
Clustering-based Nearest Neighbor Searching

Ping Ling
College of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China

Email: lingicehan@yahoo.cn

Xiangsheng Rong
Training Department, Air Force Logistics of P. L. A, Xuzhou 221000, China

Email: rxs12@126.com

Yongquan Dong
College of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China

Abstract—This paper proposes a Clustering-based Nearest
Neighbor Search algorithm (CNNS) for high dimensional
data. Different from existing approaches that are based on
rigid-grid partition to develop data access structure, CNNS
creates indexing structures according to data inherent
distribution, with help of a progressive-styled clustering
operation. The grids produced in this way adapt to data
natural contours. CNNS is characterized with dataset
reduction and dimension reduction. And parameterization
heuristics are given to bring computation ease to CNNS.
Empirical evidence on real datasets demonstrates the fine
performance of CNNS.

Index Terms—clustering-based method, nearest neighbor
searching, grid partion, parameterization heuristics

I. INTRODUCTION

Nearest neighbor (NN) searching is a fundamental
problem in wide applications like data compression, data
mining, information retrieval, image and video databases,
pattern recognition and statistics analysis. This problem is
stated as: given N points in a n dimensional space, find
the nearest neighbor for a query point. For low
dimensional data, it can be solved exactly. While in high
dimensional case, the exact answer is shadowed by the
course of dimensionality, that is, either the query time or
the space required is exponential in n. In fact, for large
enough n, the modified searching methods provide little
improvement over the linear scanning method. Thus
efforts are transferred to finding an approximate solution,
that is, an approximate NN whose distance from the
query point is at most (1+ε) times its distance from the
nearest neighbor [1].

A number of NN approaches for high dimensional data
were proposed. Most of them share the same spirit of
combining dimension reduction and data space partition.
Dimension reduction aims to overcome the bottleneck of
dimensionality by using data new representations while
keeping a high portion of information. There are linear
algebraic method Karhunen Loeve transformation (KLT)
[2, 3] and mathematical transforms like DFT [4], DCT [5],
DWT [6]. They are applied to general dynamic data,
time-series, image or document data. Data partition

creates the indexing structure. Diverse partition methods
can be reduced to the definition of hashing functions. The
designed hash function is expected to ensure that data that
are close to each other have much higher probability of
collision than those far apart. Various hash functions
produce different shapes of hashing bucket. VA-file [7]
produces rectangle-shaped bucket to group data. Another
famous method family is Locality Sensitive Hashing
(LSH) [8]. LSH employs random selection to finish
dimension reduction; employs repeating random
projection technique to achieve data partition. Based on
this idea, interval-shaped [9], cell-shaped [10], ball-
shaped [11] appeared in literatures. These partition
procedures are often described by tree structure, say,
Kdb-tree [12], hb-tree [13], R-tree [14], R*-tree [15], ss-
tree [16], TV-tree [17] and X-tree [18].

These existing methods are characterized with rigid
grid, ignoring inherently populated regions that naturally
can act as buckets and can be helpful to locate data
according to similarity. This paper focuses on these
shortcomings by constructing buckets that coincide with
the contours of inherently populated regions, which is
achieved by clustering procedure. To construct data
access structure, clusters are split into buckets of desired
size, which is accomplished by a progressive-fashioned
procedure. For a query q, it is indexed according to the
nearest buckets, and then its NN is probed. For
computation ease, before indexing, data dimensionality is
reduced by spectrum analysis (SA); dataset is reduced by
a self-tuning support vector clustering approach. And this
paper proposes a SVD-based SA algorithm (SVDSA) to
derive all data’s new representations from reduced dataset.
That brings CNNS the adaptation to high dimensional
and large-sized dataset.

The paper is arranged as follows. Section 2 reviews
some popular techniques of NN searching, basic support
vector clustering (SVC) and SA. CNNS algorithm and its
implementation details are given in Section 3, followed
by SVDSA algorithm in Section 4. Section 5 records
experiment results. Conclusion is in the last section.

II. OVERVIEW OF CURRENT TECHNIQUES

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 2085

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.8.2085-2092

A. VA-file and LSH Family
VA-file approach is a partition-based approach. It

divides data space into 2t rectangular cells where t is the
total number of bits specified by user. Each rectangular-
cell has a bit representation of length t to approximate
data points falling into the cell. The VA-file is actually an
array of bit vector approximations based on the
quantization of the original vectors. To search NN in a
VA-file, vector approximations are scanned firstly to find
rectangular candidates, and candidates are traversed to
find true NN.

LSH family is also based on partition, but the grid
yielded from partition is of diverse shapes. Interval-
shaped LSH (iLSH) [9] defines the hash map from Rn to
R1, that is, points are projected to line and that line is
partitioned into several intervals. Another fashion, cell-
shaped LSH (cLSH) [10] builds grids by C pairs of
random numbers (d, vd), where d is an integer between 1
and n and vd is a value within the range of the data along
the dth coordinate. The pair (d, vd) partitions data
according to an inequality: xid < vd. xid is the coordinate of
xi in selected dth dimension. Based on whether meeting
that inequality or not, each xi in each partition yields a C-
length Boolean vector to state true or false state under C
random embeddings. Points with the same Boolean
vector are grouped into the same cell. After P partitions,
each point belongs to P cells simultaneously: CE1…CEP.
Recently ball-shaped LSH (bLSH) [11] appeared defines
ball as the underlying geometric shape. It starts from an
initial ball to generate other balls by shifting the original
one. The number and size of ball are specified
theoretically.

B. SVC
Classical SVC aims to find the cluster contours [19] by

optimizing following target function:

,
max (,) (,)i i i i j i j

i i j
K x x K x x

γ
γ γ γ−∑ ∑ (1)

s.t. 1i
i
γ =∑ , 0 i svcCγ≤ ≤ .

Therein n
ix ∈ℜ , nℜ is the input space, and Csvc is the

penalty parameter to tradeoff error and clustering
accuracy. Kernel function takes Gaussian fashion:

2 2(,) exp(/)|| ||i j i jk x x x x σ= − − . Points with

0iξ = and 0 i svcCγ< < are mapped to the surface of
sphere, referred as non-bounded Support Vector (nbSV).
They describe cluster contours. Those points with 0iξ > ,

and i svcCγ = are located outside the hyper sphere, and
are called bounded Support Vector (bSV). Cluster
assignment is done based on the deduction of an adjacent
matrix of point pairs.

C.. SA
SA [20] procedure is used to obtain discriminant

directions underlying data distribution. SA obtains data
spectral projections by eigen-decomposing affinity matrix,
and then groups data spectrums with a simple method. It

assigns point the same label as its spectrum projection. Its
main operation is based on the eigen-decomposition on
pairwise matrix H, where H is the normalized version of
data affinity matrix. Select top p eigenvectors and form
spectral embedding matrix S by stacking p eigenvectors
in columns. Rows of S are data spectral coordinates.
Based on them, further partition or clustering task can be
achieved in a simple fashion.

III. CNNS ALGORITHM

A. Idea
The idea of CNNS is described in below steps:
1) Tuning-scaled SVC runs to generate data

representatives {DRi};
2) SA runs to group {DRi} in spectrum space;
3) SVDSA runs to obtain all data’s spectrums;
4) Label data according to its nearest DR;

 5) For each cluster, PK-means performs progressively
to form hashing bucket;

6) Index the query.
Dataset is reduced by a modified SVC, whose Kernel

function width is tuned adaptively. Then the resulted
{DRi} are mapped to spectral space, where they are
grouped. New representations of all data are derived from
{DRi} by SVDSA procedure. With the nearest-labeling
rule, data are clustered. Clusters provide natural
boundaries that basic grids should observe, that is, a
bucket is not expected to cover two clusters. Therefore
buckets are formulated within each cluster respectively.
We do the K-means clustering in a progressive way, to
split a cluster into sub-clusters, and these sub-clusters act
as buckets. The splitting runs until each bucket is
equipped with the appreciate size.

In query time, q is indexed by its nearest bucket:
label(q) = min j {||s(q) – s(bj)||}

Where s(·) denotes the spectrum representation of
argument, bi is the center of bucket Bi.

B. Self-tuning SVC

-6 -4 -2 0 2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

8

10

12

X

Y

inner-cluster points
nbSVs

Figure 1. SVC clustering result

2086 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

This section introduces the strategy to tune the scale

parameter of Gaussian Kernel. The idea is to adjust the
scale parameter according to the local distribution
information around individual data point. That will make
the algorithm adapt to diverse dataset.

Classical SVC generates SVs describing cluster
contours. Self-tuning SVC (TSVC) proposed in this paper
produces more SVs of meaning to serve as data
representatives by tuning the scale parameter of Kernel
function data-dependently. Tuning idea is to set
individual scale factor for each point, that is, for x, its
scale factor is σx = ||x -xr||. To measure Kernel affinity
between x and y, their scale factors are combined, leading
to the new Gaussian Kernel:

2 2|| || || ||
|| || || ||(,) exp() exp()

x y r r

x y x y
x x y yk x y σ σ

− −
⋅ − ⋅ −= − = − (2)

r is specified as the max gap in the list of distances
from x to other points: r = max j { d(x, xj) - d(x, xj-1) },
where d(x, xj) is the row of Euclidean distance matrix and
it is sorted in an ascending order. The result of SVC and
TSVC is plotted in Figure 1 and 2, where Csvc = 0.8. In
Fig. 1, SVs are located on cluster boundaries. In Fig. 2,
SVs are located on both cluster boundaries and the
important positions within clusters where sharp changes
of density happen. These SVs describe a sketch of dataset.

C. PK-means
Different from classical K-means method that doesn’t

know the number of clusters and specifies the
initialization in a random way, the algorithm of this paper
propose PK-means to fulfill clustering task.

The key of PK-means is that it is an iteration procedure.
That is, in each iteration run of PK-means, a bucket is
constructed to help consequent clustering process. As to
the termination of PK-means’s iteration, this algorithm
considers to ensure the population of each bucket is
below the upper bound for the access effectiveness. Since
the bucket is obtained by splitting clusters, so to do
splitting we first duplicate its cancroid. And then we
perturb the copy randomly to form the centroid of the
new clusters. Perform standard K-means with the number
of clusters, K, parameter being 2, with the aim to give the
2-split result. Split current buckets iteratively. As long as
there is a bucket whose size is higher than the upper

bound, let K=K+1, and then run K-means with the new K.
Denote Ith cluster as CI, and the resulted buckets as the set
B = {Bi} with corresponding centers b = {bi}; denote NB
as the number of buckets.

Conclude above analysis into the PK-means algorithm.
So the steps of PK-means are:

Therein δ is a random offset.
Note that Standard K-means procedure returns the

optimal clustering result with parameters coming form
three aspects. They are parameters of CI, cluster number
NB and initial centers b. The calling parameter b1
corresponds to the mean of CI. ub is the upper bound on
bucket size. It is specified by following steps:

1) For each DRi, sort the spectral distance values of it
to other data xj in the ascending order: {||s(DRi) - s(xj)||};

2) Find the max gap between two adjacent distance
values of this list, as shown in formula (9).

3) Compute ub = λ(average{gap(i)}).
Here the idea is to employ the average size of neighbor

as the parameter. Coefficient λ >= 2. According to
experimental results of below section, this paper sets this
coefficient λ = 2.

Obviously gap(i) is important in above
parameterization steps. Here for point xi, we firstly find
the inherent dense region around it, which is reflected by
the maximum gap between two adjacent distance values.
Such a gap value reveals the size of neighborhood
centered at xi. Then we rescale this size with some
distance value. So the setting of gap(i) is:

1

1

|| () ()|| || () ()||
|| () ()||() max { }i j i j

i j

s DR s x s DR s x
j s DR s xgap i +

+

− − −
−= (3)

-6 -4 -2 0 2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

8

10

12

X

Y

inner-cluster points
nbSVs

Figure 2. TSVC clustering result

PK-means (CI, b1)
{
B1 = CI ;
NB = 1;

 If (|CI | > ub)
{
flag = 0;
NB++;
bNB= b1+ δ;
While (not flag)

{
[B, b] = K-means(CI, NB, b);

 flag = 1;
i = 1;

 While (i <= NB & flag)
 If (|Bi | > ub)
 {

flag = 0;
bNB+1= bi+ δ;
NB++;

}
Else
i++;

}
}

Return B;
}

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 2087

© 2013 ACADEMY PUBLISHER

gap(i) is viewed as the estimate of DRi’s neighborhood
size.

For completeness, below steps are details of K-means
procedure:

Therein Nj is the size of interval of [gj-1, gj], and g =

{gj…}, μ = {μj…} to express interval cut points and
interval centroids.

IV. SVDSA

Set |DRs| = M and |X| = N, with X being dataset. Form
pair-wise Kernel affinity matrix HM×N between DRs and
X. We normalize H by rescaling its each entry using
corresponding sum-of-row and sum-of-column. Let R =
diag (r1…rM) with 1 ij

N
i j Hr == Σ , and C = diag (c1…cN)

with 1 ij

M
i i Hc == Σ . H is normalized as:

* 1/ 2 1/ 2() ()H R H C− −= ⋅ ⋅ (4)
Then SVD is conducted on H* in the way:

* 1/ 2 1/ 2()()T TH U V U V Q J= Λ = Λ Λ = ⋅ (5)
Therein UT·•U and VT•V are identity matrices of

corresponding sizes and Λ is a diagonal matrix of singular
values. The vectors corresponding to the largest m
singular values consist of the low-rank approximation of
H. Columns of J are spectrum coordinates of all data.
Dimensionality of spectrum coordinates, m, is specified
by the max gap of the singular value list that is sorted in
the descending order. Using SVD instead of Eigen Value
Decomposition, complexity drops from O(N3) to
O(M2×N).

Then K-means is performed on DRs’ new
representations and the rest data are labeled according to
its nearest DR. <add how to compute spectrums of
query>

Add Nystrom method and literature [21], to the query
x*, view it as the new data, and we update the eigen value
and eigen vector according to Nystrom method:

* 1
i i

N
N

λ λ+= (6)

1,

*
1

1
N Ni ii

N
N

Kμ μλ ++
= (7)

There *
iλ and iλ are the new and original eigen values;

*
iμ and iμ are the new and original eigen vectors. Based

on new eigen vector, query is equipped with its spectrum
coordinates.

V. EXPERIMENTAL RESULTS

Firstly we combine the TSVC, SVDSA and K-means to
form a clustering method, TSK. We apply it on a skewed
dataset to check its ability to formulate appreciate cluster
boundaries. TSK is compared with other clustering
approaches: pure K-means, NJW and standard SVC.
NJW is an appealing spectrum clustering method. It
shows fine behaviors in multi applications. It maps data
to a spectrum space and on the spectrum coordinates of
original data points it conducts the clustering process. To
datasets with special distribution shapes, NJW and its
variants sometimes obtain good results.

Figure 3 gives the illustration of experimental dataset.
Figure 4 shows the result of K-means.

It is clear that clustering result of Figure 4 is undesired.

The reason of K-means’s failure lies in its hard metric
plus inflexible partition. It can only address the datasets
with Gaussian-type distribution. In times of datasets with
random distribution, K-means often presents more errors.
Furthermore it has to consume more cost to find the

K-means (CI, K, μ)
{ ∆ = ∞;
flag = 0;

 While (not flag)
 {

For j = 1: K

1[,]
1

i j jj x g g i
j

xNμ
−∈= Σ ;

 For j = 2: K

 1
1 2

j j
jg

μ μ−

−
+

= ;

 1 1

2
[,] ()' K

j i j jx g g i jx μ= −∈ −Δ = Σ Σ ;

 If (∆’/∆ < ε)
flag = 1;

 Else
∆ = ∆’;

 }
 Return (g, μ);
}

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y Cluster1

Cluster2

Cluster3

Figure 4. K-means Result

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y Cluster1

Cluster2

Cluster3

Figure 3. Dataset

2088 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

proper number of clusters if the number of clusters is
unknown.

Figure 5 and Figure 6 give the results of NJW under
two Kernel scales. These two scales are two
representatives of a series of scale parameters. Actually
we tried many scales and find experimental results are
poor. It is due to the mismatch between fixed scales and
the skewed distribution of experimental dataset.

SVC also can’t present good result, as shown in Figure
7. Figure 8 describes the DRs produced by TSVC. It finds
resulted DRs are located within three clusters. In
consequent clustering process, they are grouped correctly
by SVDSA. That correct clustering results are guaranteed
by the idea of SVDSA. And these results also indicate
TSK does hold the good adaptation to datasets with
various distributions; this adaptation, of course, is
brought by scale tuning strategy.

From these figures, the validation of TSK and SVDSA
can be verified.

To make a further insight of TSK process, we run it on
some real and benchmark datasets that are taken from
UCI Repository of Machine Learning Databases [22].
These datasets are: Breast Cancer (BC), Diabetes, Vote,
Thyroid, Heart and Waveform. Table 1 compares the
errors of the above methods and another clustering
algorithm: Girolami method [23]. Girolami is a more
sophisticated Kernel-based expectation-maximization
method.

From results of Table I, the performance of the
proposed TSK can be verified.

After the usual comparison on clustering performance,

in below experiments, two evaluations are used to check
the quality of indexing approaches.

Firstly the quality of the indexing approaches is
reflected by the quality of query’s neighborhood. For
some query q, we use the average affinity of q to its
neighbors of the nearest bucket as the first evaluation.
Assume q is indexed by Bi bucket; then the average of q’s
affinity within the bucket Bi is defined as the average
affinity between q and its neighbors coming from Bi. In
details, such an average affinity is defined in an
exponential way:

21 exp(|| ||)
ii x BBAf q x∈= Σ − − (8)

TABLE I.

ERROR COMPARISON ON REAL DATASETS (%)

Dataset K-means Girolami SVC NJW TSK
BC 3.81 2.93 5.17 3.22 3.17

Diabetes 18.6 14.8 16.8 15.2 14.25
Vote 7.92 4.62 6.11 4.43 4.28

Thyroid 6.06 5.83 6.25 5.01 5.26
Heart 7.23 6.57 7.06 6.5 6.42

Waveform 3.51 3.11 3.72 2.82 3.07
The second evaluation is the ratio of false hits in q’s

nearest bucket. False hits are errors among neighbors, say,
points having different label with q. That ratio tells how
well the clustering approach finds relevant data even to
the extent that it skips some correct answers. Both two

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

inner-cluster points1

nbSVs

Figure 8. DRs of TSVC

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y Cluster1

Cluster2

Cluster3

Figure 5. NJW: 1/σ2=19.9

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

Cluster1

Cluster2

Cluster3

Figure 6. NJW: 1/σ2=2.79

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y

Cluster1

Cluster2

Cluster3

Figure 7. SVC: 1/σ2=0.5612

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 2089

© 2013 ACADEMY PUBLISHER

evaluation criteria well reveal the quality of
neighborhood.

Now we run CNNS on News Group dataset [24]. News
Groups dataset is a text records dataset, which contains
about 20,000 articles. These articles are divided into 20
newsgroups according to their topics. These groups’
topics are:

NG1: alt.atheism;
NG2: comp.graphics;
NG3: comp.os.ms.windows.misc;
NG4: comp.sys.ibm.pc.hardware;
NG5: comp.sys.mac.hardware;
NG6: comp.windows.x;
NG7: misc.forsale;
NG8: rec.autos;
NG9: rec.motorcycles;
NG10: rec.sport.baseball;
NG11: rec.sport.hockey;
NG12: sci.crypt;
NG13: sci.electronics;
NG14: sci.med;
NG15: sci.space;
NG16: soc.religion.christian;
NG17: talk.politics.guns;
NG18: talk.politics.mideast;
NG19: talk.politics.misc;
NG20: talk.religion.misc.
Before doing the clustering experiments, the

preprocessing work is to apply the usual tf.idf weighting
schema to express documents.

That is, set vector 1 2(, ,,) 'i i i imx x x x= for each
document.

Here logij ij j
nx t df= ⋅ , ijt is the appearance frequency

of word fj in document di, n is the number of documents,
and dfj is the number of documents that contain word fj.
We delete words that appear too few times and normalize
each document vector to have unit Euclidean length.

We choose some classes to form experiment subsets,
where 10% data randomly selected serve as queries.
Besides CNNS, the mentioned methods run for
comparison. Parameters involved are specified according
to their designers. Performance of them is described in
Table 1, where two values in a blank are false hits ratio
and Af respectively.

From Table II, it is clear that CNNS achieves the top
place in 4 of 6 cases, and follows closely the optimal
result in other 2 cases. In the first three subsets, where
data classes are distinct relatively, CNNS is competitive
with bLSH. Although in {N1, N2, N7, N8} and {N7, N8,
N12, N16, N17} CNNS’s performance is not the best, its
bucket quality is better than other methods. In the last
three subsets, where class boundaries are blurry, CNNS’s
advantage is obvious over its peers, which indicates the
effect of clustering procedure.

Among three LSH-based approaches, bLSH does a
better job on average, followed by cLSH, and then iLSH.
bLSH buckets are ball-shaped, which better approximates

the neighborhood shape. iLSH presents a moderate
performance due to its weak hashing power that
summarize data features to a scalar. As mentioned before,
their different hashing embeddings specify different
shapes of basic geometric grid, and these fixed-shaped
grids might only exhibit their unique advantage in
particular data distribution. While the shape of CNNS
buckets depends on the natural contour of data itself, with
adaptation to difficult datasets. That fosters CNNS’s
success. Note that CNNS and bLSH produce lowest Af
values, because buckets of CNNS capture the natural
boundary of class and contain true neighbors. VA-file
produces buckets with similar shape with cLSH, so they
present competitive results.

TABLE II.

ACCURACIES OF KNN BASED ON NEIGHBORHOOD FORMULATION
METHODS (%)

Data VA-file iLSH cLSH bLSH CNNS

N1, N2, N7, N8 84.4%
0.81

85.3%
0.85

87.2
0.83

88.3%
0.88

88.2%
0.89

N6, N7, N8 83.2%
0.79

82.8%
0.75

83.4%
0.81

84.0%
0.88

84.0%
0.86

N7, N8, N12,
N16, N17

83%
0.8

83.1%
0.82

85.7%
0.86

85.2%
0.84

85.6%
0.84

N2, N3, N4 64.8%
0.59

63.7%
0.57

66%
0.6

66.8%
0.65

69.2%
0.66

N4, N5, N6 61.9%
0.51

60.7
0.49

62.0%
0.51

62.1%
0.53

64.6%
0.53

N12, N13,
N14, N15

69%
0.65

65%
0.62

69.1%
0.65

70.6%
0.67

72.4%
0.68

Finally more datasets are used for experiments:
Waveform [22], Musk [25] and Breast Cancer (BC).
Musk has two versions Musk1 and Musk2. They record
476 and 6598 conformations for musk molecules and
non-musk molecules. BC has two databases: breast-
cancer (named as BC1) and breast-w (named as BC2), to
describe the malignant and benign cases with 33
attributes and 30 attributes respectively.

The last section of experiments is to combine the
proposed algorithm CNNS kNN to form an assembling
classifier CNNSk. The aim of doing experiments on such
an assembling classifier is to observe the generalization
ability and clustering performance CNNS.

In experiments, CNNSk is compared with more
popular classifiers. They are: classical kNN, the
clustering method that takes distance information as
clustering criterion; SVM11 [26], the assembling classifier
consisting of classical SVM with the final decision being
decided in the voting strategy; Machete [27], a recursive
partitioning procedure, in which the input variables are
used for splitting at each step is the one that maximizes
the estimated local relevance; DANN, an adaptive nearest
neighbor classifier [28]; Scythe [27], a method that do the
generalization of Machete method; and Adamenn, an
algorithm that is focused on the adaptive nearest neighbor
approach, and this algorithm works in many practical
applications [30].

In below experiments, the key spirit of last four
methods is to develop weighted metrics through
Dimension Derivation (DD) technique. Therefore in this
paper they are called DD methods or DD-based methods.

2090 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

Below they are combined with kNN to finish
classification, and the resulted classification accuracy is
compared with CNNSk.

In experiments, except CNNSk, other clustering
methods have no parameterization strategy of
neighborhood. So the neighborhood size of kNN and four
DD-based methods are parameterized by 20-fold cross-
validation. That cross-validation is the common method
to parameterize algorithm parameters. And this
parameterization process of course consumes more cost.
The super parameters of SVM11 are also set by cross-
validation. Sample 10% data at random as testing data.
Table III describes the average of classification
accuracies of these methods on UCI datasets.

TABLE III.

CLASSIFICATION ACCURACIES COMPARISON (%)

Data Waveform Musk1 Musk2 BC1 BC2
kNN 75.1 88.4 62.8 70.2 93.1

SVM11 83.4 93.6 68.5 76.8 96.8
C4.5 77.2 91 68.5 74.1 95.3

DANN 84.8 94.2 67.3 75.1 96.1
Machete 79.7 94.9 66.1 75.8 96.2
Scythe 84.9 96 69.8 74.3 97.3

Adamenn 85.6 97 71.2 77.1 97.7
CNNSk 85.7 97 72 77.2 98.2

It is easy to find from Table III that the advantage of
four DD methods and CNNSk over the first three
methods is clear. For kNN, it works poorly due to its
employment of Euclidean metric. Such a metric tends to
lead errors of classes memberships when the dataset is of
special distribution shape. And such a metric is not
specialized to high dimensional data, so it consequently
bring many errors. SVM11 is also trained in Euclidean
space, while it presents higher accuracy thanks for its
non-linear decision interface. C4.5 yields moderate
results.

Then take a look at four methods based on DD
technique. Find that among four DD methods, Adamenn
works best on average; it investigates dimension
relevance from probability distribution and presents a
wisely weighted metric, thus spanning qualified
neighborhood. But this method has to parameterize six
parameters. No matter parameterization through
searching strategy in the grid parameter space or the
cross-validation, or some specified parameterization
methods, huge computation will be consumed. Such
expensive cost in tuning six parameters overshadows its
advantages. Scythe follows it closely. Machete follows
Scythe due to its greedy spirit. DANN approximates the
weighted Chi-squared distance, which might fail in
datasets of non-Gaussian distribution. That is, DANN
lacks the adaptation to datasets with diverse distributions.
Now look at CNNS. Clearly CNNS does best in 2 of 5
cases. And CNNS achieves the second place in 3 of 5
cases. CNNS’s behaviors are not good as Adamenn. And
the later gives optimal result in 3 of 5 cases, but if we
take the fact that CNNS has computation ease in
parameterization and steady performance into
consideration, it knows that CNNS is a welcome method
in practice.

From above experiments, it is concluded that if both
performance and cost are taken into consideration, CNNS
is a fine choice.

VI. CONCLUSION

This paper presents a NN search algorithm based on
clustering (CNNS). CNNS organizes data with buckets,
which are split into natural sub-clusters, namely, basic
grids. The NN found by CNNS comes from the bucket
that the query is indexed to. Indexing processing and NN
searching are conducted in the spectrum space, and the
splitting of clusters is finished by a progressive fashioned
clustering method. CNNS is equipped with two
components for computation ease: dataset reduction and
dimension reduction. The first target is achieved by a
tuning-scaled SVC, and the second target is fulfilled by
the SVDSA procedure. Empirical evidence on real
datasets demonstrates the performance of CNNS in
producing qualified NN and neighborhood. Experimental
results also verify the quality of two components. In
empirical results, it finds the buckets produced by CNNS
are more adaptable to data distribution than methods
based on rigid partition.

Future work direction is to probe the more informed
method of neighborhood development. Especially it is an
appealing trend to specify neighborhood based on local
geometric information around data points. Since
neighborhood also carries much local distribution
information, seeking neighborhood’s details from data
point’s local dense or sparse geometric properties is a
good research direction.

ACKNOWLEDGMENT

This work is supported by the National Natural
Science Foundation of China under Grant No. 61105129
and 61100167, and the Natural Science Foundation of
Jiangsu Province, China under Grant No. BK2011204,
the Natural Science Foundation of the Jiangsu Higher
Education Institutions of China under Grant No.
11KJB520019.

REFERENCES

[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A.
Y. Wu, “An optimal algorithm for approximate nearest
neighbor searching fixed dimensions,” Journal of the ACM,
vol. 45 (6), pp. 891 – 923, 1998.

[2] Y. B Hua, W. Q Liu, “Generalized Karhunen-Loeve
Transform,” Signal Processing Letters, vol. 5(6), pp. 141-
142, 1998.

[3] Y. Yamashita, H. Ogawa, “Relative Karhunen-Loeve
Transform,” IEEE Transactions on Signal Processing, 1996,
vol. 44(2), pp. 371-378.

[4] J. Stanek, W. Kozminski, “Iterative algorithm of discrete
Fourier Transform for processing randomly sampled NMR
data sets. Journal of biomolecular NMR, 2010, vol. 47(1),
pp. 65-67.

[5] W. Burger, M. J. Burge, “The Discrete Cosine Transform
DCT,” Principles of Digital Image Processing
Undergraduate Topics in Computer Science, 2009, pp 1-8.

[6] M.K, Wali. M. Murugappan, R. B. Ahmad, B. S. Zheng,
“Development of Discrete Wavelet Transform (DWT)

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 2091

© 2013 ACADEMY PUBLISHER

toolbox for signal processing applications,” International
Conference on Biomedical Engineering, 2012, pp. 211 –
216.

[7] R. Weber, H. Schek, and S. Blott, “A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces,” Proceedings of the 24th
International Conference on Very Large Data Bases, pp.
194-205. 1998.

[8] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in
High Dimensions via Hashing,” Proceeding of
International Conference on Very Large Data Bases, pp.
518–529, 1999.

[9] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni,
“Locality-Sensitive Hashing Scheme Based on p-Stable
Distributions,” Proceedings of the 20th Annual
Symposium on Computational geometry. pp. 253-262,
2004.

[10] S. J. Gong, “A Collaborative Filtering Recommendation
Algorithm Based on User Clustering and Item Clustering,”
Journal of Software, vol 5(7), 2010, pp. 745-752.

[11] A. Andoni, P. Indyk, “Near-Optimal Hashing Algorithms
for Approximate Nearest Neighbor in High Dimensions,”
Proceeding of 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 459-468, 2006.

[12] J. T. Robinson, “The K-D-B tree: A search structure for
large multi-dimensional dynamic indexes,” Proceedings of
1981. ACM SIGMOD International Conference on
Management of Data (SIGMOD), 1981.

[13] D. Lomet, B. Salzberg, “The hB-tree: A multiattribute
indexing method with good guaranteed performance,”
ACM Transactions on Database System, 1990. vol.15,
pp.625-658.

[14] K. Ibrahim, F. Christos, “Hilbert R-Tree: An Improved R-
Tree Using Fractals,” Technical Report, Institute for
Systems Research, University of Maryland. TR 93-19.

[15] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger, “The
R*-tree: an efficient and robust access method for points
and rectangles,” ACM SIGMOD Record, vol. 19(2), 1990,
pp. 322-331.

[16] L. F Yang, X. L. Huang, R. Lv, M. M. Kang, X. X. Yin,
“Performance of SS-Tree with Slim-Down and
Reinsertion,” International Conference on Algorithm
Measuring Technology and Mechatronics Automation,
2010.

[17] K. Lin, H. V. Jagadish, C. Faloutsos, “The TV-Tree: An
Index Structure for High-Dimensional Data,” The VLDB
Journal -VLDB, 1994.

[18] S. Berchtold, D. A. Keim, H. P. Kriegel, “The X-tree: An
Index Structure for High-Dimensional Data,” Jounal of
22nd VLDB, pp.28-39, 1996.

[19] B. H., A., D. Horn, H. T. Siegelmann, “Support Vector
Clustering,” Journal of Machine Learning Research, 2001
pp. 125-137.

[20] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” Advances in Neural
Information Processing Systems 14: Proceedings of the
2001. pp.849-856

[21] C. Williams, M. Seeger, “Using Nyström Method to Speed
up Kernel Machines,” Advances in Neural Information
Processing Systems, 2001, vol. 13, pp. 682-688

[22] L. C., Y, “Comparison of Learning Algorithms for
Handwritten Digit Recognition,” Proceedings of the
International Conference on Artificial Neural Networks,
1995, pp. 53-60.

[23] http://archive.ics.uci.edu/ml/
[24] http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-

bayes.html
[25] G. B. Wang, X. J. Li, K. F. He, “Kernel Local Fuzzy

Clustering Margin Fisher Discriminant Method Faced on
Fault Diagnosis,” Journal of Software, vol 6(10), 2011, pp.
1993-2000.

[26] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F.
Herrera, “An overview of ensemble methods for binary
classifiers in multi-class problems: Experimental study on
one-vs-one and one-vs-all schemes,” Pattern Recognition,
vol 44(8), 2011, pp. 1761–1776.

[27] J. H. Friedman,. “Flexible Metric Nearest Neighbor
Classification,” Technique Report, Department of Statistics,
Stanford University, 1994.

[28] T. Hastie, R. Tibshirani, “Discriminant Adaptive Nearest
Neighbor Classification,” IEEE Trans. on Pattern Analysis
and Machine Intelligence. vol. 18(6), 1996, pp. 607-615.

[29] Y. P. Li, Y. M. Ye, X. L. Du, “A New Vertex Similarity
Metric for Community Discovery: a Local Flow Model,”
Journal of Software, vol 6(8), 2011, pp. 1545-1553.

Ping Ling was born in Xuzhou, Jiangsu
Province, China, Feb. 1979. She received
her Bachelor’s degree in 2000, from
College of Computer Science and
Technology, Xuzhou Normal University.
And then she received her Master’s
degree and PHD from College of
Computer Science and Technology, Jilin
University in 2006 and 2010 respectively.

She research field focuses on data mining, intelligence
computing, support vector machine and support vector
clustering, etc.

Xiangsheng Rong was born in Yanggu, Shandong Province,
China, 1975. He received his Bachelor’s degree in 1997, from
Department of Logistic Command, Xuzhou Air Force College
of P. L. A. And then he received his Master’s degree in 2003
from Xuzhou Air Force College of P. L. A. His major research
directions include the application of information technology and
dynamic programming technique in military logistic command,
intelligence command in combined operations of a sham battle,
etc.

Yongquan Dong was born in Xuzhou, Jiangsu Province, China,
1979. He received his Bachelor’s degree in 1994, from College
of Computer Science and Technology, Harbin Institute of
Technology. Now his research directions are operational
research in military logistic command, intelligent computing
application in logistic command, etc.

2092 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

