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Abstract— Rolling bearing is one of the most widely used 
elements in rotary machines. In this paper, a novel method 
is proposed to extract early fault features and diagnosis the 
early fault accurately for rolling bearing. Wavelet Energy 
Entropy is introduced as a feature parameter for bearing 
state monitoring and least square support vector machine 
(LS-SVM) is used for early fault diagnosis. In order to test 
the effectiveness of the method, a series of bearing whole life 
cycle test are performed on the accelerated bearing life 
tester. The result shows that Wavelet Energy Entropy has 
better performance and can forecast fault development 
earlier compared to conventional signal features. LS-SVM 
method can distinguish early bearing fault modes more 
accurate and faster than classic pattern recognition methods. 
 
Index Terms—state monitoring, early fault diagnosis; 
wavelet energy entropy, least square support vector 
machine (LS-SVM), rolling element bearing 
 

I.  INTRODUCTION 

Rolling element bearing is one of the most widely used 
and important parts of varieties of rotating machinery, 
whose running condition often directly affects the 
performance of the whole machine, which makes the state 
monitoring and fault diagnosis of rolling bearing becomes 
hot research focus. According to former studies [1], most 
rolling bearing faults occur in the surface of outer race, 
inner race or rolling elements. In recent years, many state 
monitoring techniques based on temperature, optical, 
vibration have been developed. However, because of the 
cost, effective and convenience reasons, vibration signal 
analysis is the most widely studied and practical used 
state monitoring approach for rolling bearing [2]. 

Generally, the key problem of vibration signal 
monitoring is feature extraction. Many techniques have 
been developed in the area, conventional feature 

extraction techniques can be concluded as time domain 
analysis [3], frequency domain analysis [4] and time-
frequency domain analysis [5-6]. However, in most cases, 
vibration signals are too noisy to use these techniques 
because the signal collected from rolling bearing is mixed 
with many other signal sources. The features generated 
by the incipient fault are usually very weak and might be 
covered by other signals. That makes the diagnosis 
methods based on vibration signal becomes unreliable. 
Thus, effective extraction of early fault symptom is still a 
critical challenge. In recent years, wavelet transform has 
been widely adopted in signal process area [7]. It is 
basically a time-frequency domain analysis method. But 
different from Short Time Fourier Transform (STFT) and 
Wigner-Ville Distribution (WVD), its time–frequency 
window is changeable as required. Because of the 
flexibility of wavelet basis, the wavelet transform 
presents better performance to process non-stationary 
signals than conventional signal analysis methods. 
Meanwhile, entropy introduced by Thermodynamics has 
been applied in many signal processing methods [8-9]. 
Entropy indicates the order degree of information stored 
in the signal. When early fault occurs, the vibration signal 
order degree will be fluctuate firstly which makes entropy 
has potential sensitivity in fault prediction. In this study, 
Wavelet packet energy entropy is applied in state 
monitoring of rolling element bearing. The results 
indicate that Wavelet Energy Entropy has better 
performance than conventional signal features and has 
well fault prediction ability. 

Early fault diagnosis is the extension of early warning. 
Because of the difficulty of early fault feature extraction 
and accurate failure type classification, the early fault 
diagnosis is still a critical research challenge. Generally, 
Fault diagnosis is a type of pattern recognition problem. 
In recent years, many algorithms based on artificial 
intelligence techniques have been successfully applied in 
mechanical fault diagnosis problem. The LS-SVM 
algorithm is developed from standard support vector 
machine. It is fast and accurate in classification. In this 
paper, wavelet packet coefficients are obtained from each 
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faulty signal, and then energy value is calculated for each 
signal separately. Then energy values are used for 
training and testing of LS-SVM. The results indicate that 
the combination of Wavelet relative energy and LS-SVM 
can effectively distinguish bearing early fault type. 

This paper is an extension study based on literature 
[10]. The former research discussed the Wavelet Energy 
Entropy and SOM methods in rolling bear condition 
monitoring. Compared to that, this study makes three 
innovations: 

(1) Discuss the Wavelet energy entropy deeper by 
compare the method with conventional time-domain 
features and present the program statement to calculate it. 

(2) More bearing accelerate life experiments have been 
done which formed a more sufficient and reliable dataset. 

(3) A more effective algorithm, LS-SVM is introduced 
for fault diagnosis. 

II.  WAVELET ENERGY ENTROPY THEORY 

The wavelet packet method is developed from classic 
wavelet decomposition. For classic wavelet transform 
[11], signals split into detail and approximation sections. 
The main improvement from Wavelet Transform (WT) to 
Wavelet Packet Transform (WPT) is that WPT splits both 
approximations and details. Therefore, a better frequency 
resolution can be obtained for high frequency bands of 
the decomposed signal. In another word, WPT can extract 
much more detail features from the signal. For early fault 
diagnosis of rolling bearings, high frequency sections of 
signal (1000-10000 Hz) is sensitive to early fault, while 
low frequency sections (<1000 Hz) is more suitable for 
accurate fault diagnosis[12]. 

Generally, wavelet packets can be organized in trees 
(Fig.1), Fig.1 shows the level 3wavelet packet 
decomposition. 

  
Figure1. Level 3 wavelet packet decomposition 

Define S3i as the reconstructed signal of X3i.Then 
original signal S can be expressed as: 

30 31 37+S S S S= + +L                             (1) 

Assume the lowest frequency of S is 0 and the highest 
frequency is 1. Table I shows the frequency band. 

TABLE I.   
THE FREQUENCY BAND RANGE 

Signal Frequency 
S0 0-0.125 
S1 0.125-0.25 
S2 0.25-0.375 
S3 0.375-0.5 
S4 0.5-0.625 
S5 0.625-0.75 
S6 0.75-0.875 
S7 0.875-1 

 
The wavelet energy is defined as the sum of square of 

detailed wavelet decomposition coefficients. Different 
input signals will make different scale wavelet 
coefficients. The wavelet energy is defined as follow 
equation: 
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Where E3j is the energy of S3j and Xjk is the amplitude 
of discrete points. 

The feature vector can be defined as follows: 
30 31 32 33 34 35 36 37[ , , , , , , , ]T E E E E E E E E=    (3) 

Entropy indicates the order degree of information 
which is stored in observed signal. The sum of all signals 
energy at scale j is defined as: 
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Define relative wavelet energy as: 
/jk jk jp E E=                                          (5) 

Obviously, 1jkp =∑ . According to the definition of 
Shannon entropy, the Wavelet Energy Entropy along 
scales is defined as below: 
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The MATLAB program function to calculate wavelet e
nergy entropy is as follows: 

function S_wt=waveletentropy(ECG,n,wpname)    
 
wpt1=wpdec(ECG,n,wpname);  
for i=1:2*n %wpcoef(wpt1,[n,i-1]) 
%disp('energy of every tree nodes E(i)'); 
E(i)=norm(wpcoef(wpt1,[n,i-1]),2)*norm(wpcoef(wp

t1,[n,i-1]),2); 
end 
%disp('total energy of wavelet packet E_total'); 
E_total=sum(E);  
%disp('probability of each nodes P'); 
for i=1:2*n 
p(i)= E(i)/E_total;  
end 
%The calculation of wavelet energy entropy is calcul

ate as below－sum（pj*lnpj）， 
 
for i=1:2*n 
m(i)=p(i)*log(p(i)); 
end 
 
S_wt = sum(m)*(-1); 
disp(['valve of wavelet energy entropy',num2str(S_w

t)]); 
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figure; 
subplot(1,2,1); 
plot(ECG); 

subplot(1,2,2); 
plot(E);   

III.  LEAST SQUARE SUPPORT VECTOR MACHINE 

LS-SVM is developed from standard SVM [13]. It 
transformed inequality constraint to equality constraint 
and transformed quadratic programming to solve linear 
equations. These improvements enhance the rate of 
convergence and the accuracy of classification. 

Define a m samples data set (xi, yi), (i=1,2,…,m), xi is 
input data and yi is output classification. The optimization 
object function of LS-SVM is: 
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Where ξ is relaxation factor, w is weight vector, b is 
offset constant, f is penalty factor or regularization factor 
which control the complexity of the algorithm. The x 
from the original space is mapped as a vector by 
nonlinear function (x)ϕ  which solves linearly inseparable 
problem. 

Equation (7) is transformed to optimization problem by 
Lagrange equation: 
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Where αi is Lagrangian. Accroding to Karush Kuhn 
Tucher (KKT) optimal condition: 
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Then eliminate w and ξ: 
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Where 11=[1,...,1]T
m×

, I is unit matrix, 1 2y=[y ,y ,...,y ]T
m , 

1=[ ,..., ]T
ma α α , = TZZΩ , 1 1[ (x ),..., (x ) ]T

N NZ y yϕ ϕ= . 
After solved b and α from eqution (10). The classific 
function can be obtained: 
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(x)=sgn[ (x,x )+b]
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Where K(x,xi) is kernel function. Most widely used 
kernel function include Radial Basis function (RBF), 
Polynomial kernel function and Sigmoid function. RBF is 
adopted in this paper for its well effect in paper [12]. 
Thus { }2 2(x,x )=exp - -i iK x x σ  , where σ is the width 

factor. 
General steps for rolling bearing early fault diagnosis 

based on relative wavelet energy and LS-SVM are as 
follows: 

(1) Select the typical normal and early fault samples. 
(2) Use 3 level db4 Wavelet Packet to analysis the 

signal. 
(3) Calculate the relative wavelet energy by equation 

(5). 
(4) Use relative wavelet energy as input data of LS-

SVM to classify the fault modes, and optimize the 
regularization factor and width factor by minimize the 
misclassification rate. 

(5) Classify the failure modes of unkown samples by 
classification function. 

IV.  BEARING LIFE ACCELERATED TEST 

The accelerated bearing life tester (ABLT-1A) (Fig. 2) 
is produced by Hangzhou Bearing Test & Research 
Center (HBRC). Four test bearings on one shaft are 
simultaneously hosted in the tester. The shaft is driven by 
an AC motor and coupled by rub belts. During the 
experiment, the rotation speed is constantly 3000 rpm. An 
oil circulation system that regulates the flow and the 
temperature of the lubricant is applied to lubricate the 
bearings. An accelerometer was installed on the bearing 
housing to continuously collect vibration signals. 

 
Figure 2. Accelerated bearing life test-ABLT-1A 

The bearing type is 6208-2RS. It is a typical deep 
groove ball bearing. Detailed parameters are listed in 
Table II. 

The radial load is added by a 100 times weight-oil 
pressure amplifying unit (Fig.3). The weight is 17.7 Kg. 
For each bearing, the radial load is 
P/2=(17.7×100)×9.8/2/1000=8.67 kN. 

The vibration data is collected with sampling 
frequency of 20 kHz and saved per minute. The total 
experiment time is 683 hours. The tester is automatically 
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stopped because of vibration valve and bearing 
temperature exceeds the limit threshold. After 
disassemble the bearing, an inner race defect is found 
(Fig. 4A) which indicate the experiment has recorded the 
the complete life test data. 

The data of rolling element failure (Fig. 4B) is 
collected by another experiment under the same 
experimental conditions. 

TABLE II.   
DETAILED PARAMETERS OF THE ROLLING ELEMENT BEARING 

Type 6208-2RS 
Pitch diameter /mm 60 
Inside diameter /mm 40 

Rolling element diameter /mm 12 
Roller number 9 

 

V.  RESULTS AND DISCUSSION 

A.  Vibration Data Analysis 
The Root Mean Square (RMS) of vibration signal is 

shown in Fig. 5 and the Kurtosis of vibration signal is 
shown in Fig. 6. These two parameters are most widely 
used in practice because they are simple and effective.  
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Figure 5. Root mean square of the vibration signal 

Figure 4. Failure bearings (A. inner race defect; B. rolling element failure) 

Figure 3. Load diagram of test bearings
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Figure 6. Kurtosis of the vibration signal 

As shown in Fig.5, the vibration signal is smooth and 
stable before 650 h which indicates the bearing is in 
normal condition. Then the value begins to increase from 
677 h and in 683 h the test bed is shut down because of 
excessive vibration. During the whole life cycle of the 
rolling element bearing, the time from fault symptom to 
complete failure is extremely short. This will cause 
terrible maintenance effect because of the relatively short 
reaction time. Fig.6 indicates that the Kurtosis valve 
which represents the amount of impact energy can find 
the fault symptom in 612 h which is still have potential to 
improve. If the fault symptom is found earlier, there will 
be more time to prepare the maintenance resources and 
keep the production process working stability and safety. 

B.  Wavelet Energy Entropy Analyses 
In this work, the signal is analysised by level 3 wavelet 

packet decomposition using db4 wavelet. The wavelet 
packet reconstruction is computed based on the 
approximation coefficients and modified coefficients at 
level 3 to calculate the energy of every frequency band. 
Then calculate the valve of wavelet energy entropy. The 
result is concluded in Fig. 7.  

The total time span can be divided into two periods: 
the front period (0 h-542 h) indicates the signal of normal 
condition and the back period (542 h-683 h) indicates the 
bearing fault and degradation period. During normal 
condition period, the valve of Wavelet Energy Entropy is 
stable. Meanwhile, during fault and degradation period, 
the signal has a more diverse distribution, and its 
amplitudes have an obvious decreasing trend. Compared 
to RMS (677 h) and Kurtosis (612 h), Wavelet Energy 
Entropy changed apparently in 542 h. Thus, Wavelet 
Energy Entropy is a better early fault feature and can 
detect the early failure ahead of time. Furthermore, its 
calculation is based on time domain vibration data which 
do not need to upgrade the monitoring hardware. These 
advantages will make the Wavelet Energy Entropy 
method easily adopted in practice. 
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Figure 7. Wavelet Energy Entropy of the vibration signal 

C.  LS-SVM Analysis 
Bearing early fault features are sensitive in high 

frequency band while accurate fault diagnosis has to 
analysis the low frequency band. Wavelet Packet can 
divide the signal frequency into 2n sections (n is the 

wavelet packet decomposition level) and extract relative 
energy as eigenvalue to analysis the signal detailly and 
comprehensively. 

Vibration signals are analysised by db4 Wavelet 
Packet 3 level decomposition. Then relative energy of 
each frequency band is used as input data of LS-SVM. 

20 sets of inner race defect data (560 h-600 h), 20 sets 
of rolling element failure data (560 h-600 h) and 20 sets 
of normal data (100 h-200 h) are put into the LS-SVM 
model as training dataset. In the identification procedure, 
other 15 sets of date are identified by the trained LS-SVM 
model. Meanwhile, Artificial Neural Network (ANN) and 
standard support vector machine (SVM) are chosen as 
comparation methods. The results are concluded in 
Table.III. 

Wavelet Packet relative energy is an effective beating 
early fault eigenvalue because all classsify algorithms 
perform high accuracy rate. Compared to ANN and SVM, 
LS-SVM has the highest accuracy rate and shortest CUP 
time. Consider bigger dataset commonly in practice, the 
speed advantage of LS-SVM will be more significant. 
The computer hardware used in the test is: CPU: Intel 
Dual-Core 3.20 GHz; RAM: 1.96GB. The matlab version 
is R2009b. 

TABLE III.   
CLASSIFICATION ACCURACY RATE AND SPEED OF LS-SVM, ANN, SVM 

 LS-SVM ANN SVM
Accuracy Rate（%） 93.7 88.2 90.6

CPU time（s） 1.1 1.9 1.5 
 

CONCLUSION 

In this paper, a novel condition monitoring and early 
fault diagnosis method for rolling bearing based on 
wavelet energy entropy and LS-SVM is proposed. The 
result shows that wavelet energy entropy has better 
performance and can forecast earlier fault development 
than RMS and Kurtosis. Then LS-SVM model is 
introduced to distinguish bearing early fault type. This 
method has higher classification accurate rate and faster 
calculate speed than conventional recognition methods. 
For no hardware update required, the proposed method 
can adapt to most practice bearing monitoring systems 
and improve the reliability of the diagnosis system. 
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