distributed concurrency control mechanism for XML

data,” Journal of Computer and System Sciences, vol.77

(6), pp.1009-1022, 2011.

[2] W3C. XSL Transformations (XSLT). http://www.w3.org

/TR/xslt, 1999.

[3] P. Mika and G. Tummarello, “Web Semantics in the

Clouds,” IEEE Intelligent Systems, vol.23(5), pp.82-87,

2008.

[4] J. Dean and S. Ghemawat, “MapReduce: simplified data

processing on large clusters,” OSDI’04: Proceeding of the

6th conference on Symposium on Operating Systems

Design & Implementaion, pages 10,2004.

[5] S. Ghemawat, H. Gobioff, and S.T. Leung, “The google

file system,” SOSP'03: Proceedings of the 19th ACM

Symposium on Operating Systems Principles, pp.29-43,

2003.

[6] R. Mutharaju, F. Maier, and P. Hitzler, “A mapreduce

algorithm for EL+,” Proceeding of the 23rd International

Workshop on Description Logics, pp.464-474, 2010.

[7] J. Urbani, S. Kotoulas, E. Oren, and F.V. Harmelen,

“Scalable distributed reasoning using mapreduce,” In

Processdings of the 8th International Semantic Web

Conference,2009.

[8] Apache, Hadoop. http://hadoop.apache.org/.

[9] P.S. Yuan, C.F. Sha, X.L. Wang, B. Yang, A.Y Zhou, and

S. Yang, “XML structural similarity search using

MapReduce,” WAIM 2010:11th International Conference

on Web-Age Information Management, Lecture Notes in

Computer Science, 6184, pp.169-181, 2010.

[10] L. Fegaras, C.K. Li, U. Gupta, and J.J. Philip, “XML

Query Optimization in Map-Reduce,” In Processdings of

Fourteenth International Workshop on the Web and

Databases, 2011.

[11] D. Zinn, S. Bowers, S. Kohler, and B.Ludascher,

“Parallelizing XML data-stream workflows via

MapReduce”, Journal of Computer and System Sciences,

vol.76(6), pp.447-463, 2010.

[12] The DBLP Computer Science Bibliography.

http://dblp.uni-trier.de/xml/

[13] XML Data Repository. http://www.cs.washington.edu/

research/xmldatasets/

[14] Guo, Z. M., M. Li, Wang, X, Zhou, A. Y, “Scalable XSLT

evaluation,”Advanced Web Technologies and Applications

3007: pp.190-200, 2004.

[15] Zavoral, F., J. Dvorakova, Ieee, “Perfomance of XSLT

Processors on Large Data Sets,” 2009 Second International

Conference on the Applications of Digital Information and

Web Technologies (Icadiwt 2009): pp.110-115, 2009.

[16] Dvorakova, J. “Automatic streaming processing of XSLT

transformations based on tree transducers,” Advances in

Intelligent and Distributed Computing 78: pp.85-94, 2008.

[17] Thomas Bosch, Brigitte Mathiak, “XSLT Transformation

Generating OWL Ontologies Automatically Based on

XML Schemas,” 6th International Conference on Internet

Technology and Secured Transactions, 11-14 December

2011.

[18] Dong-Hoon Shin, D. H. and K. H. Lee, "Towards the faster

transformation of XML documents," Journal of

Information Science, vol.32(3), pp.261-276, 2006.

[19] Gou, G. and R. Chirkova, "Efficiently querying large XML

data repositories: A survey," Ieee Transactions on

Knowledge and Data Engineering, vol.19(10), pp.1381-

1403, 2007.

[20] Y., Sun, T., Li, Q., Zhang, J., Yang, and S., Liao, “Parallel

XML Transformations on Multi-Core Processors”, IEEE

International Conference on e-Business Engineering, 2007.

[21] S., Ren, and D., Muheto, “A Reactive Scheduling Strategy

Applied On MapReduce OLAM Operators System”,

Journal of Software, vol.7(11), pp.2649-2656, Nov 2012.

[22] H., Zhao, W., Xia, and J., Zhao,“The Research on XML

Filtering Model using Lazy DFA”, Journal of Software, vol.

7(8), pp.1759-1766, Aug 2012.

[23] X., Li, Z., Li, Q., Chen and N., Li, “XIOTR: A Terse

Ranking of XIO for XML Keyword Search”, Journal of

Software, vol. 6(1), pp.156-163, Jan 2011.

JOURNAL OF COMPUTERS, VOL. 8, NO. 9, SEPTEMBER 2013 2181

© 2013 ACADEMY PUBLISHER

http://dblp.uni-trier.de/xml/

