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Abstract— For improving the equalization performance of 
higher-order QAM signals, orthogonal Wavelet transform 
dynamic Weighted Multi-Modulus blind equalization 
Algorithm based on the Dynamic Particle Swarm 
Optimization(DPSO-WWMMA) is proposed. In this 
proposed algorithm, dynamic particle swarm optimization 
algorithm and orthogonal wavelet transform are introduced 
into dynamic Weighted Multi-Modulus blind equalization 
Algorithm(WMMA). Accordingly, the equalizer weight 
vector can be optimized by Dynamic Particle Swarm 
Optimization(DPSO) algorithm, the autocorrelation of the 
input signals can be reduced via using orthogonal wavelet 
transform, and the WMMA is used to choose appropriate 
error model to match QAM constellations. The theoretical 
analyses and computer simulations in underwater acoustic 
channels indicate that the proposed algorithm can obtain 
the fastest convergence rate and the smallest steady mean 
square error in equalizing high-order QAM signals. So, the 
proposed algorithm has important reference value in the 
underwater acoustic communications. 
 
Index Terms—dynamic particle swarm, orthogonal wavelet 
transform, weighted multi-modulus blind equalization 
algorithm, underwater acoustic communication 

I. INTORDUCTOIN 

In underwater acoustic communication system, in 
order to eliminate the inter-symbol interference(ISI) 
caused by the limited bandwidth and multipath 

propagation of the underwater acoustic channel, blind 
equalization technique is introduced to the receiving end. 
Compared with the traditional adaptive equalization 
algorithm, the blind equalization technique doesn't need 
to transmit periodic training sequence, the channel 
change only is compensated by the statistical properties 
of the receiving signals, and channel equalization is 
realized, as well as higher-order QAM modulation signals 
become the important means of modern communication 
modulation with its high frequency band utilization rate. 
The complexity of the QAM signals is greatly improved 
with the modulation order number increases, it is difficult 
to equalize the higher-order QAM modulation signals. 
Therefore, the higher-order QAM modulation technology 
has already caused the wide attention.  

In the blind equalization algorithms, the traditional 
constant modulus blind equalization algorithm can well 
equalize constant modulus signals, when the higher-order 
non-constant modulus QAM signals are equalized, the 
input constellation diagram distributed in several 
different radius circles is output to the same circle, the 
great mean square error are caused, the communication 
quality is seriously affected. In the multi-modulus blind 
equalization algorithms [3][4] [5], the equalizer outputs 
are divided into real and imaginary parts, the respective 
modulus of in-phase component and quadrature com- 
ponent are selected. The great mean square error caused 
by the single decision circle of the CMA can be reduced 
by this method and the channel can be equalized 
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effectively. The thought of the dynamic weighted multi- 
modulus algorithm is to make full use of the prior 
information of constellation diagram, the appropriate 
error model is selected to match the constellation diagram 
of the transmitted QAM signals in order to reduce the 
steady-state mean square error further, and the input 
signal’s autocorrelation is reduced via introducing the 
orthogonal wavelet transform [8][9], as well as the 
convergence rate is accelerated. The equalizer weighted 
vector of the MMA and CMA are updated by using the 
gradient descent algorithm and it is easy to fall into local 
convergence, so it is difficult to obtain the global optimal 
solution. The dynamic particle swarm optimization 
(DPSO) algorithm is a global stochastic searching 
optimization algorithm[10][11][12][13][14], it has good 
ability to track dynamic extreme value and is able to 
detect the changes of the external environment, the 
change of the external environment is provided by the 
cumulative difference of the sensitivity particle fitness 
value in two adjacent iteration. Accordingly, the 
possibility of the population falling into local minimum 
can be avoided. Based on the above analyses, in this 
paper, the orthogonal wavelet transform theory, dynamic 
weighted multi- modulus blind equalization algorithm 
and DPSO algorithm are combined, an orthogonal 
wavelet transform dynamic weighted multi-modulus 
blind equalization algorithm based on the optimization of 
dynamic particle swarm is proposed. Compared with 
orthogonal dynamic weighted multi-modulus blind 
equalization algorithm, the orthogonal dynamic weighted 
multi-modulus blind equalization algorithm based on 
DPSO algorithm has fastest convergence speed and least 
mean square error. 

The organization of the lecture is as follows. After a 
general introduction of the current situation of the MMA, 
CMA, and DPSO algorithm, orthogonal dynamic 
weighted multi-modulus blind equalization algorithm has 
been discussed in section II. Dynamic particle swarm 
wavelet dynamic weighted multi modulus algorithm 
based on DPSO algorithm is proposed in section III. In 
section IV, The analyses and simulation results of the 
proposed algorithm has been discussed. The lecture has 
been concluded in section V. 

II. ORTHOGONAL DYNAMIC WEIGHTED MULTI-MODULUS 
BLIND EQUALIZATION ALGORITHM 

After the orthogonal wavelet transform is introduced 
into dynamic weighted multi-modulus blind equalization 
algorithm(WMMA), we can get the orthogonal dynamic 
weighted multi-modulus blind equalization algorithm 
(WWMMA), and its principle diagram is shown as Fig.1. 
In this algorithm, the real and imaginary parts of the input 
signals of the equalizer are transformed by orthogonal 
wavelet transform, respectively, and their energies are 
normalized, the autocorrelation of the input complex 
signals can be reduced, so an equalizer with good 
equalization performance could be designed. 
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Figure 1. Orthogonal wavelet transform dynamic weighted 

multi-modulus blind equalization algorithm 

In Fig.1, ( )a k is a transmitted complex signal source, 
( )kc is the channel impulse response with length M, 
( )w k is additive white Gaussian noise, ( )y k is the 

complex input signals of the equalizer, and ( )R k  is the 
result after transforming ( )y k  via using orthogonal 
wavelet, and ( )y k = T[ ( ), , ( ), , ( )]y k L y k y k L+ −L L , 

( )f k is the equalizer weighted coefficient, and ( )k =f  

0[ ( ),f k   , ( )]T
Lf kL . ( )z k  and ˆ( )z k  are the output 

complex signal of the equalizer and decision device. 
  The input signal of equalizer ( )y k may be expressed 
as 

1

0

( ) ( ) ( ) ( )w
M

m

y k c m a k m k
−

=

= − +∑ .      (1) 

From the theory of wavelet analyses, when the equalizer 
weight vector ( )f k is a finite impulse response, it can be 
expressed as a group of orthogonal wavelet basis function, 
i,e., 

( ) ( ) ( )r if k f k jf k= + .           (2) 
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where k denotes the length of the equalizer and 
0,1, , 1, 2Jk L L= − =L . J is the largest scale of wavelet 

decomposition, jk  is the maximum translation scale 

wavelet function and / 2 1( 1,2, , )j
jk L j J= − = L . 

, ( )j m kϕ  and , ( )J m kφ denote the wavelet function and the 
scaling function, respectively. , ( )rj md k and , ( )rJ mv k  are 
the real part of the equalizer coefficient, , ( )r j md k  

,( ), ( )r j mf k kϕ=< > , and , ,( ) ( ), ( )r J m r J mv k f k kφ=< > . 

, ( )ij md k  and , ( )iJ mv k  are the imaginary part of 
equalizer coefficient, , ,( ) ( ), ( )i j m i j md k f k kϕ=< > , and 

, ( )i J mv k = ,( ), ( )i J mf k kφ< > .According to wavelet 
transform theory, the equalizer input signal ( )kR  can be 
expressed as  
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( ) ( ) ( ) ( ) ( ( ))R R R Q Qr i r ik k j k y k j y k= + = + .  (4) 

where ( )Rr k  and ( )Ri k are the real and imaginary part 
of the input signal ( )R k , respectively, and they can be 
written as  
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where , ( )rj mu k and , ( )rJ ms k denote the real part of the 
wavelet and scale transform coefficients, respectively. 

, ( )ij mu k and , ( )iJ ms k denote the imaginary part of the 
wavelet and scale transform coefficients, respectively.  
  The equalizer output is given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )f R f RT T
r i r r i iz k z k jz k k k j k k= + = + .  (9) 

where ( )f T
r k  and ( )f T

i k (superscript T denotes 
transpose operation) are the equalizer weighted vector of 
the real and the imaginary part of the vector, 
respectively. ( )rz k  and ( )iz k are the real and imaginary 
parts of the equalizer output signals, respectively. The 
cost function of weighted multi-modulus blind 
equalization algorithm is defined as 

2 ( ) 2 2ˆ{( ( ) | ( ) | )k
WMMA r r rWMMAJ E z k z k Rλ= − .   (10) 

where 
2 4 2+ ( )( ( ))/ ( | ( ) | )k
rWMMA r rR E a k E a k λ= ,       (11a) 

2
iWMMAR 4 2+ ( )( ( ))/ (| ( ) | )k

i iE a k E a k λ= .      (11b) 

where ˆ ( )rz k  and ˆ ( )iz k are the real and imaginary part 
of the decision signal ˆ( )z k . ( )kλ is the weighted factor, 
which determines the convergence speed and steady-state 
mean square error of the algorithm. The iterative formula 
of the mean square error (MSE) is given by 

2ˆ( 1) ( ) (1 ) ( ) ( )MSE k MSE k z k z kα α+ = + − − .  (12) 

2 ( ) 2
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From Eq.(13), we can know that the value of ( )kλ is 
affected by the MSE directly. The eye pattern of signals 
are completely closed in the initial stage of equalization 
process, ( )kλ  should take a smaller value so that the 
error curves can achieve global convergence. When the 
eye pattern become more and more clearer, the value 
of ( )kλ must be improved to reduce the MSE. In order to 
match the actual signals and to reduce the steady-state 
mean square error, it is necessary to design the more 
accurate error model. According the literature[7], the 
weighted value ( )kλ  can be written as 

0 ( ) / 2
1 ( ) / 2 ( ) 2 / 5
1.2 ( ) 2 / 5 ( ) 3 /10

( )
1.5 ( ) 3 /10 ( ) /10
1.8 ( ) / 5 ( ) /10
2 /10 ( )
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⎪

≥⎪⎩

.(14) 

where the d is the minimum distance among the 
constellation points(i.e., the minimum Euclidean 
distance). According to the literature [15] , we can know 
that the parameter d denotes the ability of QAM signals 
to resist the Gaussian white noise. The energy mean and 
peak of the constellations without energy normalized 
QAM signals are expressed as  

1
( ) /

M

i i
i

E a b M
=

= +∑ .            (15) 

               max( )i iP a b= + .             (16) 

where ia and ib  denote the constellation points of 
QAM signals, M is the number of constellation points in 
any quadrant. The peak to average ratio is written as 

/P Eγ = . After the constellation energy normalization, 
we can get the minimum distance d  among the adjacent 
constellation points and 2 /d E= . 
  The iterative formula of the equalizer weighted vector 
can be written as 

-1
.

1
.
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where 1 2 2 2
,0 ,1 , 1

ˆ ( ) diag[ ( ), ( ), , ( ),
Jr rj rj rJ kk k k kσ σ σ −=R L- 2

1,0 ( )rJ kσ +  
2

1, 1, , ( )]
JrJ k kσ + −L . 2

, ( )rj k kσ and 2
1, ( )

jrJ k kσ + denote the average 
power estimation of the real part of the wavelet coeffi- 
cients , ( )rj mu k and the scale transform coefficients 

, ( )rJ ms k . 2
, ( )ij k kσ and 2

1, ( )
jiJ k kσ +  denote the average 

power estimation of the imaginary part of the wavelet 
coefficients , ( )ij mu k and scale transform coefficients 

, ( )iJ ms k ，and 
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where β is the smoothing factor and 0 1β< < . Up to now, 
orthogonal wavelet dynamic weighted multi-modulus 
blind equalization algorithm(WWMMA) is established. 

III. DYNAMIC PARTICLE SWARM WAVELET DYNAMIC 
WEIGHTED MULTI MODULUS ALGORITHM 

A.  Basic Idea 
The initialization position vector of a set of random 

particles(i.e., initialization weighted vector of equalizer) 
is used as the decision variables of the DPSO algorithm, 
the equalizer input signals are taken as the input signals 
of the DPSO algorithm. Based on the cost function of 
multi-modulus blind equalization algorithm, we can 
determine the fitness function of the DPSO algorithm and 
use the DPSO algorithm to find the optimal equalizer 
weighted vector (i.e., the optimal position vector of 
particle swarm).The weighted vector is regard as the 
initialization weighted vector of the orthogonal wavelet 
dynamic weighted multi-modulus blind equalization 
algorithm at this time. The inverse cost function of 
multi-modulus blind equalization algorithm is defined as 
the fitness function of QPSO algorithm, it is written as 

( )( ) 1/ , 1, 2, ,i MMA ifF f J i M= = L .       (20) 

where 2 2 2 2( ) {( ( ) ) +( ( )MMA i r rMMA ifJ E z k R z k= − − 2 2) }iMMAR  and 
it is called as the cost function of multi-modulus blind 
equalizer. 2 4 2( ( ))/ ( | ( ) | )rMMA r rR E a k E a k=  and 2

iMMAR =  
4 2( ( ))/ (| ( ) | )i iE a k E a k . M  is the number of particles, 

if  is the position vector of particles corresponding to 
the individual of equalizer weighted vector. 

B. Dynamic Particle Swarm Optimization Weighted   
Vector Algorithm 

  The position and speed searching model are used in the 
DPSO algorithm, each particle is corresponded to a 
candidate solution of the selected problem. The quality of 
solution is determined by the value of fitness function. 
The initialization position vector of the i th particle is 
written as 1 2( , , , )i i i iDx x x x= L and the velocity 

1 2( , , , )i i i iDv v v v= L . idx  and idv  represent the d th 
dimension of the position vector and the d th dimension 
of the velocity vector of the i th particle . Assume that 
the random of the initial particle swarm is W and 

1 2[ , , , ]mW W W=W L , it is corresponded to the equalizer 
weighted vector of the particle. The particles update their 
own speed and position according to the following 
expression[10]. 

1 1( 1) ( ) ( ( ) ( ))id id id idv t wv t c r p t x t+ = + −   

   2 2 ( ( ) ( ))gd idc r p t x t+ − .        (20) 

( 1) ( ) ( 1)id id idx t x t v t+ = + + .      (21) 

     max max min(( ) / )w w w w N t= − − .         (22) 

where 1, ,i m= L , 1, ,d D= L , D is the spatial dimension, 
t  denotes the t th iteration, 1c  and 2c  are acceleration 
factors. 1r and 2r  are random number within [0,1], N is 
the maximum number of iterations of the particle swarm 
algorithm. w is inertia weighted factor, maxw and 

minw represent the maximum and minimum inertia 
weighted factor, respectively. Particles dynamically trace 
the two extreme values to update the position and 
velocity vector in the optimization process. The current 
iteration times produce the optimal value, in other words, 
the individual optimum vector ip = 1 2( , , , )i i iDp p pL and 

idp is the individual of the d th particle's dimension. The 
current global optimal vector of the entire particle swarm 
may be written as 1 2( , , , )g g g gDp p p p= L and gdp  is 
the global minimum of the particle's d th dimension. The 
fitness values of the remembered personal best position 
and global best position are changing with dynamic 
environment. Accordingly, it is difficult to effectively 
approach to the optimal position vector in a dynamic 
environment. 
  We can improve the particle swarm in two aspects: the 
first is the introduction of the detection mechanism, it can 
provide the ability to perceive the changes in the external 
environment. In the D  dimensional space, there are 1n  
particles and 2n  sensitive particles and 1 2n n≠ . We 
must calculate the fitness value fit of the particles and 
the fitness value fittest  of the sensitive particles, and 
accumulate the fitness values of the sensitive particle in 
each iteration. The individual optimal and global optimal 
position vector are got by the comparison method in the 
end. The difference between the fitness values of two 
adjacent sensitive particle is calculated, let FΔ =  

-oFitness nFitness , we use nFitness to denote the fitness 
value accumulation after the sensitive particle second 
initialization and oFitness to denote fitness value 
accumulation of the sensitive particle. If the value of 

FΔ isn't 0, the external environment will change. The 
second is the introduction of the response mechanism. 
When the environment changes, we use some response 
mechanism to update the population that reinitializes the 
particle’s position and velocity vector to fit the dynamic 
environment. The above analyses can be described as the 
following program: 
  If ( ) 0-abs oFitness nFitness > ,then  

1( );index randperm n= ( (1:10),:) (10, );x index rand D=  
( (1:10),:) (10, );v index rand D=  
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  Through the above descriptions, we can know that, if 
( ) 0-abs oFitness nFitness > ,the particle’s position vector 

and velocity vector can be reinitialized at a certain level, 
the most optimal position vector of the population in the 
new particle swarm solution space can be re-found , so as 
to maintain the diversity of the population and to avoid 
fall into the premature convergence of the population. For 
the DPSO algorithm, we take the last particles optimal 
position vector as the equalizer optimal weighted vector, 
that is to say, the gbestp always is treated as the 
initialization weighted vector of orthogonal wavelet 
dynamic weighted multi-modulus blind equalizer and 

1 2( , , , )gbest g g gDp p p p= L .Up to now, orthogonal Wavelet 
transform dynamic Weighted Multi-Modulus blind 
equalization Algorithm based on the Dynamic Particle 
Swarm Optimization(DPSO-WWMMA) is established. 

IV. SIMULATION EXPERIMENT 

  In order to validate the validity of the DPSO- 
WWMMA, the simulation tests were carried out and 
compared with dynamic Weighted Multi-Modulus blind 
equalization Algorithm based on the Dynamic Particle 
Swarm Optimization(DPSO-WMMA) and dynamic 
Weighted Multi-Modulus blind equalization Algorithm 
(WMMA).  

A.  Simulation I 
  In the experiment, the underwater acoustic mixed 
phase channel = [0.3132 -0.1040 0.8908 0.3134]C [16],the 
transmitted signals were 64QAM, the length of the 
equalizer was 16, the SNR was 25dB. DB2 orthogonal 
wavelet was used to decompose the input signal and its 
level was 2. The initial value of the power was 10, the 
forgetting factor 0.999β = , MSE(1)=2 , and the eighth 
tap coefficient of the WWMMA algorithm was set to 1, 
and the other was 0. The step-size 6

WMMA 3 10μ −= × , 
6

DPSO WMMA 2.5 10μ −
− = × , and 6

DPSO WWMMA 3 10μ −
− = × .The 

100 times Monte-Carlo simulation results were shown in 
Fig.2 . 
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Figure.2 Simulation results for channel  

  From the Fig.2, we can know that the convergent speed 
of the DPSO-WWMMA has an improvement of about 
2000 steps and 500 steps comparison with WMMA’s 
amd DPSO-WMMA’s, respectively. The mean square 
error(MSE) of DPSO-WWMMA has a drop of about 2dB 
comparison with WMMA's and DPSO-WMMA's. The 
output constellations of the DPSO-WWMMA is clearer 
and more compact than the WMMA's and DPSO- 
WWMMA's. Accordingly, it has the fastest convergence 
speed, the clearest output constellations, and the smallest 
MSE for the QAM signals. 
 
B. Simulation II 
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In the experiment the underwater acoustic least phase 
channel ]2368.00578.00956.09656.0[ −=C [16],the 
transmitted signals were 128QAM, the length of the 
equalizer was 16, the SNR was 30dB. DB2 orthogonal 
wavelet was used to decompose the input signal and the 
level was 3. The initial value of the power was 10, 
forgetting factor 0.99β = , MSE(1)=2 .The step-size 

7
WMMA 5 10μ −= × , 7

DPSO WMMA =2 10μ −
− × , and 

DPSO WWMMAμ −
 

63 10−= × .  The 20 times Monte-Carlo simulation results 
were shown in Fig.3 . 
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Figure.3 Simulation results for channel  

From the Fig.3, we can know that the convergent speed 
of the DPSO-WWMMA and DPSO-WMMA have an 
improvement of about 4000 steps comparison with the 
WMMA’s. The mean square error(MSE) of the DPSO- 
WWMMA is about 8dB− ,the DPSO-WMMA is 

6dB− and the WMMA is 4dB− .The output constell- 
ations of the DPSO-WWMMA is clearer and more 
compact than the WMMA’s and DPSO-WMMA’s. 
Accordingly, the DPSO-WWMMA has the fastest 
convergence speed, the clearest output constellations, and 
the smallest MSE for the QAM signals. 

V. CONCLUSIONS 

  An orthogonal wavelet dynamic weighted multi- 
modulus blind equalization algorithm based on QAM 
signals is proposed based on combining dynamic particle 
swarm optimization global optimization algorithm with 
wavelet blind equalization algorithm. This proposed 
algorithm can avoid falling into local convergence and 
strengthen the equalization performance in a dynamic 
environment. Simulation results of underwater acoustic 
channel show that the performance of the proposed 
algorithm is excellent in reducing MSE and improving 
convergence speed for QAM signals. 
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