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Abstract—The eXtensible Stylesheet Language 

Transformation (XSLT) is a de-facto standard for XML 

data transforming and extracting. Efficient processing of 

large amounts of XML data brings challenges to 

conventional XSLT processors, which are designed to run in 

a single machine context. To solve these data-intensive 

problems, MapReduce paradigm in the cloud computing 

domain has received a comprehensive attention in both 

academia and IT industry recently. In this paper, a novel 

MapReduce-based XSLT distributed processing framework 

named CloudXSLT is proposed to implement efficient and 

scalable XML data transforming. First, the architecture of 

CloudXSLT framework is outlined. Subsequently, several 

XML data and XSLT rule representation models which are 

suitable for MapReduce paradigm are defined, and several 

MapReduce-based XSLT distributed processing algorithms 

are proposed. Finally, an experiment on a simulation 

environment with real XML datasets shows our framework 

is more efficient and scalable than conventional XSLT 

processors when processing large size of XML data.  
 

Index Terms—XML transformation, XSLT, MapReduce, 

cloud computing 

 

I.  INTRODUCTION 

Until now, the eXtensible Markup Language (XML) is 

widely used in various domains, such as Web Services 

and Semantic Web, and it has become a de-facto standard 

for data exchange and representation [1]. To implement 

automatic XML data transforming and extracting, the 

eXtensible Stylesheet Language Transformation (XSLT) 

technology is proposed and recommended by the W3C 

[2]. However, the increasing size of XML data brings 

challenges to these conventional XSLT processors, such 

as SAXON and Xalan-Java, which are designed to run in 

a single machine context. These tools load the entire 

DOM or DOM-like models in memory where the size of 

memory can be larger than that of the original XML file 

[14]. Therefore, the memory space will be exhausted with 

the growing size of XML data, and the transformation 

will be failed unavoidably. Considering all above, an 

XSLT processing framework with high-performance 

computing capability and scalability is in demand. 

Recent years, the cloud computing technologies have 

received a comprehensive attention in both IT industry 

and academia recently [3]. MapReduce [4], which is first 

proposed by Google in 2004, has become the dominant 

distributed parallel programming paradigm to solve the 

data-intensive problems in the cloud computing domain. 

MapReduce [21] paradigm is built on the top of the 

Goolge File System (GFS) [5]. It processes the data with 

the form of key-value pairs in a cluster of commodity 

machines. There are three different types of computing 

nodes in MapReduce named the master, map and reduce 

node, respectively [6]. Among them, the master node 

takes charges of the partition and locality of data, fault 

tolerance, schedule of tasks, and management of process 

communications, etc. The map nodes accept the data 

chunks from the master and generate a set of key-value 

pairs intermediate output according to the user-defined 

map function. All the intermediate data with the same key 

are merged and processed in one reduce node according 

to the user-defined reduce function [7]. Developers just 

need to define the key-value pairs based data models and 

implement the computing logic in a map function, a 

partition function, a combine function and a reduce 

function. Currently, Apache Hadoop platform is the most 

popular open source MapReduce implementation. Within 

this platform, the GFS has been implemented as the 

Hadoop Distributed File System (HDFS), which is a 

scalable and reliable data-storage system for storing large 

amounts of file in a distributed file environment [8]. 

Several research literatures about utilizing MapReduce 

to solve XML [22] related data-intensive problems have 

been proposed. For example, paper [9] proposed a 

MapReduce based framework to implement XML 

structural similarity searching on large clusters. In order 

to analysis large-scale of XML data in a MapReduce 

environment, a novel query language called MRQL was 

presented in paper [10]. To analyze the large amounts of 

XML data in science workflow, an approach for 

exploiting data parallelism in XML processing pipelines 

through novel compilation strategies within the 

MapReduce framework was presented in paper [11]. 

However, to the best of our knowledge, an efficient and 

scalable framework, which combines the MapReduce and 
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XSLT technologies to implement large-scale XML data 

transformation, is still in blank [15].  

In this paper, we propose a novel MapReduce-based 

XSLT parallel processing framework named CloudXSLT 

to implement efficient and scalable XML data 

transformation. Instead of using streaming processing 

solution, the distributed processing approach is adopted 

not only because the former one can’t handle special 

XML [16], but also cloud computing is widely used 

nowadays and processing on a cluster of machines in 

parallel can achieve better performance and scalability. 

The reminder of this paper is organized as follows. In 

section 2, the architecture and workflow of CloudXSLT 

framework will be presented. In section 3, several XML 

and XSLT representation models suitable for MapReduce 

paradigm will be defined. Some MapReduce-based XSLT 

parallel processing algorithms will be given in section 4, 

followed with the experimental evaluations in section 5. 

The conclusions come out in section 6. 

II.  THE ARCHITECTURE AND WORKFLOW OF 

CLOUDXSLT 

In this section, we first describe the architecture of the 

framework, and then introduce the workflow in detail. 

Based on the MapReduce and HDFS technologies in 

Hadoop platform, a novel XSLT distributed processing 

framework named CloudXSLT is designed as shown in 

Fig. 1. The entire framework consists of two logic layers: 

1. The Parallel Data Processing Layer. It is the core 

component of the framework and consists of the 

Central Control Module (CCM), the XSLT Rule 

Parsing Module (XRPM), the XML Parsing 

Module (XPM) and the XSLT Parallel Processing 

Module (XPPM). The first three sub-modules are 

designed to run in the master node. The CCM is 

responsible for monitoring the workflow. The 

XRPM and XPM are used to convert the XSLT 

file and XML data into defined data models. The 

XPPM works in a cluster of map and reduce nodes 

and produces the results fragments. 

2. The Distributed Data Storage Layer. We utilize 

the HDFS as the repository to support distributed 

storage of large-scaled XML data. HDFS creates 

multiple replicas of data blocks and distributes 

them on computing nodes throughout network to 

enable reliable and rapid computations. 

As shown in Fig. 2, the workflow of the proposed 

framework consists of three steps: 

1. First, in the preprocessing phase, the XSLT 

stylesheet file is parsed into MR-XSLT models 

(defined in section 3) in the XRPM. And then, the 

CCM processes on the root node of each XML 

data file and calls the XPM to convert the 

corresponding XML nodes into the MR-XML 

models before uploading them into HDFS via an 

input stream. 

2. Second, the XPPM takes the MR-XML models 

from HDFS as input unit, and transforms them 

into the MR-XML-Output models in parallel, 

according to the map and reduce algorithms. 

3. At last, the CCM outputs the final result files by 

assembling the MR-XML-Output models . 

Before discussing the MapReduce-based parallel 

XSLT processing algorithms in detail, we will define the 

fundamental data representation models mentioned above 

in the following section 3.  

III.  THE FUNDAMENTAL DATA MODELS 

As discussed, the key-value pairs form the basic data 

structure in MapReduce. Hence, the tree structure-based 

XML and XSLT files should be parsed and converted 

into a novel data model which is suitable for the 

MapReduce paradigm. In this section, we first propose 

the XSLT and XML data models named MR-XSLT and 

MR-XML, respectively. 
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Figure 1.  Architecture of the CloudXSLT Framework 
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Figure 2.  Workflow of the CloudXSLT Framework 

A.  MapReduce based XSLT Rule Model 

As mentioned in the first step of the workflow, in the 

XRPM, each XSLT template rule in the stylesheet file 

will be converted into the MR-XSLT model, according to 

the Def. 1. 

Definition 1 (MR-XSLT). Each XSLT template rule 

in an XSLT stylesheet file is defined as a MR-XSLT 

model, following the form of: MR-XSLT = < FN, ID, 

TTag, CommList >. 

Within the MR-XSLT model, the first parameter FN is 

used to specify the source XSLT file name. Parameter ID 

denotes the sequence number of the template rule in FN 

based on the depth-first strategy; TTag records the value 

of Xpath pattern, which will be used to match the target 

XML nodes. Especially, the parameter CommList stores 

the template command of this template rule, and it 

consists of some MR-XSLT-Comd model, as showed in 

Def. 2. 

Definition 2 (MR-XSLT-Comd). MR-XSLT-Comd = 

<CID, Op, TLoc, Cont> is a model to present each XSLT 

template command in an XSLT template rule. 

CID is the sequence number of current command in a 

XSLT template rule. We use the parameter Op as the 

symbol of command, like Insert, Replace and Foreach. 

TLoc denotes the target location of current command to 

be executed. The parameter Cont records the new content 

of the corresponding Op. The mapping relationship 

between MR-XSLT-Comd model and some common 

used XSLT commands are summarized in Table.1. 

B.  MapReduce based XML Data Model 

Generally, the XML data [23] to be processed often 

consist of a number of XML documents with different 

size, and each document can be modeled as rooted 

ordered trees since it has a root node and some nested 

child nodes. Rather than the root node, the secondary 

nodes are more important to us, so for the secondary 

XML node and its child nodes, the XSLT template 

commands are executed to generate new contents. 

Furthermore, although some simple data models and 

APIs about XML data splitting and parallel computing 

has been provided by MapReduce framework, they 

cannot be easily applied to the special situation of XSLT 

based XML data transforming. Therefore, we propose a 

MR-XML model to represent the tree structure of an 

XML fragment in the form of key-value pair, as shown in 

Def. 3. 

Definition 3 (MR-XML). For a given XML node R 

and its child nodes (C1,C2, …, CN) in an XML file F, the 

key-value pair based MR-XML model is used to 

represent the tree structure of this XML fragment, which 

follows the form of: MR-XML = < <FN, ID> , <Tag, AL, 

DL, CList> >. 

Among the parameters of this key-value pair model, 

the key is <FN, ID>, <Tag, AL, DL, CList>  denotes the 

corresponding value. We use FN to represent the file 

name of F; ID is the sequence number of node R in F 

follows the depth-first strategy; Tag denotes the tag name 

of R. AL is a list of attributes of R, and each attribute is 

TABLE1  
MAPPING RELATIONSHIP BETWEEN MR-XSLT-COMD AND XSLT TEMPLATE COMMAND  

Operator TargetLocation Content XSLT Template Command Example 

Insert Local Command data Null <newtext>text</newtext> 

Get Value of select attribute null xsl:value-of <xsl:value-of select=”.”/> 

Loop Value of select attribute null xsl:for-each <xsl:for-each select=”a”> 

Call Value of select attribute null xsl:apply-templates <xsl:apply-template select=”*”> 

Insert Local Command data xsl:text <xsl:text>text</text> 
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defined as a key-value pair <AttributeName, Value>. 

DL is a string collection which records the data content 

of R. The parameter CList denotes a collection of child 

nodes (C1,C2, …, CN) of R and CN is represented as a 

MR-XML-Node model, as defined in Def.4.  

Definition 4 (MR-XML-Node). One XML child node 

C in a MR-XML model M is defined as MR-XML-Node 

= < NodeID, Tag, AL, DL, FatherID, CList>.   

In the MR-XML-Node model, NodeID denotes the 

unique sequence number of node C in M following the 

depth-first strategy; Tag records the tag name of C. AL is 

a collection of key-value pairs for recording the attributes 

of C; DL is a string array to record the data content. 

FatherID points to the father XML node of current node 

C. CList is a collection of its child nodes with the same 

definition. 

After the XML nodes being transformed in the map 

and reduce phase, a new XML node representation model, 

as defined in Def. 5, is adopted to represent the output 

result.  

Definition 5 (MR-XML-Output). The model MR-

XML-Output=<F, ID, NewContent> represents one XML 

node in the output files. F is the output file name; ID is 

the sequence number of the MR-XSLT to identify the 

position where this result fragment should be placed. 

NewContent is the output content. 

IV.  MAPREDUCE BASED XSLT PARALLEL PROCESSING 

ALGORITHMS 

Given a XSLT stylesheet file, the XRPM is called first 

to convert XSLT into a collection of MR-XSLT models 

before uploading them to HDFS and waiting for being 

fetched by the computing nodes, the pseudo-code is 

shown in Alg.1.  

Algorithm 1. Convert_XSLT (F ) 

Input: F, Output: Output_XSLT. 

F is a source XSLT stylesheet file; TR is a template rule in F with the 

tag “<xsl:template>”; MX is a MR-XSLT model; Cmd is a template 

command node in TR; MXC is a MR-XSLT-Comd model;  

Output_ XSLT is an output text file consists of a collection of MR-

XSLT models. 

1  seq_num=1 

2  Foreach(TR in F) 

3      Initialize a MX model and assign it with the attributes of TR; 

4      Foreach(Cmd in TR) 

5          Initialize a MXC model and assign it with the attributes of Cmd; 

6          MX.Insert(MXC); 

7      EndFor 

8      Output_XSLT.Add(MX); 

9      seq_num++; 

10  EndFor 

11  Upload the Output_XSLT to HDFS. 

 

In Alg.1, a MR-XSLT model MX is created firstly for 

every template rule node of XSLT files, before assigning 

the sequence number, the file name and the match 

attribute to it. And then, for each template command node 

of current template rule, a MR-XSLT-Comd model MXC 

is initialized and assigned with the parameter Operator, 

TargetLocation and Content based on the mapping rules 

in Table.1. In line 6 of Alg.1, the new command model is 

inserted into the CommandList of MR-XSLT. At last, all 

MR-XSLT models are outputted to the Output_XSLT 

text file, and then this file will be uploaded to HDFS to 

wait for being fetched by every computing node of the 

framework via a data stream. 

After the XSLT file being converted, the CCM parses 

the corresponding XML data nodes into MR-XML 

models by using a stream based on the XML parsing 

technology. The pseudo-code executed in the Central 

Control Module is shown in Alg.2. 

Algorithm 2. Central_Control (X) 

Input: X, Output: Output_XML. 

X is the collection of source XML data files; x is one XML file; N is a 

node in XML; MX is a MR-XML model; MXN is a MR-XML-Node 

model; Output_XML is an output text file consists of a collection of 

MR-XML models. 

1   Foreach(x in X) 

2       Foreach(N in x) 

3           if(N is the secondary layer node in x) 

4               Initialize a MX and assign it with the attributes of N; 

5               Foreach(child in N) 

6                   Initialize a MXN and assign it with the attributes of Cmd; 

7                   MX.AddChild(MXN); 

8               EndFor 

9           Output_XML.Add(MX); 

10         EndIf 

11     EndFor 

12  EndFor 

13  Upload the Output_XML to HDFS. 

 

At the beginning of Alg. 2, whether the node is a 

secondary layer node in a XML document is checked. For 

the matched node, current node is converted into one 

MR-XML model, and its children nodes will be added in 

the form of MR-XML-Node model, correspondingly. An 

Output_XML model is used to collect all the MR-XML 

models and uploaded to HDFS finally as the input of 

MapReduce program. 

And then, the XDPM is called to transform these input 

models into MR-XML-Output models in parallel. The 

pseudo-code of the processing algorithms are shown in 

Alg.3 and Alg. 4, respectively. 

Within each job, the map function takes a batch of 

MR-XML models as input. And if the matched MR-

XSLT model exists, the intermediate key-value pairs are 

constructed with the key as a combination with the file 

name of MR-XML and the ID of MR-XSLT, the value is 

defined as shown in Line 6 of Alg.3. Otherwise, nothing 

will be exported as the XSLT rules can filter the context. 

At last, all the intermediate key-value pairs will be sorted 

in the MapReduce framework, and values have the same 

key are emitted to a reduce function. 
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The reduce function receives the intermediate key-

value pairs have been sorted by key with the key as the 

input unit. And then, a MR-XML-Output model is 

created and the collection of values is assembled as the 

content, before it is outputted to the result files in HDFS. 

At last, the CCM combines those output fragments of 

Alg.4 to the final output XML files according to both the 

XSLT definitions and the attributes-F and ID-in the MR-

XML-Output, because MR-XML-Output has recorded 

the mark of locations connected with XSLT. 

 

Algorithm 3. Map(MR-XML) 

Input: MR-XML; Output: intermediary <key, value> pairs. 

MR-XML is an input <key, value> pair in HDFS; MX is a MR-XSLT 

model. 

1  Foreach(MR-XML) 

2      Foreach(MR-XSLT) 

3          If (Tag in MR-XML equals TargetLocaion in MR-XSLT ) 

4              key = <FN in MR-XML, ID in MX>; 

5              Foreach (MR-XSLT-Commd in MR-XSLT) 

6                  NewContent is accumulated; 

7              EndFor 

8              value = NewContent; 

9          EndIf 

10    EndFor 

11    EMIT(key, value); 

12 EndFor 

 

Algorithm 4. Reduce(key, value) 

Input: key, value; Output: Output_XML. 

key and value is the result of map function; Output_XSLT is the output 

text file based on the MR-XML-Output model. 

1  Foreach (key) 

2      Initialize a MR-XML-Output model Output_XSLT; 

3      Output_XSLT.setF(FN in key); 

4      Output_XSLT.setID(ID in key); 

5      Output_XSLT.setContent(the combine of all values with this key); 

6      OutputToHDFS(Output_XSLT); 

7  EndFor 

V.  EXPERIMENTS 

A.  Experimental Setup 

To simulate the computing performance and scalability, 

we have constructed a prototype CloudXSLT framework 

in a cloud computing environment which consists of nine 

100M/s Ethernet connected commodity machines. The 

master node, with 2 cores of Intel Pentium 4 CPU, 1.5 

GB of main memory, and 80 GB of hard disk space, is 

configured as the Central Control node. While the other 8 

machines are working as computing nodes, each has 2 

cores of CPU, 1.5 GB of main memory and 80 GB of 

hard disk space each. The operating system Ubuntu 12.04 

and Hadoop 1.0.3 platform are configured in each 

machine. 

To compare with the prototype framework, two well-

known XSLT processors, SAXON 9.4 and Xalan-Java 

2.7.1 are deployed on a powerful single machine with 

Intel i5 2.50 GHz dual core processor, 8 GB main 

memory, and 4 TB disk space. 

DBLP, which use XML format to store bibliographic 

information on major computer science journals and 

proceedings, is chosen as the benchmark dataset [12]. To 

make our experiments convincible, a group of datasets 

with different sizes of 50MB, 100MB, 200MB, 400MB 

and 800MB are allocated. However, as there are no 

standard XSLT stylesheet files to be tested, a self-defined 

XSLT stylesheet file which contain some common used 

XSLT commands, such as <xsl:template>, <xsl:apply-

template> and <xsl:value-of>, is defined to transform 

DBLP XML data mentioned above. By using this XSLT, 

a DBLP XML document will be transformed into another 

schema: for each conference paper, a HTML table row is 

generated, listing the paper’s key attribute, followed by 

the author and the title of the paper. The details of our 

self-defined XSLT are given in Fig. 3. This rule extracts 

the specified part of information, and then presents them 

is a different kind of way from the source document. 

B.  Experimental Results 

In this section, we report the experimental results. For 

evaluation purposes, two experiments are conducted. The 

first one is a scalability test on CloudXSLT, while the 

second is a comparative study between those processors 

mentioned in previously. 

In the first group, we investigate the scalability of 

CloudXSLT by transforming large XML documents 

range from 50MB to 800MB. CloudXSLT being as a 

parallel processing framework considers the number of 

machine as one of the main factors, which affects the 

performance, so different numbers of computing nodes 

are tested to observe the changes in performance. Fig. 4 

gives the corresponding results, and at least three results 

can be concluded. 

1. First, two main factors affect the performance and 

response times: the size of the test data and the 

number of computing nodes. 

2. Second, when processing a same size of DBLP 

data, the more computing nodes participate in, the 

CloudXSLT runs faster, especially when the 

number of node increases from 2 to 4. However, 

the run times couldn’t decrease continuously for 

the resource consumption in the framework. 

3. At last, when processing various sizes of DBLP 

data in a specified number of nodes, the response 

time rises with the growing size of the XML data, 

obviously. What is more important is that the 

speed of the increase of response time is slower 

than the speed of the increase of data. That is to 

say, CloudXSLT has much more superiority when 

processing large-scaled of XML data. 

In the second experiment, to compare the performance 

with our framework, the conventional single-machine-

based XSLT processors SAXON and Xalan-Java are 

tested by processing the same datasets and XSLT rules. 

Fig. 5 illustrates the experimental results, where response 

time is in seconds, and 4999s denotes out-of-memory 

errors. 
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<?xml version="1.0" encoding="UTF-8"?> 

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 

    <xsl:output method="html" indent="yes" /> 

        <xsl:template  match="/"> 

            <html> 

                <body> 

                    <table> 

        <xsl:apply-templates select="/dblp/mastersthesis"> </xsl:apply-templates> 

        <xsl:apply-templates select="/dblp/article"> </xsl:apply-templates> 

        <xsl:apply-templates select="/dblp/incollection"> </xsl:apply-templates> 

        <xsl:apply-templates select="/dblp/www"> </xsl:apply-templates> 

              <xsl:apply-templates select="/dblp/inproceedings"> </xsl:apply-templates> 

        <xsl:apply-templates select="/dblp/proceedings"> </xsl:apply-templates> 

          </table> 

               </body> 

           </html> 

       </xsl:template> 

       <xsl:template match="incollection"> 

           <tr> 

               <td> 

                   <xsl:value-of select="@key"></xsl:value-of> 

         <xsl:value-of select="author"></xsl:value-of> 

  <xsl:value-of select="title"></xsl:value-of> 

     </td> 

 </tr> 

       </xsl:template> 

       <xsl:template match="mastersthesis"> 

           <tr> 

     <td> 

                   <xsl:value-of select="@key"></xsl:value-of> 

  <xsl:value-of select="author"></xsl:value-of> 

  <xsl:value-of select="title"></xsl:value-of> 

     </td> 

 </tr> 

       </xsl:template> 

 …… 

</xsl:stylesheet> 

Figure 3.  Part of self-defined XSLT 

 

Figure 4.  Experimental Results of CloudXSLT with Additional 

Compute Nodes 

SAXON shows a higher performance when dealing 

with small size of DBLP data for 50MB,  where only 4 

seconds are needed. However, when the size of input 

XML data increased to 100MB and larger, out-of-

memory errors are occurred. Therefore, we can conclude 

that there is a memory limitation for SAXON since all the 

input data are parsed and loaded into memory, and large-

scale XML data cannot be processed. 

Xalan-Java achieves better performance than SAXON 

in processing larger XML data, because it can handle all 

sizes of datasets. When the size of dataset is 50MB, 

Xalan-Java takes 8 seconds which is slower than SAXON 

 

Figure 5.  Experimental Results-Comparison of CloudXSLT, SAXON 

and Xalan-Java 

but faster than our framework with 74 seconds. When the 

size of dataset increases to 200MB, the response time is 

almost equal to that of our implementation with 114 

seconds and 112 seconds, respectively. Since then, the 

performance of Xalan-Java is getting worse, especially 

when processing 800MB of DBLP XML data with an 

unacceptable 4520 seconds. The scalability of Xalan-Java 

is closely related to the size of main memory as the input 

data to be processed will be loaded and processed within 

it. 

Our CloudXSLT achieves better performance when 

processing large-scaled DBLP data. Based on the results 

of Fig.5, CloudXSLT has a stable performance. As the 
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size of the data increases, the time to process the data 

increases sublinearly. 

Based on the experimental results, we can conclude 

that when the size of input XML data is small, the 

conventional XSLT processors achieve better computing 

performance as they execute locally without any network 

communication consumption. But when the size of input 

data becomes larger, conventional XSLT processors show 

limitations in finishing the job normally in a commodity 

machine. By contrary, the MapReduce-based CloudXSLT 

framework can efficiently process large size of XML data 

in an acceptable time and has better performance and 

scalability with the growing size of data. Furthermore, the 

scalable CloudXSLT framework can gain a better storage 

capability and computing performance by adding more 

computing nodes. 

VI.  CONCLUSION 

In this paper, we present a novel MapReduce based 

XSLT processing framework named CloudXSLT, which 

provides efficient and scalable XML data transformation 

services. The logic structure of this framework and some 

novel MapReduce suitable XML data and XSLT rule 

models are defined. And then, several parallel processing 

algorithms are proposed according to the workflow. 

Through comparing with the existing XSLT processors, 

the proposed framework shows superior performance and 

more scalable when processing on large size of XML data.  

In the future, we plan to integrate the remaining XSLT 

template commands in the CloudXSLT framework. In 

addition, the strategy for storing XML data in the HBase 

distributed database will be researched as well to provide 

more flexible data-management service. 
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