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Abstract— Negative Selection Algorithm (NSA) is an impor-  been widely applied to pattern recognition, data mining,
tant artificial immune data classifiers generation method in  grtificial intelligence and network intrusion detectiotg.e
Artificial Immune System (AIS) research. However, with In recent years, it is the research focus which in-

the increase of the data dimensions, the current data d d ificial | h he field of d
classification algorithms which based on NSA exist the troduced artificial immune theory to the field of data

problems of excessive number of generated classifiers and Mining [6]. The researchers from different angles to
too low classifier generation efficiency. In this paper, the Dal ~ simulate biological immune mechanism to data classifica-
Negative Selection Algorithm based on Pattern Recognition  tjon analysis, including data classification method based
Receptor theory (PRR-2NSA) is proposed, which simulates , noqative selection algorithm (Ji et al. put forward

the process of Antigen Presenting Cells (APC) recognized ¢h h lvalued . lecti lgorith d lied
Pathogen-Associated Molecular Patterns (PAMP) to trigger (€ réal-valued negative selection algorithm and applie

the immune response. The PRR-2NSA algorithm generates t0 network intrusion detection [7], [8]). They regarded
the APC classifier based on training set clustering firstly, ad  monitoring targets (such as legal user activities, legal
then generates the T-cell classifiers within the coverage of application usage activities, etc.) as self and expected th

the APC classifier set with dual negative selection algoritim i ;

(2NSA) secondly. The 2NSA avoids the unnecessary and NS.A.t.O d|sc_r|m|n_a¥e the(;‘n(l;rom others (EUCh as illegal uzer
time-consuming self-tolerance process of candidate clagsr activities, virus in _e_cte_ ata, network worm, et(_:.). S

within the coverage of existing mature classifiers, thus Well as data classification method based on the immune

greatly reduces classifier set size, significantly improves network theory (De Castro et al. put forward the aiNet

classifier generation efficiency. The PRR-2NSA introduces model [9] and Timmis et al. put forward the RLAIS
the APC classifiers’ co-stimulation to the T-Cell classifier method [10] used for data classification).

which reduce the occurrence of false classification on one . .
hand, and accelerate the data classification efficiency on ¢h In this paper, we analyze the two-class data classifi-
other hand. Theoretical analysis and simulations show that ~cation problem based on real-valued negative selection

the PRR-2NSA algorithm effectively improves classificatin  algorithm, and propose the dual negative selection algo-
efficiency and reduces the time cost of algorithm. rithm based on pattern recognition receptor theory (PRR-
Index Terms— artificial immune system, real-valued negative = 2NSA). The PRR-2NSA can be used in many two-class
selection algorithm, variable-sized classifier, dual nedwe  data classification applications, such as data classtfitati
selection algorithm, PRR-2NSA data mining, pattern recognition and network intrusion
detection, etc.
I. INTRODUCTION

N data mining research, data classification is the prob- Il. RELATED WORKS
lem of identifying to which of a set of categories a new

observation belongs, on the basis of a training set of data Thg bN e?:at've tSejI-(:aLctlo_n Allgtorltf;lr”]n (_NSA)’ f'rtStI pro-
containing observations (or instances) whose categofyo>c0 PY FOMES [11], simulates the immune tolerance

membership is known. A large number of classifica- rocess ofl'—cells in thymus to generate detectors which

tion algorithms have been proposed, including Bayesialqvmd self reaction. The mature detectors are subsequently

classifier [1], K-Nearest Neighbor algorithm (KNN) [2], gsed Iortthe recogrr]utlon of Eon-seﬂf ?nd lapp!:fd tt.o madnyt
Fuzzy C Mean (FCM) [3], the decision tree method [4]’|m_ppr an trtesearc €s, -tguc a3 ata Cl ast|t|cat_|on, ta a
BP neural network algorithm [5] and Artificial Immune mining, pattern recognition, and anomaly detection, €tc.

P, 6], [8], [12]-[16].
System (AIS) [6]. The data classification method haé The early NSA [11], termed SNSA (String represented

Manuscript received December 01, 2012; revised Januan022;2 Negative Selection Algorithm), which encodes antibody

accepted April 16, 2012¢) 2005 IEEE. ) (classifier) and antigen (samples) as binary strings and
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china (NO. SWU112038) calculates the affinity (match degree) between them by the
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of SNSA was discussed in refs. [17], [18]: the probabilityof mature classifiers and extremely lowered classifier
of candidate classifiers matured by passing the negativgeneration efficiency, and increased the computation time
selection process i® = (1 — Pm)N"‘, where P, is the  complexity of these RNSAs.
match probability of candidate classifier and antigah,
is the training set size; thus with the increasé\of P will IIl. THE BASIC DEFINITION OFRNSA
tend to be 0 ultimately; moreoveN, = #% Inspired by the self and non-self (SNS) theory [20],
candidate classifiers are needed to reach the given failuggy rest proposed the NSA to eliminate the self reactive
probability Py ~ e~"Ne, which means that the count getectors [11]. In this paper, the real-valued negative
of candidate classifierd/; is exponentially related to the ggjection algorithm is discussed, and some basic concep-
count of training setN,, and the time complexity of tions of RNSA are defined as follows:
SNSA isO (No - Ng) = O (%)- Def 1 Antigen Ag = {aglag =< z1, 22, ..., Tp >, x; €
The RNSA (Real-valued Negative Selection Algorithm) [0, 1]}, which represents all samples in the feature space,
uses a fixed classifier radius, and sets the count of wheren is the data dimension.
detectors as the condition of algorithm termination [13].Def 2 Self setSelf C Ag, which represents all normal
In RNSA, the candidate detector was randomly generatesamples in the antigen sély; Non-self setNonsel f C
with centerX (z1, xo, ..., T, ) firstly, and then the shortest Ag, which represents all abnormal samples in the antigen
Euclidean distancéis.,,;, between the candidate detector set Ag, and which satisfies formula 1.
and all self elements in training set was calculated, and
finally the mature detector was generatediit,,,;, >
rs + 1., Wherer,. is the radius of detector, and is the
radius of self element. Def 3 Training set Train C Self, which represents
The V-Detector (Real-valued Negative Selection Al-the prior knowledge of detectiom, € [0, 1] is the radius
gorithm with Variable-size Detector) uses variable-sizedbf self andN, is the size of training set.
detector radius, and sets the expected coverage as the c@ef 4 Classifier setC'S = {c|c =< y1, Y2, .-, Yn, Ca >
dition of algorithm termination [7], [8]. In V-Detector,¢h .y, € [0,1],cq4 € [0,1]}, which represents the mature
candidate detector was randomly generated with centexassifier set generated by NSA based on the training set,
X (z1,x2,...,x,) firstly, and then the shortest Euclidean wherec, is the radius of classifier and¥. is the size of
distancedis,,;, between the candidate detector and allthe classifier set.
self elements in training set was calculated, and finalypef 5 Estimated coverage rateC’ = ,
the mature detector was gengratedz’ﬁmm > s, Where  \hich represents the ratio of samples fall inj\{ﬁg coverage
the radius of detector is. = disyin — 7. of classifier setC'S and total samples in a sampling
As indicated in refs. [17], [18], for pattern recognition period, whereNum is the count of total samples and

a}lgorithms basgd on distance calculation., the primarwumwvmd is the count of samples fall in the coverage
time consumption is the distance calculation. Stibor eby classifier set’S in a sampling period.

al. [17] pointed out that the unacceptable high time cost

SelfU Nonself = Ag,Self N Nonself = ¢. (1)

Numcove'r‘ed

of RNSAs is caused by the inefficiency of the classifier = Numcovered @)
generation process, and which significantly limited the Num
applications of AIS. Def 6 Classification processf(Train) — Nonself,

Aydin et al. [15] and Gao et al. [19] combine the which represents the process to identify non-self set based
genetic algorithm and chaos theory to optimize classifiebn the self antigens training set.
generation process, which reduce the candidate classifiers
overlapping coverage. Bereta et al. [14] combine K-Means IV. THE IMPLEMENTATION STRATEGIES OF
data clustering method to simplify negative selection PRR-2NSA

process and applied to the data analysis. Gong. et al. In order to solve the problems of low classifier gener-

[16] have two self-set training process in the self-tolean ation efficiency and high misclassification rate, the dual

stage on the basis of V-Detector, in order to improve the . . . .
o . - hegative selection algorithm based on pattern recognition
classifier generation efficiency.

receptor theory (PRR-2NSA) is proposed in this paper

.BOth RNS.A and V-Detector_ employed only once "€9"\hich combines the Pattern Recognition Receptors theory

ative selection process to eliminate the self-recognize RR) and the dual negative selection algorithm (2NSA).
invalid classifiers by matching candidate classifier with

whole training set. In the negative selection process, N

there is only consideration of the relationship betweerf\- The Pattern Recognition Receptor (PRR) Theory
candidate classifier and training set but without any con- In 1989, the famous immunologist Janeway first pro-
sideration of repetitive coverage of candidate classifieposed the PRR theory [21]. In biology, the PRR model
with existing classifier set, which bring about the un-added additional layer of pathogen-associated molecular
necessary self-tolerance of the candidate classifier whicpatterns (PAMP) to the self-nonself model [22]. The
repetitive covered. Thus, the unnecessary self-tolerahce PRR model assumes that APC are quiescent until they
these candidate classifiers resulted in an excessive coumte activated via encoded pattern recognition receptors
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that recognize conserved PAMPs. To mirror this, T-cell
classifiers in the proposed algorithm are first used to Pmax (7, C) = max p (z,y) . (5)

recognize the antigen according to negative selection. The vee
co-stimulation of APC classifier will not be conducted .

H s~ : H : Pmin ((E, C) = min p ((E, y) . (6)
until the so-called suspicious antigen is encountered in yeC
the system. The co-stimulation of APC classifier will 1
not be conducted until the detection from T-cell clas- Pavg (7,C) = . Zp(x,y). (7)
sifiers becomes unsure, that is, the suspicious antigen € yeC

is encountered in the system. Although this solution After the training set data clustering, we get the APC
shows its strength in terms of algorithmic complexity, classifier set, where the number of APC classififs,,,
its performance relies on the application domain sinceés the number of clusters, and the center of each APC clas-
the definition of suspicious antigen is not always insifier X = (zy, 22, -- ,z,) is every cluster's center, that
accordance with a specific application. is CSapc = {apclapc = (x1,22, +* ,Tn,Tape) , Ti €
Inspired by this metaphor, we combine both PRR[0,1]}. The radius of each APC classifier is the maxi-
theory and T-cell negative selection process to achieve th&um distance between the classifier's center and every
data classification of two-class dataset, which had beeantigen’s center, that i8,,. = dismax (X, E;), where
proven to effectively reduce high false classification rater); is the element in the cluster. There are two important

that often occurred in traditional NSAs. purposes of APC classifier in the PRR-2NSA algorithm,
respectively: 1) the rapid response of the data to be
B. The Implementation Strategies of PRR-2NSA classified for the coverage of APC classifier set; and 2) the

There are two separate stages in the traditional twoPPC classifiers’ co-simulation_tp the T-cell classifier can
class data classification algorithm which based on negé{1_e|p to reduce the.false classification rate. The complete
tive selection process, respectively, the stage of antigeld0rithm process is shown as table I. _
toleration process to generate data classifier stage and the!n Order to illustrate the process of antigen clustering

stage of data classification process by using classifier sdP 9enerate APC classifier, we have an experiment to

The PRR-2NSA includes three separate stages, resped€nerate APC classifiers through the antigen training

tively: 1) the antigen clustering to generate APC classifiePet E:Iusterlng with 25 I'ris — Setosa” instances in the
stage; 2) the negative selection process to generate T-c_e'lfIS d_atase'F (4-d|menS|pn). In order t? display t”he résul
classifier stage; and 3) using the generated APC and T-cdll 2-dimensional graphics, only thescpallength” and
Classifier to execute data classification stage. “petallength” properties are selected. All data normal-
1) The Antigen Clustering to Generate the APC Clas2€d to the real valugo, 1] space, the radius of self is
sifier Stage: The APC classifier is generated by anti-"s = 0-05. As shown as Figure 1, theltis — Setosa”
gen training set hard clustering. The definition of hardlf@ining set are clustered as 3 AI?C classifiers, where the
clustering and dissimilarity measure are shown as Def.filling small rounds are theSetosa” antigen training set
and Def.8, as well as the nearest neighbor metric oflements and the dash circles are the APC classifiers.
data vectorr and clusterC' is calculated by the nearest
neighbor metric function.
Def 7 Hard Clustering Suppose data seX =
{x1, 22, ..., }, Wherez is data vector. Then clusters
of data setX is the m subsets, so, ..., s,, of m that
satisfies the formula 3.

lCceCcX,i=1,2,---,m
U ©)
cimcj:(bai#jaiaj:]w27'” , M

Def 8 Dissimilarity Measure Functiond : X x X —
R is the dissimilarity measure, whejeis the set of real
numbers, andl satisfies the formula 4.

ddy € R: —c0 < dy < d(x,y) < +oo,Va,y € X
d(x,z) =do,Vr € X
d(z,y) =d(y,x),Ve,y € X

0.8 1

4)
There are three kinds of nearest neighbor metric func-. _ _ o
. ivel . ighbor f ti f | Figure 1. 'I_'he antigen c_Iustenng to generate APC classiéervehere
tion, re_SpeCt'Ve Yy, maximum neighbor tunction (formu @training antigen set is “Iris-Setosals = 0.05, the filling small rounds
5), minimum neighbor function (formula 6) and averageare training antigen elements, the dash circles are APGifitas.

neighbor function (formula 7).
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TABLE I.
THE PSEUDO CODE OF THE ANTIGEN CLUSTERING TO GENERATAPC CLASSIFIER STAGE

Train : antigen training set CSapc : APC classifier set rape : the radius of APC classifier

Step 1 Initialization of the antigen training s€tain and APC classifier sef'S4pc = 0.

Step 2  Set the initial number of clusters, and using K-Meaarsl [clustering method to execute data clustering ofiin.

Step 3  Generation af',.,,, APC classifiers according to the clustering results.

Step 4 Determining appropriateness of each APC classifitusaif ropc > 5rs then Cum < Cnum + 1, €lse ifrape < 2rs, then
Cnu'm — Cnurn - 1

Step 5 If eactrs < rape < 575, thenCSapc < CSapc U{APClassifiert,» and stop.

2) The Implementation Strategies of 2NSlA: order  within the coverage of existing classifier set. The can-
to overcome the shortcomings of the current RNSAs, wealidate classifier that repetitively covered with existing
propose the dual negative selection algorithm (2NSA)mature classifiers will be eliminated in the 1st negative
The 2NSA uses variable-sized classifier radius, and setelection process, and thus decreases classifier set size
the expected coverage as the condition of algorithm terand improves classifier generation efficiency. The pseudo
mination. In the 2NSA, the randomly generated candidateode of 2NSA is shown as table II.
classifier tolerates with classifier set to generate semi- . .
mature classifier firstly (the 1st negative selection); and In ordgr o illustrate the ZNSA. _algonthm, we have
then the semi-mature classifier tolerates with training sef! experlm(_ent to generqte classn‘lt_ers throqgh the self-
to generate mature classifier (the 2nd negative selectio orl]ergncehwgh 255etosa Instances in thz Ihrls dz;tase_t.

The 1st negative selection process: every randoml}/ atis, t ed isetoia mstanli:_ez corfnﬁose t € se train-
generated candidate classifigy.,, tolerates with mature ng set, and the other two kinds of flowe¥ ¢rsicolour

classifier set and becomes semi-mature classifier Whe%nd Virginica) composed the non-self set. In order to

it does not match any existing mature classifier. Thed'Splay the result in 2-dimensional graphics, only the

candidate classifiet,,, was randomly generated with sepallength and_petallength 2 properties are selected.
center X (x1, 22, ..., x,) firstly, and then calculated the All data normalized to the real valu@, 1] space, the

Euclidean distancelis(c,ew, ;) between the candidate rqd|u§ of self.|3r5 = 0.05, and the classifier in RNSA
classifier and every mature classifigiin the classifier set with fixed radiusr, = 0.10.

CS. The candidate classifier successfully tolerated with The implementation strategy of 2NSA as well as the d-
the classifier set and becomes a semi-mature classifigfference from RNSA and V-Detector can be illustrated by
Csemi 1T the c,e, satisfies the formula (8). Otherwise, Figure 2. As shown as Figure 2, the classifiers generated
the candidate classifier,,, will be eliminated if it been  with fixed radius in RNSA and with variable-sized radius
recognized by any mature classifier, that is the terminatioih V-Detector, and many classifiers repetitively cover
of the 1st negative selection process, and a new candidajgith existing classifiers in both RNSA and V-Detector,
classifier c,.., Will be randomly generated and the 1stthus results in many candidate classifiers undergone the

negative selection process be restarted again. unnecessary and time-consuming self-tolerance process.
However, in the 2NSA, the candidate classifiers tolerate
dis(Cnew, Ci) > Te, i=1,2,..., Ng. (8)  with mature classifier se€'S to generate semi-mature

The 2nd negative selection process: the semi-matur%lassmer firstly, which avoids the repetitive coveragewit
classifierc,.,,; tolerates with self set and becomes matureeX'St.Ing classifier s€ US and guarf_;mtees the center of
classifier when it does not match any self element. Th eml-.njature F:Iassnﬁer Io_cates outs@t_a the coverage of the
shortest diStancelis.in (csemi, s;) between the center C.|aSSIerI‘ setin meanwhlle. The additional qegatlve sele_c—
tion process avoids the unnecessary and time-consuming

Y (y1, 92, ..., yn) Of sSemi-mature classifiet;.,.,; and every
o . elf-tolerance process and ensures that the new generated
self element of training set was calculated according to P 9
mature classifier covers more uncovered non-self space.

the Euclid dist . Theem: fully tolerated i i . ;
e Euclidean distance. Thg sticcessilly rolerate As shown as Figure 2, the classifier set size of 2NSA is

with the training set and becomes a mature classifigk .
if the formula (9) be satisfied, the mature classifigr,, dramatically reduced compare to RNSA and V-Detector.

joins to the classifier set'S,CS « CS U {cmat}, the SNSA, RNSA and V-Detector are major classifier gen-
radius ofc,at IS 7c = dismin(Csemi, s5) —1s. Otherwise,  eration algorithms which widely used in data classification
the semi-mature classifief.,; will be eliminated if it and pattern recognition fields. The 2NSA eliminates the
been recognized by any self element, and the 1st negativéinecessary and time-consuming self-tolerance process
selection process will be restarted again. of candidate classifiers locate outside the coverage of
existing classifier se€’'S through the 1st negative selec-
tion process, thus dramatically reduces the classifier set
size and the time complexity of current NSAs, greatly

The 2NSA algorithm avoids the unnecessary and timeimproves the classifier generation efficiency, and reduces
consuming self-tolerance process of candidate classifighe system false classification rate.

diSmin(Csemis Sj) > Ts j=1,2,...,Ns. (9
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TABLE II.
THE PSEUDO CODE OF THE DUAL NEGATIVE SELECTION ALGORITHM2NSA).

Train : self training set  CS : classifier set  r(c¢;) : the radius of classifiee; C : estimated coverage Cezp : €xpected coverage

Step 1 Initialization of the training sé&frain and classifier se€'S <+ ¢.

Step 2 Randomly generate a candidate classifier,, and calculate the distance between., and every classifie¢; in classifier selC'S,
goto Step 4 ifdis(cnew, ¢i) < r(c;).

Step 3 The candidate classifier.., that successfully tolerated with classifier &6 changes to semi-mature classifigfe., — csemi, and
then calculate the shortest distant®&.,,,;,, between thecs..,,; and every self element it'rain, If dis;in > rs, thencsems — c¢mat,
T(Cmat) = dismin — 15,05 < CS U {Cmat}-

Step 4 Calculate current estimated coverégegoto Step 2 ifC' < Cesp, else stop and return the classifier 6&%.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
V-Detector 2NSA

Figure 2. When the expected coverage reaclies, = 90%, the classifier set size of RNSA, V-Detector and 2NSA are 82ahd 3 respectively,
where the blue circles are the Zetosa self elements in the training set and the white circles aeegnerated classifiers.

3) Using 2NSA to Generate T-cell Classifier Stage: dual negative selection process, where the dash circles are
After the introduce of PRR model, since the PAMP APC classifiers, and the green circles are T-cell classifiers
recognition of APC classifier, then the coverage of the
APC classifier set defines the PAMP type data, and thu
outside the coverage area of the APC classifier set can |
judged as an alternative space. Therefore, the real-value
negative selection algorithm which based on PRR theor
(PRR-2NSA) conducts antigen self-tolerance to generat
T-cell classifier within the coverage of the APC classifier
set, but not the whole real value spg6el]”.

The complete negative selection process of the PRF
2NSA is roughly the same as the 2NSA algorithm. The
difference of the two algorithms lies in the range to
generate T-cell classifier, in which 2NSA in the whole
real value spac€0, 1]™ but PRR-2NSA in the coverage
of the APC classifier set. The PRR-2NSA algorithm usec
variable-sized classifier radius, and set the expected co
erage as the condition of algorithm termination. In PRR-
2NSA, the candidate classifier was randomly generate
with centerX (z1, 22, ..., z,,) firstly, and then the shortest
Euclidean distance dismin between the candidate classifir
and all antigen elements ifi'rain was calculated, and
finally the mature classifier was generatediif,,;, > 75,  Figure 3. The negative selection process to generate Tetzdbifier
where the radius of T-cell classifier is = dis;in — 7. within the coverage of APC classifier set, where trainingigamt set

In order to ilustrate the negative selection process: e qMCia.c T hoe e RRTe S0 S S ran
to generate T-cell classifier, we have an experiment tQassifiers.
generate T-cell classifier through the antigen training set
self-tolerance with fris— Setosa” instances in the “Iris” 4) Using the generated APC and T-cell classifier set
dataset. As shown as Figure 3, the 16 T-cell classifierto classify data: There are some differences between
are generated within the coverage of 3 APC classifiers bthe classification process of PRR-2NSA and traditional

0.8 1
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RNSAs. On one hand, T-Cell classifier need the cothere is82.03% and63.45% drop of PRR-2NSA in com-
stimulation of APC classifier to achieve the classificationparison with V-Detector and 2NSA. Accordingly, when
of abnormal data in the PRR-2NSA, thus effectivelyestimated coverage rise up €= 99%, there is69.79%
reducing the false classification rate. On the other handind 55.36% drop of PRR-2NSA in comparison with V-
for the clustering normal data of APC classifiers, thus theéDetector and 2NSA in “Chess” dataset, as well as there is
coverage outside of the APC classifier set can be judged.15% and 53.21% drop of PRR-2NSA in comparison
as abnormal data directly, thereby effectively enhancingvith V-Detector and 2NSA in “BCW” dataset.

the data classification efficiency. In sum up, the PRR-2NSA algorithm significantly
reduce the false classification rafeCR in different
V. PERFORMANCE EVALUATION dimensions and scale of training set, and keep the almost

In this section, the effectiveness and performance of '€ Same true classification rét&’'R in comparison with
the PRR-2NSA is verified by a group of comparative V-Détector and 2NSA.
experiments. The experimental data are the classical UC'
standard datasets: “Iris” [23], “Breast Cancer Wisconsir AQOpr e
Diagnostic” (BCW) [24] and “Chess” [25], which have
been widely used for the performance test and generatic
effective analysis of classifiers [6], [8], [13]-[15], [19]
As pointed out in ref. [7], [8], the real-valued negative
selection algorithm with fixed radius (RNSA) has poor
classifiers’ generation efficiency and performance. There
fore, we just compare the effectiveness and performanc
of the V-Detector, 2NSA and PRR-2NSA in the paper.
The Metrics the effectiveness of these algorithms in-
clude the classifier set siz€'(.S), the true classification
rate ("C'R), the false classification raté"C'R) and the
classification time'T). The experimental parameters are % o1 2 o3 o4 o5 o6 o7 8 oo 100
shown as table Ill, and all data is preprocessed to rea Estimated Coverage (%)
value and normalized in rande, 1]. All experiment were
repeated 50 times and averaged. Figure 4. The c_omparis_on of_ classifier set size of V-Dete_c_ﬂNSA
Def9 True Classification RateT'C' R, which represents and PRR-2NSA in low-dimensional dataset, where datasdtiss,"the
. o training set is “Iris-Setosays = 0.05, Num = 200.
the ratio of true positive count and the total non-self
samples identified by classifier set, whéré> and FFN
are the counts of true positive and false negative.

—&— V-Detector
—6— 2NSA
—— PRR-2NSA

w
a
=]

Number of Classifiers (V-Detector)
—-m =
ek {\ :
N

Number of Classifiers (PRR-2NSA and 2NSA)

B00f v

400 : : : ‘ ‘ ‘ ‘ ‘ —

TCR=TP/(TP+FN). (10) assol [ —8— V-Detector -
—e—2NSA

300F | —6— PRR-2NSA

) *./H// -
1

Def 10 False Classification Ratef’C'R, which repre-
sents the ratio of false positive count and the total sel
samples identified by classifier set, whdrd> and TN
are the counts of false positive and true negative.

Number of Classifiers
S
(=]

FCR=FP/(FP+TN). (12) ol ™
In order to verify the detection capability (Metric with 100k e
TCR and FCR) of PRR-2NSA, we conduct the compar- 5207 L e e—
ative experiments with the datasets of “Iris”, “BCW” and B S e ", ]
“Chess” in comparison with V-Detector and 2NSA. Y .4
The results are shown as table IV and table V. As 0 imated Coverage 08

shown as table IV, the comparison of these 3 RN-

SA_S, true clas_5|f|cat!on raj[e in low-dimensional dat_asetFigure 5. The comparison of classifier set size of V-Dete@)SA
(“Iris” dataset is 4-dimension and “Chess” dataset iS 5-and PRR-2NSA in high-dimensional dataset, where dataseBEW”,
dimension) and high-dimensional dataset (‘“BCW" datasethe training set is “BCW-Benign"ys = 0.05, Num = 200.

is 30-dimension), in whichl'C'R is roughly the same

in the same dataset. As shown as table V, the compar- In order to verify the classifier set generation capa-
ison of these 4 RNSAs’ false positive rate in differentbility (Metric with C'SS) of PRR-2NSA, we conduct
dataset, in which”’CR is very different. For example, the comparative experiments with the datasets of “Iris”,
when estimated coverage rise up €@ = 99%, the “BCW” and “Chess” in comparison with the V-Detector
FCR of RNSA, V-Detector, 2NSA and FPR-2NSA are and 2NSA.

FCRy_petector = 45.76%, FCRansa = 22.49% and The results are shown as Figure ~4 6. As shown
FCRprr_onsa = 8.22% respectively in “Iris” dataset, as Figure 4, the comparison of the 3 RNSAs' classi-
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TABLE III.
EXPERIMENTPARAMETERS OFRNSA, V-DETECTOR 2NSAAND PRR-2NSA.

Dataset Instances Dimension Type Self Set Non-self Set nifigaiSet and Size  Detection Set and Size
Versicolour:50 Setosa: 25
Iris 150 4 real Setosa: 50 ’ Setosa: 25 Versicolour: 25
Virginica: 50 Virginica: 25
BCW 569 30 real benign: 357  malicious: 212 benign: 150 be_n[gn: _150
malicious: 150
Categorical . . . draw: 1000
Chess 28056 6 Integer draw: 2796 others: 25260 draw: 1000 others: 2000
TABLE IV.

THE COMPARISON OF THET'C'R AMONG V-DETECTOR 2NSAAND PRR-2NSAIN DIFFERENT DATASET

True Classification Rate in Different Estimated Coveragg¢ (%

Dataset Algorithm 50% 60% 70% 80% 90% 92% 94% 96% 98% 99%

V-Detect 92.63 94.27 95.90 96.64 97.26 97.82 98.15 98.40 8198. 99.47

Iris 2NSA 92.56 94.12 95.23 95.96 96.64 97.34 97.86 98.22 98.69 .3899
PRR-2NSA 93.40 94.71 96.18 97.32 97.75 98.23 98.54 98.90 2699. 99.57
V-Detect 67.02 76.84 83.92 89.53 93.27 94.62 95.93 96.60 0198. 98.72

Chess 2NSA 66.58 75.36 82.54 89.05 93.03 94.47 95.76 96.53 97.89 .4698
PRR-2NSA 68.24 77.08 84.27 89.71 93.60 94.96 96.11 96.72 1998. 99.01
V-Detect 78.57 83.97 87.31 88.96 90.34 90.72 91.29 91.74 6592. 94.05

BCW 2NSA 77.94 83.03 86.79 88.32 89.25 89.96 91.18 91.50 92.39 .8793

PRR-2NSA 80.21 84.15 87.62 89.14 90.81 91.10 91.51 92.06 1793. 94.68

TABLE V.
THE COMPARISON OF THEF'C' R AMONG V-DETECTOR 2NSAAND PRR-2NSAIN DIFFERENT DATASET

False Classification Rate in Different Estimated Coverdgg (

Dataset Algorithm 50% 60% 70% 80% 90% 92% 94% 96% 98% 99%
V-Detect 22.16 25.07 29.40 32.08 34.42 35.86 37.65 39.51 6142. 45.76
Iris 2NSA 9.52 11.64 13.22 14.78 16.05 16.53 17.60 18.32 20.35 4922.
PRR-2NSA 4.27 5.20 5.87 6.34 6.71 6.94 7.16 7.42 7.69 8.22
V-Detect 25.97 31.33 35.68 40.85 45.96 49.54 54.78 63.82 2767. 69.85
Chess 2NSA 15.77 18.52 21.70 24.59 27.18 31.12 33.57 39.32 4451 2747
PRR-2NSA 8.05 9.61 11.84 13.73 15.29 16.50 17.12 18.44 19.6721.10
V-Detect 5.18 5.38 5.45 5.83 6.17 6.38 6.53 6.78 7.19 8.26
BCW 2NSA 2.37 2.68 3.05 3.31 3.56 3.73 3.86 4.02 4.15 4.21
PRR-2NSA 1.04 1.15 1.28 1.42 1.54 1.63 1.70 1.78 1.92 1.97

fier set size in low-dimensional dataset (“Iris” datasetin comparison with V-Detector.

is 4-dimension), in which classifier set size increased |5 sym up, the 2NSA and PRR-2NSA algorithm sig-

dramatically in V-Detector but only increased slowly pjficantly reduce the classifier set size in different data
in 2NSA and PRR-2NSA with the grow of estimated gimensions and scale of training set. For the introduce
coverage. When estimated non-self coverage rise up f APC classifier in the PRR-2NSA, the T-Cell classifier

C = 99%, the classifier set size of RNSA, V-Detector need to be generated within the coverage of APC classifier
and 2NSA areC'SSv —petector = 374.9, CSSansa = set, which resulting in the more smaller classifier's radius
16.14 andCSSprr-2ns4 = 23.04 respectively, there is i, comparison with 2NSA, and thus resulting in the bigger

93.85% drop 29.94% rise of PRR-2NSA in comparison prR-2NSAs T-Cell classifier set size than 2NSA.
with V-Detector and 2-NSA. As shown as Figure 5,

the comparison of classifier set size of V-Detector and. . e . : "
2NSA in high-dimensional dataset (“BCW” dataset is 30- .|ncluld|ng cIasgﬂerl set generation time and classifica-
. . . ) e . tion time, Metric with CT) of PRR-2NSA, we conduct
dimension), in which the classifier set size of 2NSA and . . ) e
L . "the comparative experiments with the datasets of “Iris”,
PRR-2NSA are significantly reduced. As shown as Figurg N B - . .
. , o . "BCW” and “Chess” in comparison with the V-Detector
6, the comparison of the 3 RNSAs’ classifier set SIZ€, |4 PNSA
with big training set Vs = 1000 in “Chess” dataset). ' )
When estimated non-self coverage rise upCte= 99%, _The results are shown as Figure~/9. AS shown as
the classifier set size of RNSA, V-Detector and 2NSAFigure 7, the comparison of the 3 RNSAs’ classification
are CSSy_ perector = 1860, CSSansa = 567.5 and efficiency in low-dimensional dataset (“Iris” dataset is
CSSprr_2nsa = 949.9 respectively, the classifier set 4-dimension), in which classification efficiency of PRR-

size of 2NSA and PRR-2NSA also significantly reduced2NSA has improved dramatically. When estimated cover-
age rise up ta@' = 99%, the time cost of V-Detector, 2N-

In order to verify the detection generation efficiency
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Figure 6. The comparison of classifier set size of V-Dete@NSA and
PRR-2NSA with big training set, where dataset is “Chesss, tthining

set is “Chess-Draw”rs = 0.05, Num = 200.

SA and PRR-2NSA ar€'Ty _ petector = 0.9234 seconds,

CTrnsa = 0.5286 seconds an@Trrr_ans4a = 0.1652
seconds respectively, there&®.11% and68.75% drop of

PRR-2NSA in comparison with V-Detector and 2NSA.
As shown as Figure 8, the comparison of the classifie
generation efficiency of V-Detector and 2NSA in high-
dimensional dataset (“BCW” dataset is 30-dimension)
in which classification efficiency in high-dimension is
also significantly improved of PRR-2NSA in comparison
with V-Detector and 2NSA. As shown as Figure 9,
the comparison of the 3 RNSAS’ classification efficiency
with big training set {V, = 1000 in Chess dataset).

When estimated non-self coverage rise upgte= 99%,

the time cost of V-Detector, 2NSA and PRR-2NSA are

CTv_petector = 159.4 secondsCTonsa = 80.93 sec-

onds andCTprrr_onsa = 28.45 seconds respectively,
there is 82.15% and 64.83% drop of PRR-2NSA in

comparison with V-Detector and 2NSA.
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Figure 7. The comparison of classification efficiency of \té&xtor,

2NSA and PRR-2NSA in low-dimensional dataset, where datase

“Iris”, the training set is “Iris-Setosa’rs = 0.05, Num = 200.
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Figure 8. The comparison of classification efficiency of \t&xtor,
2NSA and PRR-2NSA in high-dimensional dataset, where datas
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Figure 9. The comparison of classification efficiency of \t&xtor,
2NSA and PRR-2NSA with big training set, where dataset ise%3H,
the training set is “Chess-Draw’,s = 0.05, Num = 200.

icantly reduce the classifier generation and classification
time cost in different data dimensions and scale of training
set in comparison with V-Detector. For the introduce of

APC classifier in the PRR-2NSA, the data lied outside

of the coverage of the APC classifier set can be judged
directly as abnormal data which effectively enhance the
data classification efficiency.

VI. CONCLUSIONS

The NSA is an important two-class data classifier gen-
eration algorithm in data mining field. The RNSA encodes
antigens and antibodies using fixed classifier radius. The
V-Detector algorithm uses variable-size classifier radius
and achieves better classification results than RNSA in
the simulation experiments. However, both RNSA and V-
Detector algorithm employ one negative selection process
to conduct the self-tolerance of antigen training set in
the whole real valug0, 1]™ space, which bring about the
high false classification rate and low classifier generation

In sum up, the 2NSA and PRR-2NSA algorithm signif- efficiency.
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In order to solve these problems of traditional RNSAs,[15] I. Aydin, M. Karakose, and E. Akin, “Chaotic-based higbr
the PRR-2NSA algorithm was proposed in this paper. The negative selection glgorlthm and its applications in fault
PRR-2NSA adopts the dual negative selection to avoid ggdg‘zr‘gsnjgg’gietﬁﬁ;ogme' vol. 37, no. 7,
unnecessary _and t|me-consum|ng_ anflgen _self-to_leranc[%] M. Gong, J. Zh:amg, J. Ma, and L. Jiao, “An efficient neg-
process, and introduce APC classifiers’ co-stimulation for "~ ative selection algorithm with further training for anomal
T-Cell classifier to reduce false classification rate. The detection,’Know.-BasedSyst., vol. 30, pp. 185-191, 2012.
PRR-2NSA avoid the unnecessarily and time-consumingl?7] T. Stibor, P. Mohr, J. Timmis, and C. Eckert, “Is neg-
self-tolerance of candidate classifiers which repetitive  ativé selection appropriate for anomaly detection?” in

ith existing classifier set. thus areatly reduces Procegdlngsof the 2905 conferenceon Genetic and
cover wi ting Class| N 9 y T€ evolutionarycomputation, ser. GECCO '05. New York,
classifier set size, significantly improves classifier set NY, USA: ACM, 2005, pp. 321-328.
generation efficiency, reduces the time cost and falsgl8] M. Skala, “Measuring the difficulty of distance-based
positive rate of the algorithm. Theoretical analysis and  indexing” in Proceedingsof the 12th international
simulations show that the PRR-2NSA has better classifier ~ conferencen StringProcessingndinformationRetrieval,

. - . ser. SPIRE’05. Berlin, Heidelberg: Springer-Verlag, 2005
set generation efficiency and lower false classificatioa rat pp. 103-114.

in comparison with V-Detector and 2NSA. [19] X. Gao, S. Ovaska, and X. Wang, “Genetic algorithms-
based detector generation in negative selection algorith-
m,” in 2006 IEEE Mountain Workshopon Adaptive and
Learning System, 2006, pp. 133-137.
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