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Abstract— Negative Selection Algorithm (NSA) is an impor-
tant artificial immune data classifiers generation method in
Artificial Immune System (AIS) research. However, with
the increase of the data dimensions, the current data
classification algorithms which based on NSA exist the
problems of excessive number of generated classifiers and
too low classifier generation efficiency. In this paper, the Dual
Negative Selection Algorithm based on Pattern Recognition
Receptor theory (PRR-2NSA) is proposed, which simulates
the process of Antigen Presenting Cells (APC) recognized the
Pathogen-Associated Molecular Patterns (PAMP) to trigger
the immune response. The PRR-2NSA algorithm generates
the APC classifier based on training set clustering firstly, and
then generates the T-cell classifiers within the coverage of
the APC classifier set with dual negative selection algorithm
(2NSA) secondly. The 2NSA avoids the unnecessary and
time-consuming self-tolerance process of candidate classifier
within the coverage of existing mature classifiers, thus
greatly reduces classifier set size, significantly improves
classifier generation efficiency. The PRR-2NSA introduces
the APC classifiers’ co-stimulation to the T-Cell classifier,
which reduce the occurrence of false classification on one
hand, and accelerate the data classification efficiency on the
other hand. Theoretical analysis and simulations show that
the PRR-2NSA algorithm effectively improves classification
efficiency and reduces the time cost of algorithm.

Index Terms— artificial immune system, real-valued negative
selection algorithm, variable-sized classifier, dual negative
selection algorithm, PRR-2NSA

I. I NTRODUCTION

I N data mining research, data classification is the prob-
lem of identifying to which of a set of categories a new

observation belongs, on the basis of a training set of data
containing observations (or instances) whose category
membership is known. A large number of classifica-
tion algorithms have been proposed, including Bayesian
classifier [1], K-Nearest Neighbor algorithm (KNN) [2],
Fuzzy C Mean (FCM) [3], the decision tree method [4],
BP neural network algorithm [5] and Artificial Immune
System (AIS) [6]. The data classification method has
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been widely applied to pattern recognition, data mining,
artificial intelligence and network intrusion detection, etc.

In recent years, it is the research focus which in-
troduced artificial immune theory to the field of data
mining [6]. The researchers from different angles to
simulate biological immune mechanism to data classifica-
tion analysis, including data classification method based
on negative selection algorithm (Ji et al. put forward
the real-valued negative selection algorithm and applied
to network intrusion detection [7], [8]). They regarded
monitoring targets (such as legal user activities, legal
application usage activities, etc.) as self and expected the
NSA to discriminate them from others (such as illegal user
activities, virus infected data, network worm, etc.). As
well as data classification method based on the immune
network theory (De Castro et al. put forward the aiNet
model [9] and Timmis et al. put forward the RLAIS
method [10] used for data classification).

In this paper, we analyze the two-class data classifi-
cation problem based on real-valued negative selection
algorithm, and propose the dual negative selection algo-
rithm based on pattern recognition receptor theory (PRR-
2NSA). The PRR-2NSA can be used in many two-class
data classification applications, such as data classification,
data mining, pattern recognition and network intrusion
detection, etc.

II. RELATED WORKS

The Negative Selection Algorithm (NSA), first pro-
posed by Forrest [11], simulates the immune tolerance
process ofT−cells in thymus to generate detectors which
avoid self reaction. The mature detectors are subsequently
used for the recognition of non-self and applied to many
important researches, such as data classification, data
mining, pattern recognition, and anomaly detection, etc.
[6], [8], [12]–[16].

The early NSA [11], termed SNSA (String represented
Negative Selection Algorithm), which encodes antibody
(classifier) and antigen (samples) as binary strings and
calculates the affinity (match degree) between them by the
r-contiguous-bits matching rule. The inefficiency problem
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of SNSA was discussed in refs. [17], [18]: the probability
of candidate classifiers matured by passing the negative
selection process isP = (1− Pm)

Ns , wherePm is the
match probability of candidate classifier and antigen,Ns

is the training set size; thus with the increase ofNs, P will
tend to be 0 ultimately; moreover,N0 =

− ln(Pf )

Pm·(1−Pm)Ns

candidate classifiers are needed to reach the given failure
probability Pf ≈ e−Pm·Nc , which means that the count
of candidate classifiersN0 is exponentially related to the
count of training setNs, and the time complexity of
SNSA isO (N0 ·Ns) = O

(

− ln(Pf )·Ns

Pm·(1−Pm)Ns

)

.
The RNSA (Real-valued Negative Selection Algorithm)

uses a fixed classifier radiusrc, and sets the count of
detectors as the condition of algorithm termination [13].
In RNSA, the candidate detector was randomly generated
with centerX(x1, x2, ..., xn) firstly, and then the shortest
Euclidean distancedismin between the candidate detector
and all self elements in training set was calculated, and
finally the mature detector was generated ifdismin >
rs + rc, whererc is the radius of detector, andrs is the
radius of self element.

The V-Detector (Real-valued Negative Selection Al-
gorithm with Variable-size Detector) uses variable-sized
detector radius, and sets the expected coverage as the con-
dition of algorithm termination [7], [8]. In V-Detector, the
candidate detector was randomly generated with center
X(x1, x2, ..., xn) firstly, and then the shortest Euclidean
distancedismin between the candidate detector and all
self elements in training set was calculated, and finally
the mature detector was generated ifdismin > rs, where
the radius of detector isrc = dismin − rs.

As indicated in refs. [17], [18], for pattern recognition
algorithms based on distance calculation, the primary
time consumption is the distance calculation. Stibor et
al. [17] pointed out that the unacceptable high time cost
of RNSAs is caused by the inefficiency of the classifier
generation process, and which significantly limited the
applications of AIS.

Aydin et al. [15] and Gao et al. [19] combine the
genetic algorithm and chaos theory to optimize classifier
generation process, which reduce the candidate classifiers’
overlapping coverage. Bereta et al. [14] combine K-Means
data clustering method to simplify negative selection
process and applied to the data analysis. Gong. et al.
[16] have two self-set training process in the self-tolerance
stage on the basis of V-Detector, in order to improve the
classifier generation efficiency.

Both RNSA and V-Detector employed only once neg-
ative selection process to eliminate the self-recognized
invalid classifiers by matching candidate classifier with
whole training set. In the negative selection process,
there is only consideration of the relationship between
candidate classifier and training set but without any con-
sideration of repetitive coverage of candidate classifier
with existing classifier set, which bring about the un-
necessary self-tolerance of the candidate classifier which
repetitive covered. Thus, the unnecessary self-toleranceof
these candidate classifiers resulted in an excessive count

of mature classifiers and extremely lowered classifier
generation efficiency, and increased the computation time
complexity of these RNSAs.

III. T HE BASIC DEFINITION OFRNSA

Inspired by the self and non-self (SNS) theory [20],
Forrest proposed the NSA to eliminate the self reactive
detectors [11]. In this paper, the real-valued negative
selection algorithm is discussed, and some basic concep-
tions of RNSA are defined as follows:
Def 1 Antigen Ag = {ag|ag =< x1, x2, ..., xn >, xi ∈
[0, 1]}, which represents all samples in the feature space,
wheren is the data dimension.
Def 2 Self setSelf ⊂ Ag, which represents all normal
samples in the antigen setAg; Non-self setNonself ⊂
Ag, which represents all abnormal samples in the antigen
setAg, and which satisfies formula 1.

Self ∪Nonself = Ag, Self ∩Nonself = φ. (1)

Def 3 Training set Train ⊂ Self , which represents
the prior knowledge of detection,rs ∈ [0, 1] is the radius
of self andNs is the size of training set.
Def 4 Classifier setCS = {c|c =< y1, y2, ..., yn, cd >
, yi ∈ [0, 1], cd ∈ [0, 1]}, which represents the mature
classifier set generated by NSA based on the training set,
wherecd is the radius of classifier andNc is the size of
the classifier set.
Def 5 Estimated coverage rateC =

Numcovered

Num
,

which represents the ratio of samples fall in the coverage
of classifier setCS and total samples in a sampling
period, whereNum is the count of total samples and
Numcovered is the count of samples fall in the coverage
of classifier setCS in a sampling period.

C =
Numcovered

Num
. (2)

Def 6 Classification processf(Train) → Nonself ,
which represents the process to identify non-self set based
on the self antigens training set.

IV. T HE IMPLEMENTATION STRATEGIES OF

PRR-2NSA

In order to solve the problems of low classifier gener-
ation efficiency and high misclassification rate, the dual
negative selection algorithm based on pattern recognition
receptor theory (PRR-2NSA) is proposed in this paper
which combines the Pattern Recognition Receptors theory
(PRR) and the dual negative selection algorithm (2NSA).

A. The Pattern Recognition Receptor (PRR) Theory

In 1989, the famous immunologist Janeway first pro-
posed the PRR theory [21]. In biology, the PRR model
added additional layer of pathogen-associated molecular
patterns (PAMP) to the self-nonself model [22]. The
PRR model assumes that APC are quiescent until they
are activated via encoded pattern recognition receptors
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that recognize conserved PAMPs. To mirror this, T-cell
classifiers in the proposed algorithm are first used to
recognize the antigen according to negative selection. The
co-stimulation of APC classifier will not be conducted
until the so-called suspicious antigen is encountered in
the system. The co-stimulation of APC classifier will
not be conducted until the detection from T-cell clas-
sifiers becomes unsure, that is, the suspicious antigen
is encountered in the system. Although this solution
shows its strength in terms of algorithmic complexity,
its performance relies on the application domain since
the definition of suspicious antigen is not always in
accordance with a specific application.

Inspired by this metaphor, we combine both PRR
theory and T-cell negative selection process to achieve the
data classification of two-class dataset, which had been
proven to effectively reduce high false classification rate
that often occurred in traditional NSAs.

B. The Implementation Strategies of PRR-2NSA

There are two separate stages in the traditional two-
class data classification algorithm which based on nega-
tive selection process, respectively, the stage of antigen
toleration process to generate data classifier stage and the
stage of data classification process by using classifier set.
The PRR-2NSA includes three separate stages, respec-
tively: 1) the antigen clustering to generate APC classifier
stage; 2) the negative selection process to generate T-cell
classifier stage; and 3) using the generated APC and T-cell
Classifier to execute data classification stage.

1) The Antigen Clustering to Generate the APC Clas-
sifier Stage: The APC classifier is generated by anti-
gen training set hard clustering. The definition of hard
clustering and dissimilarity measure are shown as Def.7
and Def.8, as well as the nearest neighbor metric of
data vectorx and clusterC is calculated by the nearest
neighbor metric function.
Def 7 Hard Clustering Suppose data setX =
{x1, x2, ..., xn}, wherex is data vector. Them clusters
of data setX is the m subsets1, s2, ..., sm of m that
satisfies the formula 3.















∅ ⊂ ci ⊂ X, i = 1, 2, · · · ,m
m
⋃

i=1

ci

ci ∩ cj = ∅, i 6= j, i, j = 1, 2, · · · ,m

(3)

Def 8 Dissimilarity Measure Functiond : X ×X →
ℜ is the dissimilarity measure, whereℜ is the set of real
numbers, andd satisfies the formula 4.







∃d0 ∈ ℜ : −∞ < d0 ≤ d (x, y) < +∞, ∀x, y ∈ X
d (x, x) = d0, ∀x ∈ X
d (x, y) = d (y, x) , ∀x, y ∈ X

(4)
There are three kinds of nearest neighbor metric func-

tion, respectively, maximum neighbor function (formula
5), minimum neighbor function (formula 6) and average
neighbor function (formula 7).

ρmax (x,C) = max
y∈C

ρ (x, y) . (5)

ρmin (x,C) = min
y∈C

ρ (x, y) . (6)

ρavg (x,C) =
1

nc

∑

y∈C

ρ (x, y). (7)

After the training set data clustering, we get the APC
classifier set, where the number of APC classifiersCnum

is the number of clusters, and the center of each APC clas-
sifier X = 〈x1, x2, · · · , xn〉 is every cluster’s center, that
is CSAPC = {apc|apc = 〈x1, x2, · · · , xn, rapc〉 , xi ∈
[0, 1]}. The radius of each APC classifier is the maxi-
mum distance between the classifier’s center and every
antigen’s center, that israpc = dismax (X,Ei), where
Ei is the element in the cluster. There are two important
purposes of APC classifier in the PRR-2NSA algorithm,
respectively: 1) the rapid response of the data to be
classified for the coverage of APC classifier set; and 2) the
APC classifiers’ co-simulation to the T-cell classifier can
help to reduce the false classification rate. The complete
algorithm process is shown as table I.

In order to illustrate the process of antigen clustering
to generate APC classifier, we have an experiment to
generate APC classifiers through the antigen training
set clustering with 25 “Iris − Setosa” instances in the
“Iris” dataset (4-dimension). In order to display the result
in 2-dimensional graphics, only the “sepallength” and
“petallength” properties are selected. All data normal-
ized to the real value[0, 1] space, the radius of self is
rs = 0.05. As shown as Figure 1, the “Iris − Setosa”
training set are clustered as 3 APC classifiers, where the
filling small rounds are the “Setosa” antigen training set
elements and the dash circles are the APC classifiers.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

rapc

Figure 1. The antigen clustering to generate APC classifier set, where
training antigen set is “Iris-Setosa”,rs = 0.05, the filling small rounds
are training antigen elements, the dash circles are APC classifiers.
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TABLE I.
THE PSEUDO CODE OF THE ANTIGEN CLUSTERING TO GENERATEAPC CLASSIFIER STAGE.

Train : antigen training set CSAPC : APC classifier set rapc : the radius of APC classifier
Step 1 Initialization of the antigen training setTrain and APC classifier setCSAPC = ∅.
Step 2 Set the initial number of clusters, and using K-Means hard clustering method to execute data clustering ofTrain.
Step 3 Generation ofCnum APC classifiers according to the clustering results.
Step 4 Determining appropriateness of each APC classifier radius, if rapc > 5rs thenCnum ← Cnum + 1, else if rapc < 2rs, then

Cnum ← Cnum − 1.
Step 5 If each2rs ≤ rapc ≤ 5rs, thenCSAPC ← CSAPC

⋃
{APCclassifier}, and stop.

2) The Implementation Strategies of 2NSA:In order
to overcome the shortcomings of the current RNSAs, we
propose the dual negative selection algorithm (2NSA).
The 2NSA uses variable-sized classifier radius, and sets
the expected coverage as the condition of algorithm ter-
mination. In the 2NSA, the randomly generated candidate
classifier tolerates with classifier set to generate semi-
mature classifier firstly (the 1st negative selection); and
then the semi-mature classifier tolerates with training set
to generate mature classifier (the 2nd negative selection).

The 1st negative selection process: every randomly
generated candidate classifiercnew tolerates with mature
classifier set and becomes semi-mature classifier when
it does not match any existing mature classifier. The
candidate classifiercnew was randomly generated with
centerX(x1, x2, ..., xn) firstly, and then calculated the
Euclidean distancedis(cnew, ci) between the candidate
classifier and every mature classifierci in the classifier set
CS. The candidate classifier successfully tolerated with
the classifier set and becomes a semi-mature classifier
csemi if the cnew satisfies the formula (8). Otherwise,
the candidate classifiercnew will be eliminated if it been
recognized by any mature classifier, that is the termination
of the 1st negative selection process, and a new candidate
classifier cnew will be randomly generated and the 1st
negative selection process be restarted again.

dis(cnew, ci) > rci i = 1, 2, ..., Nd. (8)

The 2nd negative selection process: the semi-mature
classifiercsemi tolerates with self set and becomes mature
classifier when it does not match any self element. The
shortest distancedismin(csemi, sj) between the center
Y (y1, y2, ..., yn) of semi-mature classifiercsemi and every
self element of training set was calculated according to
the Euclidean distance. Thecsemi successfully tolerated
with the training set and becomes a mature classifiercmat

if the formula (9) be satisfied, the mature classifiercmat

joins to the classifier setCS,CS ← CS ∪ {cmat}, the
radius ofcmat is rc = dismin(csemi, sj)− rs. Otherwise,
the semi-mature classifiercsemi will be eliminated if it
been recognized by any self element, and the 1st negative
selection process will be restarted again.

dismin(csemi, sj) > rs j = 1, 2, ..., Ns. (9)

The 2NSA algorithm avoids the unnecessary and time-
consuming self-tolerance process of candidate classifier

within the coverage of existing classifier set. The can-
didate classifier that repetitively covered with existing
mature classifiers will be eliminated in the 1st negative
selection process, and thus decreases classifier set size
and improves classifier generation efficiency. The pseudo
code of 2NSA is shown as table II.

In order to illustrate the 2NSA algorithm, we have
an experiment to generate classifiers through the self-
tolerance with 25Setosa instances in the Iris dataset.
That is, the 25Setosa instances composed the self train-
ing set, and the other two kinds of flower (V ersicolour
and V irginica) composed the non-self set. In order to
display the result in 2-dimensional graphics, only the
sepallength and petallength 2 properties are selected.
All data normalized to the real value[0, 1] space, the
radius of self isrs = 0.05, and the classifier in RNSA
with fixed radiusrc = 0.10.

The implementation strategy of 2NSA as well as the d-
ifference from RNSA and V-Detector can be illustrated by
Figure 2. As shown as Figure 2, the classifiers generated
with fixed radius in RNSA and with variable-sized radius
in V-Detector, and many classifiers repetitively cover
with existing classifiers in both RNSA and V-Detector,
thus results in many candidate classifiers undergone the
unnecessary and time-consuming self-tolerance process.
However, in the 2NSA, the candidate classifiers tolerate
with mature classifier setCS to generate semi-mature
classifier firstly, which avoids the repetitive coverage with
existing classifier setCS and guarantees the center of
semi-mature classifier locates outside the coverage of the
classifier set in meanwhile. The additional negative selec-
tion process avoids the unnecessary and time-consuming
self-tolerance process and ensures that the new generated
mature classifier covers more uncovered non-self space.
As shown as Figure 2, the classifier set size of 2NSA is
dramatically reduced compare to RNSA and V-Detector.

SNSA, RNSA and V-Detector are major classifier gen-
eration algorithms which widely used in data classification
and pattern recognition fields. The 2NSA eliminates the
unnecessary and time-consuming self-tolerance process
of candidate classifiers locate outside the coverage of
existing classifier setCS through the 1st negative selec-
tion process, thus dramatically reduces the classifier set
size and the time complexity of current NSAs, greatly
improves the classifier generation efficiency, and reduces
the system false classification rate.
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TABLE II.
THE PSEUDO CODE OF THE DUAL NEGATIVE SELECTION ALGORITHM(2NSA).

Train : self training set CS : classifier set r(ci) : the radius of classifierci C : estimated coverage Cexp : expected coverage
Step 1 Initialization of the training setTrain and classifier setCS ← φ.
Step 2 Randomly generate a candidate classifiercnew, and calculate the distance betweencnew and every classifierci in classifier setCS,

goto Step 4 ifdis(cnew, ci) ≤ r(ci).
Step 3 The candidate classifiercnew that successfully tolerated with classifier setCS changes to semi-mature classifiercnew → csemi, and

then calculate the shortest distancedismin between thecsemi and every self element inTrain, If dismin > rs, thencsemi → cmat,
r(cmat) = dismin − rs, CS ← CS ∪ {cmat}.

Step 4 Calculate current estimated coverageC, goto Step 2 ifC < Cexp, else stop and return the classifier setCS.
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Figure 2. When the expected coverage reachesCexp = 90%, the classifier set size of RNSA, V-Detector and 2NSA are 62, 18, and 3 respectively,
where the blue circles are the 25Setosa self elements in the training set and the white circles are the generated classifiers.

3) Using 2NSA to Generate T-cell Classifier Stage:
After the introduce of PRR model, since the PAMP
recognition of APC classifier, then the coverage of the
APC classifier set defines the PAMP type data, and thus
outside the coverage area of the APC classifier set can be
judged as an alternative space. Therefore, the real-valued
negative selection algorithm which based on PRR theory
(PRR-2NSA) conducts antigen self-tolerance to generate
T-cell classifier within the coverage of the APC classifier
set, but not the whole real value space[0, 1]n.

The complete negative selection process of the PRR-
2NSA is roughly the same as the 2NSA algorithm. The
difference of the two algorithms lies in the range to
generate T-cell classifier, in which 2NSA in the whole
real value space[0, 1]n but PRR-2NSA in the coverage
of the APC classifier set. The PRR-2NSA algorithm used
variable-sized classifier radius, and set the expected cov-
erage as the condition of algorithm termination. In PRR-
2NSA, the candidate classifier was randomly generated
with centerX(x1, x2, ..., xn) firstly, and then the shortest
Euclidean distance dismin between the candidate classifier
and all antigen elements inTrain was calculated, and
finally the mature classifier was generated ifdismin > rs,
where the radius of T-cell classifier isrc = dismin − rs.

In order to illustrate the negative selection process
to generate T-cell classifier, we have an experiment to
generate T-cell classifier through the antigen training set
self-tolerance with “Iris−Setosa” instances in the “Iris”
dataset. As shown as Figure 3, the 16 T-cell classifiers
are generated within the coverage of 3 APC classifiers by

dual negative selection process, where the dash circles are
APC classifiers, and the green circles are T-cell classifiers.
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Figure 3. The negative selection process to generate T-cellclassifier
within the coverage of APC classifier set, where training antigen set
is ‘Iris-Setosa”,rs = 0.05, the points are training antigen elements,
the dash circles are APC classifiers, and the green circles are T-cell
classifiers.

4) Using the generated APC and T-cell classifier set
to classify data: There are some differences between
the classification process of PRR-2NSA and traditional
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RNSAs. On one hand, T-Cell classifier need the co-
stimulation of APC classifier to achieve the classification
of abnormal data in the PRR-2NSA, thus effectively
reducing the false classification rate. On the other hand,
for the clustering normal data of APC classifiers, thus the
coverage outside of the APC classifier set can be judged
as abnormal data directly, thereby effectively enhancing
the data classification efficiency.

V. PERFORMANCEEVALUATION

In this section, the effectiveness and performance of
the PRR-2NSA is verified by a group of comparative
experiments. The experimental data are the classical UCI
standard datasets: “Iris” [23], “Breast Cancer Wisconsin
Diagnostic” (BCW) [24] and “Chess” [25], which have
been widely used for the performance test and generation
effective analysis of classifiers [6], [8], [13]–[15], [19].
As pointed out in ref. [7], [8], the real-valued negative
selection algorithm with fixed radius (RNSA) has poor
classifiers’ generation efficiency and performance. There-
fore, we just compare the effectiveness and performance
of the V-Detector, 2NSA and PRR-2NSA in the paper.

The Metrics the effectiveness of these algorithms in-
clude the classifier set size (CSS), the true classification
rate (TCR), the false classification rate (FCR) and the
classification time (CT ). The experimental parameters are
shown as table III, and all data is preprocessed to real-
value and normalized in range[0, 1]. All experiment were
repeated 50 times and averaged.
Def 9 True Classification RateTCR, which represents
the ratio of true positive count and the total non-self
samples identified by classifier set, whereTP andFN
are the counts of true positive and false negative.

TCR = TP/ (TP + FN) . (10)

Def 10 False Classification RateFCR, which repre-
sents the ratio of false positive count and the total self
samples identified by classifier set, whereFP and TN
are the counts of false positive and true negative.

FCR = FP/ (FP + TN) . (11)

In order to verify the detection capability (Metric with
TCR andFCR) of PRR-2NSA, we conduct the compar-
ative experiments with the datasets of “Iris”, “BCW” and
“Chess” in comparison with V-Detector and 2NSA.

The results are shown as table IV and table V. As
shown as table IV, the comparison of these 3 RN-
SAs’ true classification rate in low-dimensional dataset
(“Iris” dataset is 4-dimension and “Chess” dataset is 5-
dimension) and high-dimensional dataset (“BCW” dataset
is 30-dimension), in whichTCR is roughly the same
in the same dataset. As shown as table V, the compar-
ison of these 4 RNSAs’ false positive rate in different
dataset, in whichFCR is very different. For example,
when estimated coverage rise up toC = 99%, the
FCR of RNSA, V-Detector, 2NSA and FPR-2NSA are
FCRV −Detector = 45.76%, FCR2NSA = 22.49% and
FCRPRR−2NSA = 8.22% respectively in “Iris” dataset,

there is82.03% and63.45% drop of PRR-2NSA in com-
parison with V-Detector and 2NSA. Accordingly, when
estimated coverage rise up toC = 99%, there is69.79%
and 55.36% drop of PRR-2NSA in comparison with V-
Detector and 2NSA in “Chess” dataset, as well as there is
76.15% and 53.21% drop of PRR-2NSA in comparison
with V-Detector and 2NSA in “BCW” dataset.

In sum up, the PRR-2NSA algorithm significantly
reduce the false classification rateFCR in different
dimensions and scale of training set, and keep the almost
the same true classification rateTCR in comparison with
V-Detector and 2NSA.
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Figure 4. The comparison of classifier set size of V-Detector, 2NSA
and PRR-2NSA in low-dimensional dataset, where dataset is “Iris”, the
training set is “Iris-Setosa”,rs = 0.05, Num = 200.
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Figure 5. The comparison of classifier set size of V-Detector, 2NSA
and PRR-2NSA in high-dimensional dataset, where dataset are “BCW”,
the training set is “BCW-Benign”,rs = 0.05, Num = 200.

In order to verify the classifier set generation capa-
bility (Metric with CSS) of PRR-2NSA, we conduct
the comparative experiments with the datasets of “Iris”,
“BCW” and “Chess” in comparison with the V-Detector
and 2NSA.

The results are shown as Figure 4∼ 6. As shown
as Figure 4, the comparison of the 3 RNSAs’ classi-
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TABLE III.
EXPERIMENT PARAMETERS OFRNSA, V-DETECTOR, 2NSA AND PRR-2NSA.

Dataset Instances Dimension Type Self Set Non-self Set Training Set and Size Detection Set and Size

Iris 150 4 real Setosa: 50
Versicolour:50

Setosa: 25
Setosa: 25

Versicolour: 25
Virginica: 50 Virginica: 25

BCW 569 30 real benign: 357 malicious: 212 benign: 150 benign: 150
malicious: 150

Chess 28056 6 Categorical draw: 2796 others: 25260 draw: 1000 draw: 1000
Integer others: 2000

TABLE IV.
THE COMPARISON OF THETCR AMONG V-DETECTOR, 2NSA AND PRR-2NSAIN DIFFERENT DATASET

True Classification Rate in Different Estimated Coverage (%)

Dataset Algorithm 50% 60% 70% 80% 90% 92% 94% 96% 98% 99%

Iris
V-Detect 92.63 94.27 95.90 96.64 97.26 97.82 98.15 98.40 98.81 99.47
2NSA 92.56 94.12 95.23 95.96 96.64 97.34 97.86 98.22 98.69 99.38

PRR-2NSA 93.40 94.71 96.18 97.32 97.75 98.23 98.54 98.90 99.26 99.57

Chess
V-Detect 67.02 76.84 83.92 89.53 93.27 94.62 95.93 96.60 98.01 98.72
2NSA 66.58 75.36 82.54 89.05 93.03 94.47 95.76 96.53 97.89 98.46

PRR-2NSA 68.24 77.08 84.27 89.71 93.60 94.96 96.11 96.72 98.19 99.01

BCW
V-Detect 78.57 83.97 87.31 88.96 90.34 90.72 91.29 91.74 92.65 94.05
2NSA 77.94 83.03 86.79 88.32 89.25 89.96 91.18 91.50 92.39 93.87

PRR-2NSA 80.21 84.15 87.62 89.14 90.81 91.10 91.51 92.06 93.17 94.68

TABLE V.
THE COMPARISON OF THEFCR AMONG V-DETECTOR, 2NSA AND PRR-2NSAIN DIFFERENT DATASET

False Classification Rate in Different Estimated Coverage (%)

Dataset Algorithm 50% 60% 70% 80% 90% 92% 94% 96% 98% 99%

Iris
V-Detect 22.16 25.07 29.40 32.08 34.42 35.86 37.65 39.51 42.61 45.76
2NSA 9.52 11.64 13.22 14.78 16.05 16.53 17.60 18.32 20.35 22.49

PRR-2NSA 4.27 5.20 5.87 6.34 6.71 6.94 7.16 7.42 7.69 8.22

Chess
V-Detect 25.97 31.33 35.68 40.85 45.96 49.54 54.78 63.82 67.27 69.85
2NSA 15.77 18.52 21.70 24.59 27.18 31.12 33.57 39.32 44.51 47.27

PRR-2NSA 8.05 9.61 11.84 13.73 15.29 16.50 17.12 18.44 19.6721.10

BCW
V-Detect 5.18 5.38 5.45 5.83 6.17 6.38 6.53 6.78 7.19 8.26
2NSA 2.37 2.68 3.05 3.31 3.56 3.73 3.86 4.02 4.15 4.21

PRR-2NSA 1.04 1.15 1.28 1.42 1.54 1.63 1.70 1.78 1.92 1.97

fier set size in low-dimensional dataset (“Iris” dataset
is 4-dimension), in which classifier set size increased
dramatically in V-Detector but only increased slowly
in 2NSA and PRR-2NSA with the grow of estimated
coverage. When estimated non-self coverage rise up to
C = 99%, the classifier set size of RNSA, V-Detector
and 2NSA areCSSV−Detector = 374.9, CSS2NSA =
16.14 andCSSPRR−2NSA = 23.04 respectively, there is
93.85% drop 29.94% rise of PRR-2NSA in comparison
with V-Detector and 2-NSA. As shown as Figure 5,
the comparison of classifier set size of V-Detector and
2NSA in high-dimensional dataset (“BCW” dataset is 30-
dimension), in which the classifier set size of 2NSA and
PRR-2NSA are significantly reduced. As shown as Figure
6, the comparison of the 3 RNSAs’ classifier set size
with big training set (Ns = 1000 in “Chess” dataset).
When estimated non-self coverage rise up toC = 99%,
the classifier set size of RNSA, V-Detector and 2NSA
are CSSV −Detector = 1860, CSS2NSA = 567.5 and
CSSPRR−2NSA = 949.9 respectively, the classifier set
size of 2NSA and PRR-2NSA also significantly reduced

in comparison with V-Detector.

In sum up, the 2NSA and PRR-2NSA algorithm sig-
nificantly reduce the classifier set size in different data
dimensions and scale of training set. For the introduce
of APC classifier in the PRR-2NSA, the T-Cell classifier
need to be generated within the coverage of APC classifier
set, which resulting in the more smaller classifier’s radius
in comparison with 2NSA, and thus resulting in the bigger
PRR-2NSA’s T-Cell classifier set size than 2NSA.

In order to verify the detection generation efficiency
(including classifier set generation time and classifica-
tion time, Metric withCT ) of PRR-2NSA, we conduct
the comparative experiments with the datasets of “Iris”,
“BCW” and “Chess” in comparison with the V-Detector
and 2NSA.

The results are shown as Figure 7∼ 9. As shown as
Figure 7, the comparison of the 3 RNSAs’ classification
efficiency in low-dimensional dataset (“Iris” dataset is
4-dimension), in which classification efficiency of PRR-
2NSA has improved dramatically. When estimated cover-
age rise up toC = 99%, the time cost of V-Detector, 2N-
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Figure 6. The comparison of classifier set size of V-Detector, 2NSA and
PRR-2NSA with big training set, where dataset is “Chess”, the training
set is “Chess-Draw”,rs = 0.05, Num = 200.

SA and PRR-2NSA areCTV −Detector = 0.9234 seconds,
CT2NSA = 0.5286 seconds andCTPRR−2NSA = 0.1652
seconds respectively, there is82.11% and68.75% drop of
PRR-2NSA in comparison with V-Detector and 2NSA.
As shown as Figure 8, the comparison of the classifier
generation efficiency of V-Detector and 2NSA in high-
dimensional dataset (“BCW” dataset is 30-dimension),
in which classification efficiency in high-dimension is
also significantly improved of PRR-2NSA in comparison
with V-Detector and 2NSA. As shown as Figure 9,
the comparison of the 3 RNSAs’ classification efficiency
with big training set (Ns = 1000 in Chess dataset).
When estimated non-self coverage rise up toC = 99%,
the time cost of V-Detector, 2NSA and PRR-2NSA are
CTV−Detector = 159.4 seconds,CT2NSA = 80.93 sec-
onds andCTPRR−2NSA = 28.45 seconds respectively,
there is 82.15% and 64.83% drop of PRR-2NSA in
comparison with V-Detector and 2NSA.
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Figure 7. The comparison of classification efficiency of V-Detector,
2NSA and PRR-2NSA in low-dimensional dataset, where dataset is
“Iris”, the training set is “Iris-Setosa”,rs = 0.05, Num = 200.

In sum up, the 2NSA and PRR-2NSA algorithm signif-
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Figure 8. The comparison of classification efficiency of V-Detector,
2NSA and PRR-2NSA in high-dimensional dataset, where dataset is
“BCW”, the training set is “BCW-Benign”,rs = 0.05, Num = 200.
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Figure 9. The comparison of classification efficiency of V-Detector,
2NSA and PRR-2NSA with big training set, where dataset is “Chess”,
the training set is “Chess-Draw”,rs = 0.05, Num = 200.

icantly reduce the classifier generation and classification
time cost in different data dimensions and scale of training
set in comparison with V-Detector. For the introduce of
APC classifier in the PRR-2NSA, the data lied outside
of the coverage of the APC classifier set can be judged
directly as abnormal data which effectively enhance the
data classification efficiency.

VI. CONCLUSIONS

The NSA is an important two-class data classifier gen-
eration algorithm in data mining field. The RNSA encodes
antigens and antibodies using fixed classifier radius. The
V-Detector algorithm uses variable-size classifier radius
and achieves better classification results than RNSA in
the simulation experiments. However, both RNSA and V-
Detector algorithm employ one negative selection process
to conduct the self-tolerance of antigen training set in
the whole real value[0, 1]n space, which bring about the
high false classification rate and low classifier generation
efficiency.
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In order to solve these problems of traditional RNSAs,
the PRR-2NSA algorithm was proposed in this paper. The
PRR-2NSA adopts the dual negative selection to avoid
unnecessary and time-consuming antigen self-tolerance
process, and introduce APC classifiers’ co-stimulation for
T-Cell classifier to reduce false classification rate. The
PRR-2NSA avoid the unnecessarily and time-consuming
self-tolerance of candidate classifiers which repetitive
cover with existing classifier set, thus greatly reduces
classifier set size, significantly improves classifier set
generation efficiency, reduces the time cost and false
positive rate of the algorithm. Theoretical analysis and
simulations show that the PRR-2NSA has better classifier
set generation efficiency and lower false classification rate
in comparison with V-Detector and 2NSA.
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