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Abstract—A secure scalar product protocol is a type of 
specific SMC problem, and has found various applications 
in many areas such as privacy-preserving data mining, 
privacy-preserving cooperative statistical analysis, and 
privacy-preserving geometry computation. 

In this paper, we firstly extend to a solution of 
homomorphic-encryption based secure scalar product 
protocol such that it enables the scheme to be used in 
distributed decryption, and to deal with negative vectors. 
Secondly, we propose two-party secure computation of a 
public Boolean function on private inputs of each party. 
Thirdly, we describe two applications of our secure scalar 
product protocol to computational geometry: determining 
securely location of a point to a directed line segment, and 
conditional oblivious transfer based on the relation between 
a private point and a private directed line. 
 
Index Terms—Secure multi-party computation, 
computational geometry, secure scalar product protocol, 
conditional oblivious transfer 

I.  INTRODUCTION 

In secure multiparty computation (SMC) [1-2], a set of 
parties want to jointly compute a function of their inputs 
over the Internet or any computer network without 
revealing to the other participants any information about 
their private inputs. A secure scalar product protocol [3-8] 
is a type of specific SMC problem, and its goal is that two 
parties jointly compute the scalar product of their private 
vectors, but no party will reveal any information about 
his private vector to another party. As a building block, 
secure scalar product protocol has found various 
applications in many areas such as privacy-preserving 
data mining [3-4], privacy-preserving cooperative  
statistical analysis [5], and privacy-preserving geometry 
computation [6]. 

A secure scalar product protocol deals with the 
following problem. Let Alice have a private vector 

( )1, , lX x x= L and Bob has another private vector 

( )1, , lY y y= L , They compute cooperatively 

1
l
i i iu v X Y x y=+ = ⋅ = ∑ , 

where u is a uniformly distributed random number known 
by Alice and v is a dependent uniformly distributed 
random number known by Bob. 

To solve this problem, many solutions have been 
proposed [3-8], and a nice overview of the problem and 
the security properties of some solutions were given in 
[3]. 

In [3], it was shown that if a vector has low support 
(the support of a vector is defined by the number of 
nonzero elements in this vector), another party will learn 
half elements of this vector, further learn the whole 
vector with a high probability. Then the authors proposed 
a new secure scalar product protocol, which is based on 
homomorphic encryption with plaintext space mZ for 
some large m . The protocol is secure in the semi-honest 
model [2], assuming that , lX Y Zμ∈ , in which 

/m lμ ⎢ ⎥= ⎣ ⎦ . 

However, all of these protocols considered only 
positive integer vectors. How to deal with negative 
vectors is an important and interesting issue because of 
their broad applications in reality. 

In this paper, we make an extension to the solution in 
[3], which enables the scheme to be used in distributed 
decryption, and to handle negative vectors. Furthermore, 
we describe two-party secure computation of a public 
Boolean function on private input of each party. Finally, 
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we propose two applications of our secure scalar product 
protocol to computational geometry. The former is to 
determine which side a private point 0P , held by a party 

(Alice), lies in a directed line segment 1 2PP
uuuur

, held by 
another party (Bob), but neither of them wants to reveal 
its secret to another party. The latter is a conditional 
oblivious transfer protocol based on the relation between 
a point 0P , held by a party (Alice), and a directed 

line 1 2PP
uuuur

, held by another party (Bob). Assume Alice has 
two secret messages 0 1,s s ,  and wishes (obliviously to 
her) to transfer one of them to Bob depending on which 
side 0P lies in 1 2PP

uuuur
, but will not learn Bob’s private 

directed line and the location relation of one’s own point 
with Bob’s private directed line. 

II.  SOME FUNDAMENTAL CONCEPTS AND BUILDING 
BLOCKS 

A.  Some Concepts in Computational Complexity 
(1) Negligible Function. A function (0,1)μ a is called 

negligible if for every positive polynomial ( )p x , and all 
sufficiently large n ’s, ( ) 1/ ( )n p nμ < . 

(2) Probability Ensembles. A probability ensemble 
indexed by *{0,1}S ⊆ is a family { }w w SX ∈ , so that 
each wX is a random variable (or distribution) which 
ranges over (a subset of) (| |){0,1}poly w . Typically, we 
consider *{0,1}S = and {1 : is a naural number}nS n= . 

 (3) Identically distributed. We say that two 

ensembles, { }
def

w w SX X ∈= and { }
def

w w SY Y ∈= , are identically 
distributed, and denoted by X Y≡ , if for every 
w S∈ and everyα  

Pr[ ] Pr[ ]w wX Yα α= = =                (1) 
(4) Computationally Indistinguishable. Two 

ensembles, { }
def

w w SX X ∈= and { }
def

w w SY Y ∈= , are 

computationally indistinguishable, and denoted by
C

X Y≡ , 
if for every non-uniform distinguisher D  there exists a 
negligible function ( )μ ⋅ such that for every *{0,1}a ∈ , 

                              
| Pr[ ( ( , )) 1] Pr[ ( ( , )) 1] | ( )w wD X a n D Y a n nμ= − = <           (2) 

B. The Semi-honest Model 
We assume that all parties are semi-honest. Roughly 

speaking, a semi-honest party is one who follows the 
protocol properly with the exception that it keeps a record 
of all its intermediate computations and might derive the 
other parties’ inputs from the record. A protocol is private 
in the semi-honest model if whatever is obtained by a 
party participating in the protocol also can be computed 
from its input and output only. This assumption is 
formalized by simulation paradigm as follows [2]. 

Let 1 2( , )f f f= be a probabilistic polynomial-time 
functionality and ∏ be a two-party protocol for 

computing f . The view of the first party during an 
execution of ∏ on the input ( ),x y , denoted by 

1 ( , )view x yΠ , is 1 1 1
1( , , , , )tx r m mL , where 1r represents the 

outcome of the first party’s internal coin tosses, 
and 1

im denotes the thi  message received during executing 
of ∏ . The output of the first party during executing of 
∏ on the input ( ),x y , denoted 1 ( , )output x y∏ , is implicit 
in the party’s view of the execution. The view and output 
of the second party can be defined under analogous 
notation. 

 
Definition:For a functionality 1 2( , )f f f= , ∏  privately 

computes f (or ∏ is secure) if there exist two 
probabilistic polynomial-time algorithms, denoted by 1S  
and 2S  such that 

1 1 2 , 1 2 ,{ ( , ( , )), ( , )} { ( , ), ( , )} ,
C

x y x yS x f x y f x y view x y output x y∏ ∏≡

1 2 2 , 1 2 ,{ ( , ), ( , ( , ))} { ( , ), ( , )}
C

x y x yf x y S y f x y output x y viewt x y∏ ∏≡
 

where
C
≡ denotes the computational indistinguishability, 

1 ( , )view x y∏ , 2 ( , )view x y∏ , 1 ( , )output x y∏ and 

2 ( , )output x y∏ are random variables, defined as a function 
of the same random execution. In   particular, 

1 ( , )output x y∏ is fully determined by ( , )iview x y∏ .  

C. Homomorphic Encryption Schemes 
An encryption scheme is homomorphic [9-10] if for 

some operations  and ∗ ,  ( ) ( ) ( )k k kE x E y E x y= ∗ , 
where x and y are two elements from the message space 
and k  is the key. If ∗ is an additive (multiplicative) 
operator, the encryption scheme is said to be additive 
(multiplicative) homomorphic. A useful property of 
homomorphic encryption schemes is that an operation 
can be conducted based on the encrypted data without 
decrypting them. If an encryption scheme is additive and 
multiplicative homomorphic simultaneously, it is said to 
be fully homomorphic [17-23]. A fully homomorphic 
encryption scheme can be used to fulfill the secure scalar 
product protocol, and it can make significant 
improvement in communication complexity, but it would 
suffer huge computational overhead with current state of 
the art. 

Therefore, we will not adopt the fully homomorphic 
encryption scheme, instead of adopting an only additive 
homomorphic encryption scheme, I. Damgärd and M. 
Jurik’s cryptosystem in sn

Z , as our building block in this 
paper. The encryption scheme is as follows [10]: 

Key generation: Let n pq=  be the RSA-modulo 
with =2 +1p p′ , =2 +1q q′ , where , , ,p q p q′ ′  are primes, 

ng Q∈ , the group of all squares of *
nZ , Zτα ∈ , where 
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np q Qτ ′ ′= = , modh g nα= . The public key 
is ( , , )n g h and the private key isα .  

Encryption: For m Z +∈ , choose an integer 0s >  such 
that sn

m Z∈ . The encryption is  
1( ; ) ( mod , ( mod ) ( 1) mod )

sr r n m s
hE m r g n h n n n += + , 

where R nr Z∈ . 
Decryption: For a ciphertext ( , )c G H= , s  can be 

deduced from the length of c (or attached to the 
encryption), and the message is computed from  

1

( ( mod ) )

= (( mod ) ( 1) ( mod ) )

(( 1) mod ) mod

s

s s

n
s

r n m r n
s

m s s
s

m L H G n

L g n n g n

L n n m n

α

α α

−

−

+

=

+

= + =

     

where sL is an algorithm for 
calculating m from 1( 1) modm sn n ++ [11], whose 

computational cost is  
22( )sO s n . 

Scalaring: For a ciphertext ( , ) ( , )hc E m r G H= = , the 
scalaring is done by 
computing ( , ) ( , )k k

hc E km kr G H′ = = for *
Nk Z∈ . If 

0m = , the scalaring operation does not change the 
content of the ciphertext.  

The scheme is semantically secure under two 
assumptions, the CRA (Composite Residuosity 
Assumption) and the composite DDH assumption. The 
CRA states that it is computationally infeasible to 
distinguish whether an element 2

*
n

z Z∈ is a residue or not, 
while the composite DDH assumption says that it is 
computationally infeasible to distinguish two 
tuples ( , , mod , mod , mod )a b abn g g n g n g n and
( , , mod , mod , )a bn g g n g n y , where R ny Q∈ . 

The scheme is additively homomorphic since 
1 1 2 2( ; ) ( ; )h hE m r E m r  

1 1 1 1( mod , ( mod ) ( 1) mod )
sr r mn sg n h n n n += +  

2 2 2 1( mod , ( mod ) ( 1) mod )
sr r mn sg n h n n n ++  

1 2 1 2 1 2 1( mod , ( mod ) ( 1) mod )
sr r r r m mn sg n h n n n+ + + += +  

1 2 1 2( ; )hE m m r r= + +  

D.  Re-encryption 
Let ( , )G H be a ciphertext, 0 0( , )G H be the ciphertext 

of the plaintext 0, then the plaintext 
of 0 0( , ) ( , ) ( , )G H G H G H′ ′ = be the same as that of 
( , )G H . 

The computational cost of Re-encryption is twofold 
that of the original scheme. 

In the following we will denote ( )E m  as ( ; )hE m r when 
no misunderstanding is possible. 

E.  Distributed key Generation 
Alice (Bob) picks 1 2( )α α at random and 

publishes 1 2
1 2( )h g h gα α= = along with a zero-knowledge 

proof of knowledge of 1h ’s ( 2h ’s) discrete logarithm. The 
public key is 1 2h h h= , and the private key is 1 2α α α= + . 

F. Distributed Decryption 
Given an encrypted message ( , )G H , Alice 

publishes 1
1 (mod )G G nα= , and proves its correctness by 

showing the equality of logarithm of 1h and 1G , that is, 
proves 1 1( , , , )g G h G satisfying the relation 

1 1

1 1 1

1 1

{(( , , , ), ) |

mod mod }
DHR g G h G

h g n G G nα α

α=

= ∧ =
 

The proof of the relation DHR can be done in zero-
knowledge [12], whose communication cost 
is 2 log logn τ+ . Similarly,Bob publishes 2

2 modG G nα= , 
and proves 2 2( , , , )g G h G satisfying the relation 

2 2

2 2 2

2 2

{(( , , , ), ) |

mod mod }
DHR g G h G

h g n G G nα α

α=

= ∧ =
 

The plaintext can be derived by computing 

1 2( ( mod ) )
sn

sm L H G G n −=  

G. Mix Network (ΜΝ) 
Intuitively, a mix network [13] is a multi-party 

protocol that takes as input a list of ciphertext items and 
from this produces a new, random list of ciphertext items 
such that there is a one-to-one correspondence between 
the underlying plaintexts of input and output items. In 
other words, the underlying output plaintexts represent a 
random permutation of the underlying input plaintexts. 
The security of a mix network is characterized by the 
infeasibility for an adversary of determining which output 
items correspond to which input items. 

Our mix network is similar to the one in [13]. Let the 
input to the mix network be a sequence of 
ciphertexts 1 1 2 2( , ), ( , ), , ( , )k kG H G H G HL , and the output 
is a random permutation and re-encryption of the inputs, 
namely a sequence 

(1) (1) (2) (2) ( ) ( )( , ), ( , ), , ( , )k kG H G H G Hσ σ σ σ σ σ′ ′ ′ ′ ′ ′L  
where ( , )i iG H′ ′  represents a random re-encryption of 

( , )i iG H , andσ is a random permutation on k  elements. 
The computational cost of ΜΝ is k -times that of the 
employed encryption scheme. 

H. Shuffle 
A shuffle [14] of ciphertexts 1 2, , , kC C CL is a new set 

of ciphertexts 1 2, , , kC C C′ ′ ′L , such that both sets of the 
ciphertexts have the same plaintexts. If we are working 
with I. Damgärd and M. Jurik’s cryptosystem, 

1 2, , , kC C CL  can be shuffled by selecting a permutation 
σ and setting 

1 (1) 2 (2) ( )(0), (0), , (0)k kC C E C C E C C Eσ σ σ′ ′ ′= = =L . 
It is impossible for anybody else to see which 

permutation was used in the shuffle because of the 
semantic security of the cryptosystem. On the other hand 

2020 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



this also means that anybody else cannot check if we did 
make a correct shuffle directly. 

The computational cost of a shuffle is k -times that of 
the employed encryption scheme. 

I. Distributed Plaintext Equality Test (ΠΕΤ ) 
Our protocol is similar with the one in [13]. 

Let 1 1 1( , )C G H= and 2 2 2( , )C G H= be two ciphertexts 
with respective underlying plaintexts 1m and 2m encrypted 
under the same public key h . Two participants, Alice 
and Bob, jointly determine whether 1 2m m= . Consider the 

ciphertext 1 1

2 2

( , )
G H

c
G H

= , Alice (Bob) selects a blinding 

factor 1 2( )z z , and computes 1 2( )z zc c . Then both of them 
jointly compute 1 2 ( , )z zc c c G H′ ′ ′= = as blinded c . 
According to distributed decryption algorithm, they 
publish 1

1 ( ') modG G nα′ =  and 2
2 ( ') modG G nα′ = , 

respectively, and jointly judge 
whether 1 2( mod ) 1

snH G G n −′ ′ ′ = or not. If it does, they 
conclude that 1 2m m= , else 1 2m m≠ . We denote the 
protocol above by 1 2( , )PET C C . 

The computational cost of ΠΕΤ is the sum of the one 
of employed encryption with 4log n  modular 
multiplications, then subtract the one of sL . 

III. A SECURE SCALAR PRODUCT PROTOCOL IN FIELD 

In the following, we will make an improvement on the 
solution in [3], such that it can be realized based on I. 
Damgärd and M. Jurik’s cryptosystem in sn

Z , where 
0s >  is an integer such that any element involved in the 

computation are in sn
Z . 

In our applications, we assume 0 log 1sN n⎢ ⎥= +⎣ ⎦ , that 

is, sn is of 0N bits length. We say 0d <  if / 2s sn d n< < , 
thus the most significant bit in elements of sn

Z denotes its 
sign, that is, 1 denotes the negative element, 0 is positive. 

Protocol 1 (Secure scalar product protocol) 
Inputs: Alice has a private vector 1( , , )lX x x= L and 

Bob has another private vector 1( , , ), , sl i i n
Y y y x y Z= ∈L  

for 1,2, ,i l= L . 
Outputs: Alice gets u  and Bob gets v , 

satisfying , sn
u v Z∈ and mod su v X Y n+ = ⋅ . 

(1) Alice computes ( )i ic E x= and sends ic to Bob, for 
1, 2, ,i l= L .  

(2) Bob computes 1
iyl

i iw c== ∏ , generates a random 
plaintext sn

v Z∈ , computes ( ) ( , )w wE v G H′ = = , sends 

w′ to Alice, publishes 2
2 modG G nα= and 

proves 2 2( , , , )g G h G satisfying the relation  

2 2

2 2 2

2 2

{(( , , , ), ) |

mod mod }
DHR g G h G

h g n G G nα α

α=

= ∧ =
 

(3) Alice compute 
1

1 modG G nα= , 1 2( ( mod ) )
sn

su L H G G n −= ,  
and obtains 1( ) modl s

i i iu x y v n== ∑ + . 
(4) Bob computes sv n v= − . 
Security: The input of Bob is Y , the view of Bob 

during an execution of the protocol is 1( ), , ( )nE x E xL . 
Because of the semantic security property of employed 
encryption scheme, Bob will not learn any information 
about X , thus Alice's security is proven.  

For Bob's security, we can construct a simulator 1S to 
simulate the view of Alice. The input, output, and view of 
Alice are 1, , ( , ) { , }X u view X Y w prooftext∏ ′= , 
respectively, where prooftext is Alice’s view in proof of 

DHR .  Because the proof of DHR  can be done in zero-
knowledge, there exists a simulator DHS to perfectly 
simulate the view of the verifier (Alice here). Let the 
output of DHS be R′ . { }prooftext and R′ are identically 
distributed. 

1S  takes as input ( , )X u , and proceeds as follows. 
(1) generates randomly a vector 1( , , )lY y y′ ′ ′= L , 

compute v′ satisfying modu v X Y N′ ′+ = ⋅ and v N′ < . 
(2) computes 

( )i ic E x′ = , 2
1( ( ) ) modiyn

i iw c N′
=′′ ′= ∏

2(( ( )) modw w E v N′′′ ′′ ′= − . 
(3) outputs 1( , ) { }S X u w R′′′ ′= U . 
It can be verified that ( ) ( )D w u D w′′′ ′= = , that is, 

w′′′ and w′ are two ciphertexts with the same plaintext.  
So { }w′′′  and { }w′ are identically distributed. 

1{ ( , )}S X u and 1{ ( , )}view X Y∏ are identically distributed.  
Note: if { }A and { }B are identically distributed, 

and { }C and { }D are identically distributed, it is easy to 
prove that{ , }A C and{ , }B D are identically distributed.  

Resource analysis:  During an execution of the 
protocol, Alice and Bob obtain 1 ciphertext and n  
ciphertexts, respectively. Besides, 2 log logn τ+ bits are 
needed in proof of DHR , therefore the communication cost 
is [( 1)( 2) 2]log logl s n τ+ + + + bits.  

Alice needs to perform l encryptions and 1 decryption, 
while Bob needs to compute l multiplications and 1 
encryption.  

If the elements of vectors are negative, we can 
transform negative elements to positive elements, then 
perform scalar product of positive elements. For example, 
we would like to compute the scalar product of two 
vectors ( 2,3, 6,7)− − and (4, 5, 2, 6)− − in 15Z , we can firstly 
transform them to (13,3,9,7) and (4,10, 2,9) , then 
compute 

(13,3,9,7) (4,10,2,9) 13(mod15)⋅ ≡  
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It can be verified that 
( 2,3, 6,7) (4, 5,2, 6) 13(mod15)− − ⋅ − − ≡  
The result remains unchanged.  

IV. TWO-PARTY COMPUTATION OF A BOOLEAN FUNCTION 

In [15], a computation of a symmetric Boolean 
function was given, a symmetric Boolean function is a 
Boolean function whose output depends only on the 
number of 1’s in its input. The solution is given under the 
situation where any secret is shared among a set of users, 
it is easy to compute sharings of 
[ ]pa b+ and[ ]pa b⋅ from[ ]pa and [ ]pb , where[ ]pa denotes 
a secret sharing of pa F∈ over pF , the multiplication is 
done by unbounded fan-in multiplication [16].  

In the case of two parties involved, the addition and 
multiplication of two encryptions can not be done 
simultaneously, unless there is a fully homomorphic 
encryption algorithm available. In the following, based on 
mix network, we give a computation of any Boolean 
function in the case of two parties involved, and assume   
that there is not a fully homomorphic encryption 
algorithm available.   

Let 1( , , )la aφ L be a public Boolean function 
where {0,1}( 1, , )ia i l∈ = L . Two parties, Alice and Bob, 
want to compute φ on their private 
inputs

1 1
{ , , }

li ia aL and
1 2 1 2{ , , }( + = )

lj ja a l l lL , respectively. 

The truth table T , with 2 ( 1)l l× + elements, of φ can be 

created and made public. For example, TABLE I 
(named 1T  below) is a truth table of bitwise sum of ,u v in 
which i i iz u v= + , and ic is the carry bit.  

The protocol of computingφ is as follows, in which E  
is I. Damgärd and M. Jurik's cryptosystem with public 
key h .  

Protocol 2 (Secure computation of a public Boolean 
function)  

Inputs: The public truth table T , Alice has private 
inputs 

1 1
( , , )

li ia aL and Bob has private inputs 

( )1 2
, ,

lj ja aL .  

Outputs: An encrypted Boolean function 
value 1( ( , , ))lE a aφ L . 

(1) Alice applies ΜΝ to T  (using y  as the encryption 
key), obtainsT ′ and publishes it.  

(2)    Bob shufflesT ′ , obtainsT ′′ and publishes it.  
(3) Using y as the encryption key, Alice 

encrypts
1 1

( , , )
li ia aL , and obtains

1 1
{ ( ), , ( )}

li iE a E aL , Bob 

encrypts
1 2

( , , )
lj ja aL , and obtains

1 2
{ ( ), , ( )}

lj jE a E aL .  

(4) for 1i = to 2t do { 
if

1 1( ( ), [ , ]) 1, ,iPET E a T i i′′ = L  

and 
11

( ( ), [ , ]) 1
li lPET E a T i i′′ =  

and
1 1( ( ), [ , ]) 1, ,jPET E a T i j′′ = L  

and 
22

( ( ), [ , ]) 1
lj lPET E a T i j′′ = ,  

then return [ , 1]T i l′′ + }. 
If the functionφ is a bitwise sum of ,u v , the step (4) in 

Protocol 2 is modified as that Protocol 4 shows.  
Security:  The security of Protocol 2 can be derived 

from the security of the employed building blocks such as 
ΜΝ, shuffle and ΠΕΤ.  

Resource analysis: Because all 
1 11 2

, , ,{ ( ), , ( )},{ ( ), , ( )}
l li i j jT T T E a E a E a E a′ ′′ L L  

are public, it is not necessary to consider the 
communication cost.  

Because step 1~3 can be precomputed, the 
computational cost is dedicated by step 4, which 
needs 2l l× PET. Thus the computational cost of Protocol 
2 is 2l l× times that of  ΠΕΤ. 

V. TWO APPLICATIONS IN COMPUTATIONAL GEOMETRY 

In this section, we give two applications of the secure 
scalar product in secure computational geometry.  

A. Secure Location of a Point to a Directed Line Segment  
Suppose that there is a triangle in the plane with the 

vertices 1 1 1 2 2 2( , ), ( , )P x y P x y and 0 0 0( , )P x y . Then the 
signed area of the triangle is half of the determinant 

1 1

1 2 0 2 2

0 0

1
( , , )= 1

1

x y
D P P P x y

x y  
where the  sign of 1 2 0( , , )D P P P is  positive if  and only  

if 1 2 0( , , )P P P forms a counterclockwise cycle, i.e. 0P lies 

in the left of directed line segment 1 2PP
uuur

, and negative if 
and only if 1 2 0( , , )P P P forms a clockwise cycle, i.e. 0P lies 

in the right of directed line segment 1 2PP
uuur

 [24].  

1 2 0( , , )D P P P can be substituted for the z  coordinate of 

the cross product 1 12 0PP PP×
uuur uuur

. We assume that there are 
two parties, Alice and Bob. Alice holds a private point 

0 0 0( , )P x y and Bob holds a private directed line segment 
with direction from 1 1 1( , )P x y to 2 2 2( , )P x y , 
where 2( , ) ( ) ( 0, 1, 2)si i n

x y Z i∈ = . They want to 

TABLE I.   
THE TRUTH TABLE OF BITWISE SUM i i iz u v= +  

ui vi ci-1 ci zi 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 
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determine which side 0P  lies in the directed line 

segment 1 2PP
uuur

, but neither of them wants to reveal its 
private point to another party.  

The protocol is as follows.  
Protocol 3 (Secure location of a point to a directed line 

segment) 
Inputs:  Alice has a private point 0 0 0( , )P x y and Bob 

has a private directed line segment with direction 
from 1 1 1( , )P x y  to 2 2 2( , )P x y .  

Outputs: Which side of 0P lies in the directed line 

segment 1 2PP
uuur

. 
(1) Alice takes a vector 0 0( , ,1)X x y= . Bob takes a 

vector 1 2 2 1 1 2 2 1( , , )Y y y x x x y x y= − − − , and picks 
randomly and uniformly a number sn

v Z∈ .  
(2) Alice engages in Protocol 1 with Bob, and 

gets ( ) mod su X Y v n= ⋅ + .  
Protocol 3 is secure because of the security of Protocol 

1.  
In Protocol 1, we take 3l = , and obtain the resource 

needed in Protocol 3 as follows. The communication cost 
is [4 10]log logs n τ+ + bits. Alice needs to perform 3 
encryptions and 1 decryption, and Bob needs to perform 
3 multiplications and 1 encryption.  

To determine the relation of 0P with 1 2PP
uuuur

, it suffices for 
both of them to determine 0X Y⋅ > or 0X Y⋅ < . If all 
operations are performed in real R, Alice and Bob can 
determine 0X Y⋅ > or 0< by comparing u  and v  
through a millionaire protocol [25-27]. But now, all 
computations are done under modulo sn , and there exists 
wrap-round modulo sn , thus they are not able to compare 
u  and v  by a millionaire protocol. To obtain the sign of 
X Y⋅ , what they need is to get the most significant bit of 
u v+ by computing u v+ bit-by-bit, denoted 
by i i iz u v= + , for 01, ,i N= L . They establish the truth 
table of the bit-wise addition as in table 1, in 
which i i iz u v= + , and ic is the carry bit.  In the truth table 

1T , bits are regarded as logical values, and the bit-wise 
addition can be transformed to the computation of 
Boolean function. The protocol is as follows.  

Protocol 4  (Secure determination of scalar product by 
the most significant bit)  

Inputs: Alice has a private integer u , denoted by 

01, , Nu uL bit-by-bit, where 1u is the least significant bit 

and
0Nu is the most significant bit. Bob has another private 

integer v , denoted by 
01, , Nv vL bit-by-bit, in which 1v is 

the least significant bit and
0Nv is the most significant bit. 

Outputs: Both of them get the encryption of u v+ bit-
by-bit.  

(1) Alice applies ΜΝ to 1T  (using h  as the encryption 

key), obtains 1T ′ and publishes it.  

(2) Bob shuffles 1T ′ , obtains 1T ′′ and publishes it.  
(3) Using h  as the encryption key, Alice 

encrypts
01{ , , }Nu uL , and obtains

01{ ( ), , ( )}NE u E uL , 

Bob encrypts
01{ , , }Nv vL , and obtains

01{ ( ), , ( )}NE v E vL .  

(4) 0 0c = ; 0( ) (0)E c E= ; 
for 1i =  to 0N  do {  
for 1j =  to 8 do { 
if ( ( ), [ ,1]) 1iPET E u T j′′ =  
and ( ( ), [ , 2]) 1iPET E v T j′′ =  
and 1( ( ), [ ,3]) 1iPET E c T j− ′′ = ,  
then return ( ) [ , 4]), ( ) [ ,5]i iE c T j E z T j′′ ′′= = ; 
} 
}. 
When the Protocol 4 is finished, both of them obtain 

the encryption of 
0

( )NE z , which is the encryption of the 
most significant bit of the sum u v+ . They can jointly 
decrypt it and obtain

0Nz , which gives the result of 
0A B⋅ >  or 0A B⋅ < . 

The security of Protocol 4 is guaranteed by that of 
Protocol 2.  

Similarly to Protocol 2, it is not necessary to consider 
the communication cost.  

The computational cost is 024N  times that of PET.  
In computational geometry, if we measure the distance 

by meters, the value of 16-bit length can measure 65536 
meters, so it is enough to take 0 16N ≤  in reality.  

B. Conditional Oblivious Transfer based on the Relation 
between A Point and A Directed Line  

A conditional oblivious transfer is a variant of 
oblivious transfer [27-28]. Intuitively, it considers the 
following problem: two participants, Alice and Bob, have 
private inputs x  and y  respectively, and share a public 
predicate ( ),Q ⋅ ⋅ . Alice has two secret messages 0 1,s s , 
and wishes (obliviously to her) to transfer one of them to 
Bob depending on Q , but will not learn Bob’s private 
input and the value of Q .  

The conditional oblivious transfer is very useful to 
computational geometry. For example, there are two 
companies, a railway company and a construction 
company. The railway company wants to build a railway, 
while the construction company wants to erect a building. 
But, the construction of railway will bring inconvenience 
to the pass in and out of the residents in the building, and 
the extent of inconvenience depends on which side the 
building lies on the railway. Therefore, the railway 
company will compensate the construction company in 
accordance with which side building lies on.  The railway 
company would not like to tell the construction company 
where the railway will be built and two compensation 
schemes, in case the construction company can decide 
where his building will be erected, while the construction 
company does not tell the railway company where his 
building will be erected, in case the railway company can 
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decide his own scheme according to the scheme of 
construction company to reduce the fee to be paid.  

We propose a conditional oblivious transfer scheme 
based on Protocol 4. 

In the scheme, after finishing Protocol 4, both of 
participants do not decrypt 

0
( )NE c   

Protocol 5 (Conditional oblivious transfer based on 
Protocol 4)  

Inputs: Alice has a private point ( )0 0 0,P x y  and two 
secret message 0 1,s s , Bob has a private directed line 
segment with direction from ( )1 1 1,P x y  to ( )2 2 2,P x y .  

Outputs: Bob gets one of 0s  and 1s .  
(1) Alice and Bob perform Protocol 3, and obtain ,u v , 

respectively, satisfying , sn
u v Z∈ and mod su v X Y n+ = ⋅ . 

(2) Alice and Bob perform Protocol 4, and obtain 
0

( )NE z , where E is I. Damgärd and M. Jurik’s 

cryptosystem in 
0 0 0

, , ,s N N Nn
Z u v z are the most significant 

bit of ,u v , and u v+ , respectively, 
0 -1Nc is the ( )0 1N − th 

carry bit of u v+ . 
(3) Alice and Bob perform Sub-protocol 6.1. Bob 

obtains one of 0s  and 1s .   
In step (3), a sub-protocol is needed, it is described as 

follows. 
Sub-protocol 5.1  
Inputs: The public input is

0
( )NE z , and Alice has two 

secret message 0 1,s s .  
Outputs: Bob gets one of 0s  and 1s .   

(1) Alice computes 01

0 0

-1=[ (z ) ][ (1) ( )] ] .ss
N Nc E E E z  Let 

( ),c G H= , Alice computes 1
1G Gα= , sends ( ),c G H=  

and 1
1G Gα=  with the proof  

 1 1
1 1 1 1 1={(( , , , ), )| = mod = mod }DHR g G h G h g n G G nα αα ∧  

to Bob. 
(2) Bob computes 2

2G Gα=  and 
-

1 2= ( ( mod ) )
sn

su L H G G n , and obtains 
0 01 0+(1- )N Nz s z s .  

If 
0
=1Nz , that is, 0P  lies in the right of directed line 

segment 1 2PP
uuuur

, then Bob obtains 1s , else Bob obtains 0s .  
Security: The security of Bob trivially holds because 

he does not send anything to Alice.  
The security of Alice can be proven by constructing a 

simulator 2S  for the view of Bob. The view of Bob 
is 2 { , }view c prooftextΠ = , where prooftext  is Bob’s view 
in proof of DHR .  Because the proof of DHR  can be done 
in zero-knowledge, there exists a simulator DHS to 
perfectly simulate the view of the verifier (Bob here).  Let 
the output of DHS  be R′ . { }prooftext  and R′ are 
identically distributed. The input of 2S  is s , it encrypts 
s  and obtains ( )c E s′ = , takes as output { , }c R′ ′ . 
Because both of c  and c′ are encryptions of s , 

c and c′ are identically distributed. So { , }c R′ ′  is 
identically distributed with { , }c prooftext , 2S  simulates 
perfectly 2viewΠ .  

Resource analysis: During an execution of the protocol, 
only one encryption is exchanged between Alice and Bob, 
the communication cost is ( )4 log logs n τ+ +  bits.  

Alice needs to perform 2 encryptions and 3 
multiplications, Bob needs to perform 1 decryption.  

The security of Protocol 5 is guaranteed by that of 
Protocol 3, Protocol 4, and Sub-protocol 5.1.  

The resource needed in Protocol 5 is the sum of the 
ones of three protocols employed, that is, the 
communication cost is ( )5 14 log logs n τ+ +  bits. Both of 
participants need to perform jointly 024N  PETs. Besides, 
Alice needs 5 encryptions, 1 decryption and 3 modular 
multiplications, while Bob needs 2 decryptions and 3 
modular multiplications.  

VI. CONCLUSION 

We have given 5 two-party secure protocols: a secure 
scalar product protocol based on I. Damgärd and M. 
Jurik's cryptosystem, secure computation of a public 
Boolean function, secure location of a point to a directed 
line segment, secure determination of scalar product by 
the most significant bit, conditional oblivious transfer 
based on secure determination of scalar product by the 
most significant bit.  The security, communication cost 
and parties' computational cost in all protocols are 
analyzed.    

ACKNOWLEDGEMENT 

This  work is supported  by  the  National  Natural  
Science Foundation  of  China  under  Grants  61272436, 
61272404, 61003232, and the Natural Science 
Foundation of Guang dong Province under Grants 
10351806001000000.  

REFERENCES 
[1] A. C. Yao, “Protocols for secure computations,” Proc. 23rd 

Annual IEEE Symposium on Foundations of Computer 
Science, Chicago, pp. 160-164, 1982.  

[2] O. Goldreich, Foundations of Cryptography: Basic 
Applications, Cambridge University Press, London, 2004.  

[3] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen, “On 
Private Scalar Product Computation for Privacy-Preserving 
Data Mining,” Proc. 7th Annual International Conference 
in Information Security and Cryptology (ICISC), LNCS 
3506,  pp. 104- 120,  Springer-Verlag, Seoul, Korea, Dec. 
2-3, 2004.  

[4] Y. Zhu, L. Huang, W. Yang, F. Dong, “Privacy Preserving 
Aggregate Query of OLAP for Accurate Answers,” Journal 
of Computers, 5(11):1678-1685, 2010. 

[5]  Du W, Atallah M, “Privacy-preserving cooperative 
statistical analysis,” Proc. 17th Annual Computer Security 
Applications Conference (ACSAC), ACM SIGSAC, IEEE 
Computer Society, New Orleans, Louisiana, pp. 102-110, 
2001.  

2024 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



[6] C. Chao, Y. Luo, W. Cheng, “Research on the Problem of 
Privacy-Preserving Closest Pair,” Journal of Computers, 
5(7): 1120-1124, 2010. 

[7] Du W, Zhan Z, “Building decision tree classifier on private 
data,” IEEE ICDM Workshop Proceedings, Volume 14 in 
the Conferences in  Research and Practice in Information 
Technology Series, Australian Computer Society, Sydney, 
Australia, pp. 1-8, 2002.  

[8] A Artak, E C Vladimir, “A New Effcient Privacy-
Preserving Scalar Product Protocol,” Proc. 6th Australasian 
Data Mining Conference (AusDM’7), Gold Coast, 
Australia. pp. 209-214, 2007.  

[9] P. Paillier, “Public-key cryptosystems based on composite 
degree residue classes,” Advances in Cryptology, 
Eurocrypt’99, LNCS 1592, pp. 223-238, 1999.  

[10] Ivan Damgärd, Mads Jurik, “A length-flexible threshold 
cryptosystem with applications,” Proc. 8th Australasian 
conference on Information security and privacy 
(ACISP'03). LNCS 2727, pp. 350-364, 2003.  

[11] Ivan Damgärd, Mads Jurik, “A Generalisation, a 
Simplification and Some Applications of Paillier’ 
Probabilistic Public-Key System,” Public Key 
Cryptography 2001, LNCS 1992, pp. 119-136, 2001.  

[12] D. Chaum, and T. P. Pedersen, “Wallet Databases with 
Observers,” CRYPTO’92, LNCS 740, pp. 89-105, 1992.  

[13] M. Jakobsson and A. Juels, “Mix and Match: Secure 
Function Evaluation via Ciphertexts,” Advances in 
Cryptology- ASIACRYPT'00, LNCS 1976, pp. 162-177, 
2000.  

[14] Jens Groth, “A Verifiable Secret Shuffle of Homomorphic 
Encryptions,” Public Key Cryptography 2003, LNCS 2567, 
pp. 145-160, 2003.  

[15] Ivan Damgärd, Matthias Fitzi, Eike Kiltz, Jesper Nielsen, 
Tomas Toft, “Unconditionally Secure Constant-Rounds 
Multi-party Computation for Equality, Comparison, Bits 
and Exponentiation,” Theory of Cryptography (2006), 
LNCS 3876. pp. 285-304, 2006.  

[16] J. Bar-Ilan, D. Beaver, “Non-cryptographic fault-tolerant 
computing in constant number of rounds of interaction,” 
Proc. 8th annual ACM Symposium on Principles of 
distributed computing, pp. 201-209, 1989.  

[17] Craig Gentry, “Fully homomorphic encryption using ideal 
lattices,” Proc. 41st annual ACM symposium on Theory of 
computing (STOC), pp. 169-178, 2009.  

[18] Craig Gentry, “Toward basing fully homomorphic 
encryption on worst-case hardness,” Advances in 
Cryptology-CRYPTO’10, LNCS 6223, pp. 116-137, 2010.  

[19] Craig Gentry and Shai Halevi, “Implementing gentry’s 
fully homomorphic encryption scheme,” Advances in 
Cryptology EUROCRYPT’2011, LNCS 6632, pp. 129-148, 
2011.  

[20] Nigel P. Smart and Frederik Vercauteren, “Fully 
homomorphic encryption with relatively small key and 
ciphertext sizes,” Public Key Cryptography-PKC’10, 
LNCS 6056, pp. 420-443, 2010.  

[21] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod 
Vaikuntanathan, “Fully homomorphic encryption over the 
integers,” Advances in Cryptology-EUROCRYPT’10, 
LNCS 6110, pp. 24-43, 2010. 

[22] Jean-Sebastien Coron, Avradip Mandal, David Naccache, 
and Mehdi Tibouchi, “Fully Homomorphic Encryption 
over the Integers with Shorter Public-Keys,” Advances in 
Cryptology-CRYPTO’11, LNCS 6841, pp. 487-504, 2011.  

[23] Zvika Brakerski and Vinod Vaikuntanathan, “Fully 
Homomorphic Encryption for Ring-LWE and Security for 
Key Dependent Messages,” Advances in Cryptology-
CRYPTO’11, LNCS 6841, pp. 505-524, 2011.  

[24] Jianer Chen, Computational Geometry: Methods and 
Applications, Texas Texas AδM University, 1996.  

[25] Marc Fischlin, “A cost-effective pay-per-multiplication 
comparison method for millionaires,” Proc. the 2001 
Conference on Topics in Cryptology:  The Cryptographer’s 
Track at RSA, Springer-Verlag, pp. 457-472, 2001.  

[26] Li S D, Wang D S, Dai Y Q, Luo P, “Symmetric 
cryptographic solution to Yao’s millionaires’problem and 
an evaluation of secure multiparty computations,” 
Information Sciences, 178(1):  244-255, 2008.  

[27] Ian F. Blake, Vladimir Kolesnikov, “Strong Conditional 
Oblivious Transfer and Computing on Intervals,” 
ASIACRYPT2004, LNCS 3329, pp. 515-529, 2004.  

[28] Ian F. Blake, Vladimir Kolesnikov, “Conditional 
Encrypted Mapping and Comparing Encrypted Numbers,” 
Financial Cryptography and Data Security Conference 
2006, LNCS 4107, pp: 206-220, 2006.  

 
 
 

 
Bo Yang received the B. S. degree from 
Peking University in 1986, and the M. S. 
and Ph. D. degrees from Xidian 
University in 1993 and 1999, 
respectively. From July 1986 to July 
2005, he had been at Xidian University, 
from 2002, he had been a professor of 
National Key Lab. of ISN in Xidian 
University, and a supervisor of Ph.D. He 

has served as a Program Chair for the fourth China Conference 
on Information and Communications Security (CCICS'2005) in 
May 2005, vice-chair for ChinaCrypt'2009 in Nov. 2009, and 
general chair for the Fifth Joint Workshop on Information 
Security (JWIS 2010), in Aug. 2010. He is currently a professor 
and supervisor of Ph.D. at School of Computer Science, 
Shaanxi Normal University, a special-term professor of Shaanxi 
Province. His research interests include information theory and 
cryptography. 
 
 

Chung-Huang Yang received the B.S. 
degree from National Cheng-Kung 
University in 1981 and the M. S. and Ph. 
D. degrees from University of Louisiana 
at Lafayette in 1986 and 1990, 
respectively. He is currently a professor 
at Graduate Institute of Information and 
Computer Education, National Kaohsiung 
Normal University, and a member of 
board of executive directors of (Taiwan) 

Chinese Cryptology and Information Security Association.  His 
research interests include the implementation of cryptographic 
algorithms, computer forensics and mobile phone forensics.  
 
 

 
Yong Yu received the Ph.D. in 
cryptography from Xidian University in 
2008. He is currently an associate 
professor at School of Computer Science 
and Engineering, University of Electronic 
Science and Technology of China, and 
his research interests focus on 
cryptography and its applications, 
especially public encryption and digital 

signature. 

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 2025

© 2013 ACADEMY PUBLISHER



 
Dan Xie is a graduate student at School 
of Computer Science, Shaanxi Normal 
University, Her research interests 
include cryptography and cloud 
computing security. 

 
 

 
 

2026 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER




