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Abstract— How to select the suitable parameters and kernel 
model is a very important problem for Twin Support Vector 
Machines (TSVMs). In order to solve this problem, one 
solving algorithm called Invasive Weed Optimization 
Algorithm for Optimizating the Parameters of Mixed 
Kernel Twin Support Vector Machines (IWO-MKTSVMs) 
is proposed in this paper. Firstly, introducing the mixed 
kernel, the twin support vector machines based on mixed 
kernel is constructed. This strategy is a good way to solve 
the kernel model selection. In order to solve the parameters 
selection problem which contain TSVMs parameters and 
mixed kernel model parameters, Invasive Weed 
Optimization Algorithm (IWO) is introduced. IWO is an 
optimization algorithm who has strong robustness and good 
global searching ability. Finally, compared with the classical 
TSVMs, the experimental results show that 
IWO-MKTSVMs have higher classification accuracy. 
 
Index Terms— Mixed kernel, Invasive weed optimization 
algorithm, Parameter optimization, Twin support vector 
machines 

I.  INTRODUCTION 

Support Vector Machines (SVM) is known as a new 
generation learning system based on statistical learning 
theory [1-4]. Because of its profound mathematical 
theory, SVM has played excellent performance on many 
real-world predictive data mining applications such as 
text categorization, medical and biological information 
analysis [5-7],etc.  

One of the main challenges for the traditional SVM is 
the high computational complexity. The training cost 
of 3( )O n , where n  is the total size of the training data, 

is too expensive. In order to improve the computational 
speed, Jayadeva et al. [8] proposed a new machine 
learning method called Twin Support Vector Machines 
(TSVMs) for the binary classification in the spirit of 
proximal SVM [9-10] in 2007. TSVMs would generate 
two non-parallel planes, such that each plane is closer to 
one of the two classes and is as far as possible from the 
other. In TSVMs, a pair of smaller sized quadratic 
programming (QP) problems is solved, whereas SVM 
solves a single QP problem. Furthermore, in SVM, the 
QP problem has all data points in the constraints, but in 
TSVMs they are distributed in the sense that patterns of 
class -1 give the constraints of the QP used to determine 
the hyperplane for class 1, and vice-versa. This strategy 
of solving two smaller sized QP problems, rather than 
one larger QP problem, makes the computational speed 
of TSVMs approximately 4 times faster than the 
traditional SVM. Because of its excellent performance, 
TSVMs has been applied to many areas such as speaker 
recognition [11], medical detection [12-14], etc. At 
present, many improved TSVMs algorithms have been 
proposed. For example, in 2010, M.Arun Kumar et al. 
[15] brought the prior knowledge into TSVMs and least 
square TSVMs and then got two improved algorithms. 
Experimental results showed the proposed algorithms 
were effective. In 2011, Qiaolin Yu et al.[16] adding the 
regularization method into the TSVMs model, proposed 
the TSVMs model based on regularization method. This 
method ensured that the proposed model was the 
strongly convex programming problem. In 2012, Yitian 
Xu et al.[17] proposed a twin multi-class classification 
support vector machine. Experimental results 
demonstrated the proposed algorithm was stable and 
effective.  

As a new machine learning methods, there are still 
many places needing to be perfect for TSVMs. Specially, 
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the learning performance and generalization ability of 
TSVMs is very dependent on its parameters and kernel 
model selection. If the choice is reasonable, it will be 
very difficult to approach superiorly. However, the 
current research on this aspect is very little. At present, 
the kernel model selection adopts the random or 
experimental method. These methods are blindness and 
time consuming. For the parameters selection, the grid 
search method is commonly used. However, the search 
time of this method is too long, especially in dealing with 
the large dataset. In order to solve this problem, one 
solving algorithm called Invasive Weed Optimization 
Algorithm for Optimizating the Parameters of Mixed 
Kernel Twin Support Vector Machines 
(IWO-MKTSVMs) is proposed in this paper. Firstly, in 
view of the blindness of the kernel model selection for 
TSVMs, one kernel function with good generalization 
ability and the other kernel function with good learning 
ability is combined, formed a mixed kernel model with 
the more excellent performance. Secondly, because of 
the limitation of the traditional selection method for 
TSVMs, we use Invasive Weed Optimization (IWO) 
algorithm which has fast global searching ability to 
select the TSVMs parameters and the mixed kernel 
parameters, so that we would obtain the optimal 
parameters combination. Finally, the experimental results 
show the effectiveness and stability of the proposed 
method. 

The paper is organized as follows: In section 2, we 
briefly introduce the basic theory of TSVMs and the 
analysis of its parameters. In section 3, IWO-MKTSVMs 
algorithm is detailed introduced and analyzed. 
Computational comparisons on UCI datasets are done in 
section 4 and section 5 gives concluding remarks.  

II. TWIN SUPPORT VECTOR MACHINES AND ITS 
PARAMETERS 

A．Twin Support Vector Machines 
Consider a binary classification problem of classifying 

1m data points belonging to class +1 and 2m data points 
belonging to class -1. Then let matrix A  in 

1m nR × represent the data points of class +1 while matrix 
B  in 2m nR × represent the data points of class -1. Two 
nonparallel hyper-planes of the linear TSVMs can be 
expressed as follows. 

1 1 0Tx w b+ =  and 2 2 0Tx w b+ =          (1) 
The target of TSVMs is to generate the above two 

nonparallel hyper-planes in the n -dimensional real 
space nR , such that each plane is closer to one of the 
two classes and is as far as possible from the other. A 
new sample point is assigned to class +1 or -1 depending 
upon its proximity to the two nonparallel hyper-planes. 
The linear classifiers are obtained by solving the 
following optimization problems. 

(1) (1) ( 2)
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1 1 2

, ,

1min
2

T

w b
Aw e b c e

ξ
ξ+ +  

(1) (1) (2)
2 2. . ( ) ,s t Bw e b e ξ− + ≥ −  

(2) 0.ξ ≥                   (2) 

( 2) ( 2) (1)

2(2) (2) (1)
2 2 1

, ,

1min
2

T

w b
Bw e b c e

ξ
ξ+ +  

(2) (2) (1)
1 1. . ( ) ,s t Aw e b e ξ+ ≥ −  

                (1) 0.ξ ≥                   (3) 
where 1c and 2c are penalty parameters, (1)ξ  and 

(2)ξ are slack vectors, 1e  and 2e  are the vectors of 

ones of appropriate dimensions. ( i )
jx represents the j th 

sample of the i th class. Introducing the Lagrange 
variables α  and β , the dual problems of (2) and (3) 
can be expressed as follows: 

1
2

1max ( )
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where, 1[ ]H A e= , 2[ ]G B e= . 
Defining ( ) ( )[( ) ]i T i T

iu w b= , 1,2i = the solution 
becomes: 

1
1 ( )T Tu H H G α−= − , 1

2 ( )T Tu G G H β−=  (6) 
To judge a new sample belonging to which class, we 

should find this sample is closer to which class. We can 
calculate the distance of a sample from a class by (7). 

( ) arg min( ( )),ii
f x d x=                (7) 

where, 
( ) ( )

( )

2

( )
T i i

i i

x w b
d x

w

+
= , 1,2i = .          (8) 

For the nonlinear case, the two nonparallel 
hyperplanes of TSVMs based on kernel can be expressed 
as follows: 

(1) (1) (2) (2)( , ) 0, ( , ) 0T T T TK x C w b K x C w b+ = + =  
where, [ , ]T T TC A B= . So the optimization problem of 
nonlinear TSVMs can be expressed as follows. 
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According to the lagrange theorem, the dual problems 

of (9) and (10) can be expressed by (11) and (12). 
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2 1. . 0s t c eβ≤ ≤           (12) 
where, 1[ ( , ) ]S K A C e= , 2[ ( , ) ]R K B C e= . 
Defining ( ) ( )[( ) ]i T i T

iv w b= , 1,2i = the solution becomes: 
1

1 ( )T Tv S S R α−= −  
1

2 ( )T Tv R R S β−=            (13) 

B．Analysis the Penalty Parameters of TSVMs  

The role of penalty parameters 1c and 2c is to adjust the 
ratio between the confidence range with the experience 
risk in the defining feature, so that the generalization 
ability of TSVMs can achieve the best state. The values 
of 1c and 2c smaller expresses the punishment on 
empirical error smaller. Do it this way, the complexity of 
TSVMs is smaller, but its fault tolerant ability is worse. 
The values of 1c and 2c are greater, the data fitting degree 
is higher, but its generalization capacity will be reduced. 
From the above analysis, we can know that the 
parameters selection is very important for TSVMs.  

III. INVASIVE WEED OPTIMIZATION ALGORITHM FOR 
OPTIMIZATING THE PARAMETERS OF MIXED KERNEL 

TWIN SUPPORT VECTOR MACHINES 

A．Kernel Function 
Similar to SVM, by introducing the kernel function, 

TSVMs can achieve the linear classification in the 
dimensional feature for the nonlinear problems. 
Therefore, kernel function takes an important role in the 
nonlinear TSVMs. At present, the most commonly used 
kernel functions in TSVMs are as follows: 

1) The linear kernel function:   
( , ) ,i iK x x x x=                 (14) 

2) The polynomial kernel function: 
( , ) ( ( , ) 1) , 0d

i iK x x x xγ γ= + >          (15) 
3) The gauss kernel function: 

2

2( , ) exp( )
2

i
i

x x
K x x

σ
−

= −             (16) 

4) The sigmoid kernel function: 
1 2( , ) tanh( ( , ) )i iK x x p x x p= +           (17) 

The choice of kernel function is a critical problem in 
the practical application. This is because that the learning 
ability of kernel function will directly affect the quality 
of kernel model performance realization. Kernel 
functions have many characteristics. Summed them up, 
kernel functions can be divided into two types, i.e., 
global kernel functions and local kernel function. For the 
global kernel function, its generalization ability is strong 
when its learning ability is weak. On the contrary, for the 
local kernel function, it has strong learning ability but its 
generalization ability is weak. In view of the respective 
characteristic of the global and local kernel function, if 
the two type of kernel functions are mixed into a hybrid 
kernel function, which will be able to achieve the good 
classification performance. Based on the above ideas, we 
will construct a mixed kernel function as follows. 

As we know, the most used kernel function in TSVMs 
is the Gauss kernel which is a typical local kernel 
function. For the Gauss kernel function, the sketch map 
of the testing point 0.1 is shown as figure 1. When the 
values of 2σ  are 0.1, 0.2, 0.3, 0.4, 0.5 respectively.  

From figure 1 we can see that the Gauss function has 
good learning ability because of only having a role for 
the near test point, but its generalization ability is weak. 

 
Figure 1. The curve of Gaussian kernel in test point 0.1 

 
The polynomial kernel is a typical global kernel 

function. Compared with the local kernel function, the 
learning ability of global kernel function is weak, but it 
has good generalization ability. For polynomial kernel 
function, the sketch map of the testing point 0.1 is shown 
as figure 2. when the values of q  are 1, 2, 3, 4, 5 
respectively. 

 
Figure 2. The curve of polynomial kernel in test point 0.1 

 
But the learning ability in the test point is not obvious, 

which means its learning ability is not only strong.  

B．Construction Mixed Kernel Function 
Based on the above analysis, if the Gauss kernel 

function and the polynomial kernel function is mixed to 
generate a new mixed kernel function, which can have 
better learning ability and better generalization ability.  
Theorem 1  The training samples are linear separability 
in the kernel space when ( )rank K n= , where 

( ( , ))i j l lK k x x ×=  is Gram matrix, ( , )i jk x x  is the 
kernel function. 
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For the Gauss kernel function, Gram matrix K  is a 
strong diagonal matrix when 0σ → . Therefore, K  is 
full rank. From theorem 1, we can see that the training 
samples are linear separability when the kernel function 
is the Gauss kernel function. 
Theorem 2 The linear mixed function 

2

2( , ) exp( ) (1 ) ( , )
2

i j
i j i j

x x
k x x a a k x x

σ

−
= ⋅ − + − ⋅% , 

( 0 1a< < ) which contains Gauss kernel function 
2

2( , ) exp( )
2

i j
i j

x x
K x x

σ

−
= −  and any kernel function 

( , )i jk x x  is a new kernel function. 
Proof  According to Mecer theorem, the Gram matrix 
K of any kernel function ( , )i jk x x  is symmetric and 
positive semi-definite. So there is orthogonal matrixU ,  

let
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0
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λ
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, where 0iλ > . Therefore, 

when 0σ → , there is  
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1
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1
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So we can know that k% is full rank. According to 
theorem 1, k% is a kind of kernel function can linearly 
separate any training samples. 

Based on the above analysis, we can obtain the mixed 
function as follows: 

2

2( , ) exp( ) (1 )[( ) 1]
2

i j q
i j i j

x x
k x x a a x x

σ

−
= ⋅ − + − ⋅ +%  

According to theorem 2, the above formula is a kernel 
function. For the mixed kernel function, the sketch map 
of the testing point 0.1 when 2 =0.1σ , 3q =  is shown as 
figure 3. 
From the Figure 3, we can see that the mixed kernel 

function makes good use of the properties of global and 
local kernels. It not only has the strong learning 
capability but also has strong generalization ability. 
 

C．Analysis the Parameters of Mixed Kernel Function 
After introducing the mixed kernel, TSVMs have added 

three adjustable parameters which contain the weight of 
mixed kernel function a , the Gauss kernel function 
parameter σ  and the polynomial kernel parameter q . 

 

Figure 3. The curve of mixed kernel in test point 0.1 
  

According to the properties of kernel function, the 
value of a  is between 0 1: . The mixed kernel function 
is closer to the polynomial kernel function when 0a → . 
On the contrary, the mixed kernel function is closer to 
the Gauss kernel function when 1a → . Therefore, it is 
very important to select a . If the choice is not 
appropriate, it may make the performance of mixed 
kernel function below the single one, thus losing the 
advantage of mixed kernel function. σ  and q  are the 
kernel parameters, which also take important role in the 
performance of mixed kernel function. At present, there 
are two selection methods of kernel parameters. One is 
the random method and the other is cross validation 
method. The random method is that the kernel 
parameters are randomly given and then the value of 
kernel parameters is constantly adjusted until getting a 
satisfactory precision. In view of lack of adequate 
theoretical basis, the random method has certain 
blindness. The cross validation method tests a range of 
kernel parameters individually to find the optimal value 
using traversal approach. Generally, this method can find 
the best values, but its time complexity is relatively high.    

After the above analysis, in this paper, Invasive Weed 
Optimization (IWO) algorithm which has fast global 
searching ability is used to select the TSVMs parameters 
and the mixed kernel parameters.  

D．Invasive Weed Optimization 
In 2006, a novel stochastic optimization model, 

invasive weed optimization (IWO) algorithm [18], was 
proposed by Mehrabian and Lucas, which is inspired 
from a common phenomenon in agriculture: colonization 
of invasive weeds. Not only it has the robustness, but 
also it is easy to understand and program. So far, it has 
been applied in many engineering fields [19-20].  

In the classical IWO, weeds represent the feasible 
solutions of problems and population is the set of all 
weeds. A finite number of weeds are being dispread over 
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the search area. Every weed produces new weeds 
depending on its fitness. The generated weeds are 
randomly distributed over the search space by normally 
distributed random numbers with a mean equal to zero. 
This process continues until maximum number of weeds 
is reached. Only the weeds with better fitness can survive 
and produce seed, others are being eliminated. The 
process continues until maximum iterations are reached 
or hopefully the weed with best fitness is closest to 
optimal solution. 

The process is addressed in details as follows: 
Step 1: Initialize a population 
A population of initial solutions is being dispread over 

the D dimensional search space with random positions. 
Step 2: Reproduction 
The higher the weed’s fitness is, the more seeds it 

produces. The formula of weeds producing seeds is 
min

max min min
max min

( )n
f f

weed s s s
f f

−
= − +

−
    (18) 

where, f is the current weed’s fitness. maxf  and minf  
respectively represent the maximum and the least fitness 
of the current population. maxs  and mins  respectively 
represent the maximum and the least value of a weed. 

Step 3: Spatial dispersal 
The generated seeds are randomly distributed over 

the D dimensional search space by normally distributed 
random numbers with a mean equal to zero, but with a 
varying variance. This ensures that seeds will be 
randomly distributed so that they abide near to the parent 
plant. However, standard deviation (σ ) of the random 
function will be reduced from a previously defined initial 
value ( initσ ) to a final value ( finalσ ) in every generation. 
In simulations, a nonlinear alteration has shown 
satisfactory performance, given as follows 

max

max

( )
( )

( )

n

cur init final finaln

iter iter
iter

σ σ σ σ
−

= − +    (19) 

Where, maxiter is the maximum number of iterations, 

curσ is the standard deviation at the present time step and 
n  is the nonlinear modulation index. Generally, n  is 
set to 3. 

Step 4: Competitive exclusion 
After passing some iteration, the number of weeds in a 

colony will reach its maximum ( _P MAX ) by fast 
reproduction. At this time, each weed is allowed to 
produce seeds. The produced seeds are then allowed to 
spread over the search area. When all seeds have found 
their position in the search area, they are ranked together 
with their parents (as a colony of weeds). Next, weeds 
with lower fitness are eliminated to reach the maximum 
allowable population in a colony. In this way, weeds and 
seeds are ranked together and the ones with better fitness 
survive and are allowed to replicate. The population 
control mechanism also is applied to their offspring to 
the end of a given run, realizing competitive exclusion. 

E．The Algorithm Steps of IWO-MKTSVMs 
The accuracy in the sense of CV is used for the fitness 

of IWO. So the algorithm steps of IWO-MKTSVMs are 
as follows: 

Step1: Select the training dataset and the testing 
dataset. 

Step2: Preprocessing the dataset. 
Step3: Constructe the mixed kernel function. 
Step4: Select the optimal parameters using IWO 

algorithm. 
Step5: Train the mixed kernel TSVMs using the 

optimal parameters. 
Step6: Predict the testing dataset. 
Step7: Output the classification accuracy. 

IV. THE EXPERIMENT RESULTS AND ANALYSIS 

In order to verify the efficiency of IWO-MKTSVMs, 
meanwhile, in order to compare the performance of three 
algorithms, that is, SVM, TSVMs and IWO-MKTSVMs, 
we conduct experiments on seven benchmark datasets 
from the UCI machine learning repository. The 
environments of all experiments are in Intel (R) Core 
(TM) 2Duo CUP E4500, 2G memory and MATLAB 
7.11.0. The parameter values of IWO are as 
follows: 5D = , _ 30P MAX = , max 5s = , min 1s = , 3n = , 

[1,0.1,1,1,1]initσ = , [0.1,0.1,0.1,0.1,0.1]finalσ = . In IWO 
algorithm, the accuracy in the sense of CV is used for the 
fitness of IWO. Therefore, the fitness value is closer to 
100, the obtained parameters is closer to the optimal 
value. The experiment results of IWO-MKTSVMs are 
shown as table 1. Furthermore, the comparisons of 
IWO-MKTSVMs and other algorithms are shown as 
table 2. In order to more objectively test the performance 
of each algorithm, we test each dataset 20 times 
independently. And the values of table 1 and table 2 are 
the average values. Figure 4 and figure 5 are the fitness 
curves of IWO searching the optimal parameters for 
dealing with the Australian dataset and Breast-cancer 
dataset respectively. Figure 6 represents the classification 
results on seven UCI dataset by three algorithms.  

From table 1, we can see that the training accuracy and 
testing accuracy of IWO-MKTSVMs is relatively high. 
Meanwhile, table 1 lists the optimal parameters using 
IWO for searching. Table 2 is the testing accuracy 
comparisons of IWO-MKTSVMs , TSVMs and SVM. 
From table 2, we know that the classification results of 
IWO-MKTSVMs are better than the other algorithms. 
Figure 4 and figure 5 shows that the optimization ability 
of IWO is very strong. 

V. CONCLUSION AND FURTURE WORK 

In order to solve the problems of selecting the 
parameters and kernel model for TSVMs, one solving 
algorithm called Invasive Weed Optimization Algorithm 
for Optimizating the Parameters of Mixed Kernel Twin 
Support Vector Machines (IWO-MKTSVMs) is proposed 
in this paper. 

Firstly, by introducing the mixed kernel function, we 
obtain a kind of kernel function with good performance, 
which can solve the problem of selecting kernel function 
in TSVMs. Secondly, in view of the good optimization 
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ability of Invasive Weed Optimization (IWO) algorithm, 
it is used to optimize the parameters containing the 
TSVMs parameters and the mixed kernel parameters. 

Finally, the experimental results show the effectiveness 
and stability of the proposed method. How to further 
improve the performance of IWO is the next work. 

 

TABLE1.  

THE CLASSIFICATION RESULTS OF IWO-MKTSVMs 

  Dataset 
The optimal parameter values 

Training Accuracy(%) Testing Accuracy(%)
1c  2c  a  σ  q  

Australian 1.414  5.241 0.752 12.042  36.457 98.63± 1.21 87.65± 4.12 
Breast-cancer  2.922  15.698  0.524 85.770  12.044 83.16± 5.28 69.12± 4.23 

Heart 45.88  54.362  0.635 92.617  52.017 91.25± 6.35 84.22± 7.21 
Pima  54.68  1.487  0.821 4.227  12.781 94.25± 4.22 82.09± 2.02 
Votes  83.08  2.514  0.424 17.052  3.654 99.21± 0.21 96.23± 2.30 
Sonar  6.241  8.695  0.832 2.044  60.140 94.28± 1.25 90.45± 4.25 
CMC  62.47  69.214  0.781 36.451  96.012 87.854± 4.21 75.54± 7.25 

  

 TABLE 2. 

 TESTING ACCURACY COMPARISONS OF IWO-MKTSVMs AND OTHER ALGORITHMS 

Dataset IWO-MKTSVMs TSVMs SVM 
Australian 87.65± 4.12 84.81± 2.15 85.51± 2.16 

Breast-cancer 69.12± 4.23 64.42± 3.87 65.42± 4.53 
Heart    84.22± 7.21 81.89± 4.31 82.22± 6.67 
Pima 82.09± 2.02 73.70± 6.05 76.55± 2.40 
Votes   96.23± 2.30 94.96± 4.24 95.85± 2.24 
Sonar   90.45± 4.25 89.52± 3.37 88.91± 9.68 
CMC 75.54± 7.25 73.50± 9.85 68.98± 2.17 

 
Figure 4. The fitness curves of IWO searching the optimal 

parameters for dealing with the Australian dataset 
 

 

Figure 5. The fitness curves of IWO searching the optimal 
parameters for dealing with the Breast-cancer dataset 

 

 
Figure 6. The classification results on seven UCI dataset by three 

algorithms 
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