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Abstract—This paper proposes a Clustering-based Nearest 
Neighbor Search algorithm (CNNS) for high dimensional 
data. Different from existing approaches that are based on 
rigid-grid partition to develop data access structure, CNNS 
creates indexing structures according to data inherent 
distribution, with help of a progressive-styled clustering 
operation. The grids produced in this way adapt to data 
natural contours. CNNS is characterized with dataset 
reduction and dimension reduction. And parameterization 
heuristics are given to bring computation ease to CNNS. 
Empirical evidence on real datasets demonstrates the fine 
performance of CNNS. 
 
Index Terms—clustering-based method, nearest neighbor 
searching, grid partion, parameterization heuristics 
 

I.  INTRODUCTION 

Nearest neighbor (NN) searching is a fundamental 
problem in wide applications like data compression, data 
mining, information retrieval, image and video databases, 
pattern recognition and statistics analysis. This problem is 
stated as: given N points in a n dimensional space, find 
the nearest neighbor for a query point. For low 
dimensional data, it can be solved exactly. While in high 
dimensional case, the exact answer is shadowed by the 
course of dimensionality, that is, either the query time or 
the space required is exponential in n.  In fact, for large 
enough n, the modified searching methods provide little 
improvement over the linear scanning method. Thus 
efforts are transferred to finding an approximate solution, 
that is, an approximate NN whose distance from the 
query point is at most (1+ε) times its distance from the 
nearest neighbor [1]. 

A number of NN approaches for high dimensional data 
were proposed. Most of them share the same spirit of 
combining dimension reduction and data space partition. 
Dimension reduction aims to overcome the bottleneck of 
dimensionality by using data new representations while 
keeping a high portion of information. There are linear 
algebraic method Karhunen Loeve transformation (KLT) 
[2, 3] and mathematical transforms like DFT [4], DCT [5], 
DWT [6]. They are applied to general dynamic data, 
time-series, image or document data. Data partition 

creates the indexing structure. Diverse partition methods 
can be reduced to the definition of hashing functions. The 
designed hash function is expected to ensure that data that 
are close to each other have much higher probability of 
collision than those far apart. Various hash functions 
produce different shapes of hashing bucket. VA-file [7] 
produces rectangle-shaped bucket to group data. Another 
famous method family is Locality Sensitive Hashing 
(LSH) [8]. LSH employs random selection to finish 
dimension reduction; employs repeating random 
projection technique to achieve data partition. Based on 
this idea, interval-shaped [9], cell-shaped [10], ball-
shaped [11] appeared in literatures. These partition 
procedures are often described by tree structure, say, 
Kdb-tree [12], hb-tree [13], R-tree [14], R*-tree [15], ss-
tree [16], TV-tree [17] and X-tree [18]. 

These existing methods are characterized with rigid 
grid, ignoring inherently populated regions that naturally 
can act as buckets and can be helpful to locate data 
according to similarity. This paper focuses on these 
shortcomings by constructing buckets that coincide with 
the contours of inherently populated regions, which is 
achieved by clustering procedure. To construct data 
access structure, clusters are split into buckets of desired 
size, which is accomplished by a progressive-fashioned 
procedure. For a query q, it is indexed according to the 
nearest buckets, and then its NN is probed. For 
computation ease, before indexing, data dimensionality is 
reduced by spectrum analysis (SA); dataset is reduced by 
a self-tuning support vector clustering approach. And this 
paper proposes a SVD-based SA algorithm (SVDSA) to 
derive all data’s new representations from reduced dataset. 
That brings CNNS the adaptation to high dimensional 
and large-sized dataset. 

The paper is arranged as follows. Section 2 reviews 
some popular techniques of NN searching, basic support 
vector clustering (SVC) and SA. CNNS algorithm and its 
implementation details are given in Section 3, followed 
by SVDSA algorithm in Section 4. Section 5 records 
experiment results. Conclusion is in the last section. 

II.  OVERVIEW OF CURRENT TECHNIQUES 
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A.  VA-file and LSH Family 
VA-file approach is a partition-based approach. It 

divides data space into 2t rectangular cells where t is the 
total number of bits specified by user. Each rectangular-
cell has a bit representation of length t to approximate 
data points falling into the cell. The VA-file is actually an 
array of bit vector approximations based on the 
quantization of the original vectors. To search NN in a 
VA-file, vector approximations are scanned firstly to find 
rectangular candidates, and candidates are traversed to 
find true NN. 

LSH family is also based on partition, but the grid 
yielded from partition is of diverse shapes. Interval-
shaped LSH (iLSH) [9] defines the hash map from Rn to 
R1, that is, points are projected to line and that line is 
partitioned into several intervals. Another fashion, cell-
shaped LSH (cLSH) [10] builds grids by C pairs of 
random numbers (d, vd), where d is an integer between 1 
and n and vd is a value within the range of the data along 
the dth coordinate. The pair (d, vd) partitions data 
according to an inequality: xid < vd. xid is the coordinate of 
xi in selected dth dimension. Based on whether meeting 
that inequality or not, each xi in each partition yields a C-
length Boolean vector to state true or false state under C 
random embeddings. Points with the same Boolean 
vector are grouped into the same cell. After P partitions, 
each point belongs to P cells simultaneously: CE1…CEP. 
Recently ball-shaped LSH (bLSH) [11] appeared defines 
ball as the underlying geometric shape. It starts from an 
initial ball to generate other balls by shifting the original 
one. The number and size of ball are specified 
theoretically. 

B.  SVC 
Classical SVC aims to find the cluster contours [19] by 

optimizing following target function: 

,
max ( , ) ( , )i i i i j i j

i i j
K x x K x x

γ
γ γ γ−∑ ∑             (1) 

s.t.  1i
i
γ =∑ , 0 i svcCγ≤ ≤ . 

Therein n
ix ∈ℜ , nℜ  is the input space, and Csvc is the 

penalty parameter to tradeoff error and clustering 
accuracy. Kernel function takes Gaussian fashion: 

2 2( , ) exp( / )|| ||i j i jk x x x x σ= − −  . Points with 

0iξ = and 0 i svcCγ< <  are mapped to the surface of 
sphere, referred as non-bounded Support Vector (nbSV). 
They describe cluster contours. Those points with 0iξ > , 

and i svcCγ =  are located outside the hyper sphere, and 
are called bounded Support Vector (bSV). Cluster 
assignment is done based on the deduction of an adjacent 
matrix of point pairs. 

C..  SA 
SA [20] procedure is used to obtain discriminant 

directions underlying data distribution. SA obtains data 
spectral projections by eigen-decomposing affinity matrix, 
and then groups data spectrums with a simple method. It 

assigns point the same label as its spectrum projection. Its 
main operation is based on the eigen-decomposition on 
pairwise matrix H, where H is the normalized version of 
data affinity matrix. Select top p eigenvectors and form 
spectral embedding matrix S by stacking p eigenvectors 
in columns. Rows of S are data spectral coordinates. 
Based on them, further partition or clustering task can be 
achieved in a simple fashion. 

III.  CNNS ALGORITHM 

A.  Idea 
The idea of CNNS is described in below steps: 
1) Tuning-scaled SVC runs to generate data 

representatives {DRi}; 
2) SA runs to group {DRi} in spectrum space; 
3) SVDSA runs to obtain all data’s spectrums; 
4) Label data according to its nearest DR; 

    5) For each cluster, PK-means performs progressively 
to form hashing bucket; 

6) Index the query. 
Dataset is reduced by a modified SVC, whose Kernel 

function width is tuned adaptively. Then the resulted 
{DRi} are mapped to spectral space, where they are 
grouped. New representations of all data are derived from 
{DRi} by SVDSA procedure. With the nearest-labeling 
rule, data are clustered. Clusters provide natural 
boundaries that basic grids should observe, that is, a 
bucket is not expected to cover two clusters. Therefore 
buckets are formulated within each cluster respectively. 
We do the K-means clustering in a progressive way, to 
split a cluster into sub-clusters, and these sub-clusters act 
as buckets. The splitting runs until each bucket is 
equipped with the appreciate size. 

In query time, q is indexed by its nearest bucket: 
label(q) = min j {||s(q) – s(bj)||} 

Where s(·) denotes the spectrum representation of 
argument, bi is the center of bucket Bi. 

B. Self-tuning SVC 
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Figure 1. SVC clustering result 
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This section introduces the strategy to tune the scale 

parameter of Gaussian Kernel. The idea is to adjust the 
scale parameter according to the local distribution 
information around individual data point. That will make 
the algorithm adapt to diverse dataset. 

Classical SVC generates SVs describing cluster 
contours. Self-tuning SVC (TSVC) proposed in this paper 
produces more SVs of meaning to serve as data 
representatives by tuning the scale parameter of Kernel 
function data-dependently. Tuning idea is to set 
individual scale factor for each point, that is, for x, its 
scale factor is σx = ||x -xr||. To measure Kernel affinity 
between x and y, their scale factors are combined, leading 
to the new Gaussian Kernel: 

2 2|| || || ||
|| || || ||( , ) exp( ) exp( )

x y r r

x y x y
x x y yk x y σ σ

− −
⋅ − ⋅ −= − = −       (2) 

r is specified as the max gap in the list of distances 
from x to other points: r = max j { d(x, xj) - d(x, xj-1) }, 
where d(x, xj) is the row of Euclidean distance matrix and 
it is sorted in an ascending order. The result of SVC and 
TSVC is plotted in Figure 1 and 2, where Csvc = 0.8. In 
Fig. 1, SVs are located on cluster boundaries. In Fig. 2, 
SVs are located on both cluster boundaries and the 
important positions within clusters where sharp changes 
of density happen. These SVs describe a sketch of dataset. 
 

C.  PK-means 
Different from classical K-means method that doesn’t 

know the number of clusters and specifies the 
initialization in a random way, the algorithm of this paper 
propose PK-means to fulfill clustering task. 

The key of PK-means is that it is an iteration procedure. 
That is, in each iteration run of PK-means, a bucket is 
constructed to help consequent clustering process. As to 
the termination of PK-means’s iteration, this algorithm 
considers to ensure the population of each bucket is 
below the upper bound for the access effectiveness. Since 
the bucket is obtained by splitting clusters, so to do 
splitting we first duplicate its cancroid. And then we 
perturb the copy randomly to form the centroid of the 
new clusters. Perform standard K-means with the number 
of clusters, K, parameter being 2, with the aim to give the 
2-split result. Split current buckets iteratively. As long as 
there is a bucket whose size is higher than the upper 

bound, let K=K+1, and then run K-means with the new K. 
Denote Ith cluster as CI, and the resulted buckets as the set 
B = {Bi} with corresponding centers b = {bi}; denote NB 
as the number of buckets. 

Conclude above analysis into the PK-means algorithm. 
So the steps of PK-means are: 

 
Therein δ is a random offset. 
Note that Standard K-means procedure returns the 

optimal clustering result with parameters coming form 
three aspects. They are parameters of CI, cluster number 
NB and initial centers b. The calling parameter b1 
corresponds to the mean of CI. ub is the upper bound on 
bucket size. It is specified by following steps: 

1) For each DRi, sort the spectral distance values of it 
to other data xj in the ascending order: {||s(DRi) - s(xj)||}; 

2) Find the max gap between two adjacent distance 
values of this list, as shown in formula (9). 

3) Compute ub = λ(average{gap(i)}). 
Here the idea is to employ the average size of neighbor 

as the parameter. Coefficient λ >= 2. According to 
experimental results of below section, this paper sets this 
coefficient λ = 2. 

Obviously gap(i) is important in above 
parameterization steps. Here for point xi, we firstly find 
the inherent dense region around it, which is reflected by 
the maximum gap between two adjacent distance values. 
Such a gap value reveals the size of neighborhood 
centered at xi. Then we rescale this size with some 
distance value. So the setting of gap(i) is: 

1

1

|| ( ) ( )|| || ( ) ( )||
|| ( ) ( )||( ) max { }i j i j

i j

s DR s x s DR s x
j s DR s xgap i +

+

− − −
−=       (3) 
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Figure 2. TSVC clustering result 

PK-means (CI, b1) 
{  
B1 = CI ;   
NB = 1; 

   If (|CI | > ub) 
{  
flag = 0;  
NB++;  
bNB=  b1+ δ; 
While (not flag) 

{  
[B, b] = K-means(CI, NB, b); 

    flag = 1;   
i = 1; 

 While (i <=  NB & flag) 
         If  (|Bi | > ub) 
          { 

flag = 0;    
bNB+1=  bi+ δ;    
NB++; 

} 
Else   
i++; 

} 
} 

Return B; 
} 
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gap(i) is viewed as the estimate of DRi’s neighborhood 
size.  

For completeness, below steps are details of K-means 
procedure: 

 
Therein Nj is the size of interval of [gj-1, gj], and g = 

{gj…}, μ = {μj…} to express interval cut points and 
interval centroids. 

IV.  SVDSA 

Set |DRs| = M and |X| = N, with X being dataset. Form 
pair-wise Kernel affinity matrix HM×N between DRs and 
X. We normalize H by rescaling its each entry using 
corresponding sum-of-row and sum-of-column. Let R = 
diag (r1…rM) with 1 ij

N
i j Hr == Σ , and C = diag  (c1…cN) 

with 1 ij

M
i i Hc == Σ . H is normalized as: 

* 1/ 2 1/ 2( ) ( )H R H C− −= ⋅ ⋅                 (4) 
Then SVD is conducted on H* in the way: 

* 1/ 2 1/ 2( )( )T TH U V U V Q J= Λ = Λ Λ = ⋅        (5) 
Therein UT·•U and VT•V are identity matrices of 

corresponding sizes and Λ is a diagonal matrix of singular 
values. The vectors corresponding to the largest m 
singular values consist of the low-rank approximation of 
H. Columns of J are spectrum coordinates of all data. 
Dimensionality of spectrum coordinates, m, is specified 
by the max gap of the singular value list that is sorted in 
the descending order. Using SVD instead of Eigen Value 
Decomposition, complexity drops from O(N3) to 
O(M2×N). 

Then K-means is performed on DRs’ new 
representations and the rest data are labeled according to 
its nearest DR. <add how to compute spectrums of 
query> 

Add Nystrom method and literature [21], to the query 
x*, view it as the new data, and we update the eigen value 
and eigen vector according to Nystrom method: 

* 1
i i

N
N

λ λ+=                                (6) 

1,

*
1

1
N Ni ii

N
N

Kμ μλ ++
=                         (7) 

There *
iλ  and iλ  are the new and original eigen values; 

*
iμ  and iμ  are the new and original eigen vectors. Based 

on new eigen vector, query is equipped with its spectrum 
coordinates. 

V.  EXPERIMENTAL RESULTS 

Firstly we combine the TSVC, SVDSA and K-means to 
form a clustering method, TSK. We apply it on a skewed 
dataset to check its ability to formulate appreciate cluster 
boundaries. TSK is compared with other clustering 
approaches: pure K-means, NJW and standard SVC. 
NJW is an appealing spectrum clustering method. It 
shows fine behaviors in multi applications. It maps data 
to a spectrum space and on the spectrum coordinates of 
original data points it conducts the clustering process. To 
datasets with special distribution shapes, NJW and its 
variants sometimes obtain good results. 

Figure 3 gives the illustration of experimental dataset. 
Figure 4 shows the result of K-means. 

 

 
It is clear that clustering result of Figure 4 is undesired. 

The reason of K-means’s failure lies in its hard metric 
plus inflexible partition. It can only address the datasets 
with Gaussian-type distribution. In times of datasets with 
random distribution, K-means often presents more errors. 
Furthermore it has to consume more cost to find the 

K-means (CI, K, μ) 
{ ∆ = ∞;    
flag = 0; 

   While (not flag) 
 {  

For j = 1: K 
  

1[ , ]
1

i j jj x g g i
j

xNμ
−∈= Σ ; 

     For j = 2: K 

  1
1 2

j j
jg

μ μ−

−
+

= ; 

    1 1

2
[ , ] ( )' K

j i j jx g g i jx μ= −∈ −Δ = Σ Σ ; 

    If  (∆’/∆ < ε)        
flag = 1; 

                 Else  
∆ = ∆’; 

 } 
    Return (g, μ); 
} 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

Y Cluster1

Cluster2

Cluster3

 
Figure  4. K-means Result 
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Figure 3. Dataset 
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proper number of clusters if the number of clusters is 
unknown. 

Figure 5 and Figure 6 give the results of NJW under 
two Kernel scales. These two scales are two 
representatives of a series of scale parameters. Actually 
we tried many scales and find experimental results are 
poor. It is due to the mismatch between fixed scales and 
the skewed distribution of experimental dataset. 

SVC also can’t present good result, as shown in Figure 
7. Figure 8 describes the DRs produced by TSVC. It finds 
resulted DRs are located within three clusters. In 
consequent clustering process, they are grouped correctly 
by SVDSA. That correct clustering results are guaranteed 
by the idea of SVDSA. And these results also indicate 
TSK does hold the good adaptation to datasets with 
various distributions; this adaptation, of course, is 
brought by scale tuning strategy. 

From these figures, the validation of TSK and SVDSA 
can be verified. 

To make a further insight of TSK process, we run it on 
some real and benchmark datasets that are taken from 
UCI Repository of Machine Learning Databases [22]. 
These datasets are: Breast Cancer (BC), Diabetes, Vote, 
Thyroid, Heart and Waveform. Table 1 compares the 
errors of the above methods and another clustering 
algorithm: Girolami method [23]. Girolami is a more 
sophisticated Kernel-based expectation-maximization 
method. 

From results of Table I, the performance of the 
proposed TSK can be verified. 

 

 

 

 
After the usual comparison on clustering performance, 

in below experiments, two evaluations are used to check 
the quality of indexing approaches. 

Firstly the quality of the indexing approaches is 
reflected by the quality of query’s neighborhood. For 
some query q, we use the average affinity of q to its 
neighbors of the nearest bucket as the first evaluation. 
Assume q is indexed by Bi bucket; then the average of q’s 
affinity within the bucket Bi is defined as the average 
affinity between q and its neighbors coming from Bi. In 
details, such an average affinity is defined in an 
exponential way: 

21 exp( || || )
ii x BBAf q x∈= Σ − −                   (8) 

TABLE I.   

ERROR COMPARISON ON REAL DATASETS (%) 

Dataset K-means Girolami SVC NJW TSK 
BC 3.81 2.93 5.17 3.22 3.17 

Diabetes 18.6 14.8 16.8 15.2 14.25 
Vote 7.92 4.62 6.11 4.43 4.28 

Thyroid 6.06 5.83 6.25 5.01 5.26 
Heart 7.23 6.57 7.06 6.5 6.42 

Waveform 3.51 3.11 3.72 2.82 3.07 
The second evaluation is the ratio of false hits in q’s 

nearest bucket. False hits are errors among neighbors, say, 
points having different label with q. That ratio tells how 
well the clustering approach finds relevant data even to 
the extent that it skips some correct answers. Both two 
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Figure 8. DRs of TSVC 
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Figure 5.  NJW: 1/σ2=19.9 
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Figure 6. NJW: 1/σ2=2.79 
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Figure 7.  SVC: 1/σ2=0.5612 

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 2089

© 2013 ACADEMY PUBLISHER



evaluation criteria well reveal the quality of 
neighborhood. 

Now we run CNNS on News Group dataset [24]. News 
Groups dataset is a text records dataset, which contains 
about 20,000 articles. These articles are divided into 20 
newsgroups according to their topics. These groups’ 
topics are: 

NG1: alt.atheism;  
NG2: comp.graphics;  
NG3: comp.os.ms.windows.misc;  
NG4: comp.sys.ibm.pc.hardware;  
NG5: comp.sys.mac.hardware;  
NG6: comp.windows.x;  
NG7: misc.forsale;  
NG8: rec.autos;  
NG9: rec.motorcycles;  
NG10: rec.sport.baseball;  
NG11: rec.sport.hockey;  
NG12: sci.crypt;  
NG13: sci.electronics;  
NG14: sci.med;  
NG15: sci.space;  
NG16: soc.religion.christian;  
NG17: talk.politics.guns;  
NG18: talk.politics.mideast;  
NG19: talk.politics.misc;  
NG20: talk.religion.misc. 
Before doing the clustering experiments, the 

preprocessing work is to apply the usual tf.idf weighting 
schema to express documents. 

That is, set vector  1 2( , , ......, ) 'i i i imx x x x=  for each 
document. 

Here logij ij j
nx t df= ⋅ , ijt  is the appearance frequency 

of word fj in document di, n is the number of documents, 
and dfj is the number of documents that contain word fj. 
We delete words that appear too few times and normalize 
each document vector to have unit Euclidean length. 

We choose some classes to form experiment subsets, 
where 10% data randomly selected serve as queries. 
Besides CNNS, the mentioned methods run for 
comparison. Parameters involved are specified according 
to their designers. Performance of them is described in 
Table 1, where two values in a blank are false hits ratio 
and Af respectively. 

From Table II, it is clear that CNNS achieves the top 
place in 4 of 6 cases, and follows closely the optimal 
result in other 2 cases. In the first three subsets, where 
data classes are distinct relatively, CNNS is competitive 
with bLSH. Although in {N1, N2, N7, N8} and {N7, N8, 
N12, N16, N17} CNNS’s performance is not the best, its 
bucket quality is better than other methods. In the last 
three subsets, where class boundaries are blurry, CNNS’s 
advantage is obvious over its peers, which indicates the 
effect of clustering procedure. 

Among three LSH-based approaches, bLSH does a 
better job on average, followed by cLSH, and then iLSH. 
bLSH buckets are ball-shaped, which better approximates 

the neighborhood shape. iLSH presents a moderate 
performance due to its weak hashing power that 
summarize data features to a scalar. As mentioned before, 
their different hashing embeddings specify different 
shapes of basic geometric grid, and these fixed-shaped 
grids might only exhibit their unique advantage in 
particular data distribution. While the shape of CNNS 
buckets depends on the natural contour of data itself, with 
adaptation to difficult datasets. That fosters CNNS’s 
success. Note that CNNS and bLSH produce lowest Af 
values, because buckets of CNNS capture the natural 
boundary of class and contain true neighbors. VA-file 
produces buckets with similar shape with cLSH, so they 
present competitive results. 

TABLE II.   

ACCURACIES OF  KNN BASED ON NEIGHBORHOOD FORMULATION 
METHODS (%) 

Data VA-file iLSH cLSH bLSH CNNS

N1, N2, N7, N8 84.4% 
0.81 

85.3% 
0.85 

87.2 
0.83 

88.3%
0.88 

88.2%
0.89

N6, N7, N8 83.2% 
0.79 

82.8% 
0.75 

83.4% 
0.81 

84.0%
0.88 

84.0%
0.86

N7, N8, N12, 
N16, N17 

83% 
0.8 

83.1% 
0.82 

85.7% 
0.86 

85.2%
0.84 

85.6%
0.84

N2, N3, N4 64.8% 
0.59 

63.7% 
0.57 

66% 
0.6 

66.8%
0.65 

69.2%
0.66

N4, N5, N6 61.9% 
0.51 

60.7 
0.49 

62.0% 
0.51 

62.1%
0.53 

64.6%
0.53

N12, N13,  
N14, N15 

69% 
0.65 

65% 
0.62 

69.1% 
0.65 

70.6%
0.67 

72.4%
0.68

Finally more datasets are used for experiments: 
Waveform [22], Musk [25] and Breast Cancer (BC). 
Musk has two versions Musk1 and Musk2. They record 
476 and 6598 conformations for musk molecules and 
non-musk molecules. BC has two databases: breast-
cancer (named as BC1) and breast-w (named as BC2), to 
describe the malignant and benign cases with 33 
attributes and 30 attributes respectively. 

The last section of experiments is to combine the 
proposed algorithm CNNS kNN to form an assembling 
classifier CNNSk. The aim of doing experiments on such 
an assembling classifier is to observe the generalization 
ability and clustering performance CNNS. 

In experiments, CNNSk is compared with more 
popular classifiers. They are: classical kNN, the 
clustering method that takes distance information as 
clustering criterion; SVM11 [26], the assembling classifier 
consisting of classical SVM with the final decision being 
decided in the voting strategy; Machete [27], a recursive 
partitioning procedure, in which the input variables are 
used for splitting at each step is the one that maximizes 
the estimated local relevance; DANN, an adaptive nearest 
neighbor classifier [28]; Scythe [27], a method that do the  
generalization of Machete method; and Adamenn, an 
algorithm that is focused on the adaptive nearest neighbor 
approach, and this algorithm works in many practical 
applications [30]. 

In below experiments, the key spirit of last four 
methods is to develop weighted metrics through 
Dimension Derivation (DD) technique. Therefore in this 
paper they are called DD methods or DD-based methods. 
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Below they are combined with kNN to finish 
classification, and the resulted classification accuracy is 
compared with CNNSk. 

In experiments, except CNNSk, other clustering 
methods have no parameterization strategy of 
neighborhood. So the neighborhood size of kNN and four 
DD-based methods are parameterized by 20-fold cross-
validation. That cross-validation is the common method 
to parameterize algorithm parameters. And this 
parameterization process of course consumes more cost. 
The super parameters of SVM11 are also set by cross-
validation. Sample 10% data at random as testing data. 
Table III describes the average of classification 
accuracies of these methods on UCI datasets. 

TABLE III.   

CLASSIFICATION ACCURACIES COMPARISON (%) 

Data Waveform Musk1 Musk2 BC1 BC2
kNN 75.1 88.4 62.8 70.2 93.1

SVM11 83.4 93.6 68.5 76.8 96.8
C4.5 77.2 91 68.5 74.1 95.3

DANN 84.8 94.2 67.3 75.1 96.1
Machete 79.7 94.9 66.1 75.8 96.2
Scythe 84.9 96 69.8 74.3 97.3

Adamenn 85.6 97 71.2 77.1 97.7
CNNSk 85.7 97 72 77.2 98.2

It is easy to find from Table III that the advantage of 
four DD methods and CNNSk over the first three 
methods is clear. For kNN, it works poorly due to its 
employment of Euclidean metric. Such a metric tends to 
lead errors of classes memberships when the dataset is of 
special distribution shape. And such a metric is not 
specialized to high dimensional data, so it consequently 
bring many errors. SVM11 is also trained in Euclidean 
space, while it presents higher accuracy thanks for its 
non-linear decision interface. C4.5 yields moderate 
results. 

Then take a look at four methods based on DD 
technique. Find that among four DD methods, Adamenn 
works best on average; it investigates dimension 
relevance from probability distribution and presents a 
wisely weighted metric, thus spanning qualified 
neighborhood. But this method has to parameterize six 
parameters. No matter parameterization through 
searching strategy in the grid parameter space or the 
cross-validation, or some specified parameterization 
methods, huge computation will be consumed. Such 
expensive cost in tuning six parameters overshadows its 
advantages. Scythe follows it closely. Machete follows 
Scythe due to its greedy spirit. DANN approximates the 
weighted Chi-squared distance, which might fail in 
datasets of non-Gaussian distribution. That is, DANN 
lacks the adaptation to datasets with diverse distributions. 
Now look at CNNS. Clearly CNNS does best in 2 of 5 
cases. And CNNS achieves the second place in 3 of 5 
cases. CNNS’s behaviors are not good as Adamenn. And 
the later gives optimal result in 3 of 5 cases, but if we 
take the fact that CNNS has computation ease in 
parameterization and steady performance into 
consideration, it knows that CNNS is a welcome method 
in practice. 

From above experiments, it is concluded that if both 
performance and cost are taken into consideration, CNNS 
is a fine choice. 

VI.  CONCLUSION 

This paper presents a NN search algorithm based on 
clustering (CNNS). CNNS organizes data with buckets, 
which are split into natural sub-clusters, namely, basic 
grids. The NN found by CNNS comes from the bucket 
that the query is indexed to. Indexing processing and NN 
searching are conducted in the spectrum space, and the 
splitting of clusters is finished by a progressive fashioned 
clustering method. CNNS is equipped with two 
components for computation ease: dataset reduction and 
dimension reduction. The first target is achieved by a 
tuning-scaled SVC, and the second target is fulfilled by 
the SVDSA procedure. Empirical evidence on real 
datasets demonstrates the performance of CNNS in 
producing qualified NN and neighborhood. Experimental 
results also verify the quality of two components. In 
empirical results, it finds the buckets produced by CNNS 
are more adaptable to data distribution than methods 
based on rigid partition. 

Future work direction is to probe the more informed 
method of neighborhood development. Especially it is an 
appealing trend to specify neighborhood based on local 
geometric information around data points. Since 
neighborhood also carries much local distribution 
information, seeking neighborhood’s details from data 
point’s local dense or sparse geometric properties is a 
good research direction. 
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