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Abstract— This paper investigates a universal approach of
synthesizing arbitrary ternary logic circuits in quantum
computation based on the truth table technology. It takes
into account of the relationship of classical logic and quan-
tum logic circuits. By adding inputs with constant value
and garbage outputs, the classical non-reversible logic can
be transformed into reversible logic. Combined with group
theory, it provides an algorithm using the ternary Swap
gate, ternary NOT gate and ternary Toffoli gate library.
Simultaneously, the main result shows that the numbers of
qutrits we use are minimal compared to other methods. We
also illustrate with two examples to test our approach.

Index Terms— ternary quantum computation, reversible
logic, circuit synthesis, group theory

I. Introduction

Fast synthesis of reversible logic circuits in quantum
computation has been a hot research topic [1]–[4], in
recent years. Reversible logic circuit is one of its im-
portant subclass. Its realization is the fundamental theory
of quantum computer [5], [6]. Since 1980, there has been
a fairly extensive literature about reversible computation
[7], [8]. Reversible computation and energy consumption
of calculation have a profound relationship, as implied by
the Landauer Principle [9] and Moore’s Law [10]. This
is the reason that the application of reversible operation
becomes more attractive [11]. Synthesis of reversible logic
is mainly motivated in low-power computing, quantum
computing, DNA computing, and nanotechnologies.

In quantum computation and quantum cryptography,
multi-valued quantum computing is gaining importance,
because it represents one kind of n−dimensional quantum
systems with the basis state |0⟩, |1⟩, . . . , |n − 1⟩. Generally,
the information’s unit in a multi-valued quantum system
is called a qudit, for the binary case, qubit, for the
ternary case, qutrit. If there are n qutrits in a quantum
register, it can hold 3n simultaneous values. Meanwhile,
the n qubits can only hold 2n values. Zilic and Radecka
have proposed that for the same using memory, the
method of ternary Quantum Fourier Transform (QFT)
can improve the approximation and add state space in
a factor: (3/2)n [12]. The ternary valued reversible circuit
has been experimentally feasible under the context using
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linear ion trap schemes of quantum computation [13]. In
the literatures, the universality has been assumed that the
gates input is set as constant value, and ancilla bit has
been used [14], [15]. When synthesizing a non-reversible
logic circuit, we should use ancilla bits and some garbage
outputs [16]–[18] to transform it to its reversible circuit
firstly. A proposal for how to realize the n − bit binary
non-reversible logic circuits or even reversible circuits
using the library of Controlled-Not, Not and Peres gates
(CNP) has been presented in [16]. It constructively has
been proved that all n − qutrit ternary reversible circuits
could be constructed by ternary Swap, ternary Not and
ternary Toffoli ((n − 1) qutrits control another qutrits, so
it is also an n − qutrit gate) gates without ancilla qutrits,
or by ternary NOT, controlled-NOT, multiply-two and
Toffoli gates [17]. It has been demonstrated the 2− qutrit
ternary reversible gates’ universality [18]. Then, it lists
two conjectures for the properties of d − level reversible
gates.

Group theory is found particularly useful in analysis
of reversible logic circuits [19]. Numerous studies have
proposed the methods about how to apply group theory
on reversible logic gates synthesis [2], [3], [20]–[22].
Based on group theory, the purpose of the paper is about
synthesis of ternary non-reversible logic circuits using the
library of ternary Swap gates, ternary NOT gates and
ternary Toffoli gates (SNT). We found the relationship
about the number of ancilla input and garbage output
necessary for achieving reversibility. Moreover, we design
an algorithm ‘Synthesize the t × s ternary non-reversible
logic circuits’ (STNC) for our main result that is provably
convergent.

The structure of this paper is as follows. In section
II, the definitions of basic ternary reversible gates are
given. The main results of the paper are given in section
III. The required notations and terms of group theory are
introduced in the following section. Using group theory,
we develop an algorithm to synthesize reversible logic
circuits with the SNT library. In section V, we give two
examples to demonstrate our results and illustrate how
the algorithm synthesizes ternary non-reversible logic cir-
cuits. We also discuss the differences among our results,
[11], [23] and [4]. We conclude the paper in section VI.
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II. Ternary Reversible Gates

Definition 1: (ternary reversible gate) [24] Given a
ternary logic function f with n inputs and outputs, B1,
B2, . . . , Bn and P1, P2, . . . , Pn, respectively, function
f is f : Bn → Pn, where (B1, B2, . . . , Bn) ∈ Bn and
(P1, P2, . . . , Pn) ∈ Pn are the input and output vectors,
respectively. The ternary logic function f is defined be
reversible if it is one-to-one and onto (bijection).

Definition 2: (ternary NOT gate) [24] Given a ternary
NOT Gate N j, it has been defined as: P j = B j⊕3 1, where
⊕3 is addition modulo 3; Pi = Bi, if i , j, 1 ≤ j ≤ n.

Definition 3: (ternary n × n Toffoli gate) [24] Given a
ternary n× n Toffoli Gate, it has been defined as: if B2 =

B3 = ... = Bn = 2, then P1 = B1 ⊕3 1; otherwise, P1 = B1,
where Pi = Bi, for i , 1 (shown as Fig. 1). That is, it
maps d1 → d2, d2 → d3, d3 → d1, . . . respectively, where
d1 = (0, 1, . . ., 1), d2 = (1, 1, . . ., 1), d3 = (2, 1, . . ., 1), and
without changing other assignments.

Figure 1. ternary n × n Toffoli
gate

Figure 2. Swap gate

Definition 4: (swap gate) [24] Given a swap gate Ei, j,
it exchanges the ith bit and the jth bit, Ai and A j,
respectively. For example, Pi = A j, P j = Ai; Pr = Ar,
if r , i, j (shown as Fig. 2).

Definition 5: (library) [24] Given a w − library, it is
a set of w × w reversible gates that has been used to
synthesize w × w reversible circuits, simply as L. A
reversible circuit f can be synthesized by L, that is, f
can be constructed by elements in L.

By far, there is no universal gate library. When syn-
thesizing different logic circuits, L could be constructed
by different gates. In our paper, we use SNT library to
synthesize the quantum ternary reversible circuits. Fur-
thermore, in [11] the gates library is made up of the New
gate, Feynman Gate and the Toffoli Gate. Meanwhile, the
library of [23] contains the Generalized Ternary Gate and
the newly defined permutative quantum ternary C2NOT
gate.

III. Main Results

Previous works [16] have presented some synthesis
properties of binary non-reversible logic circuits as blow.

Lemma 1: Let f be binary classical non-reversible
logic circuits, where f stands for a function. Suppose
that the t inputs are B1, . . . , Bt, the s outputs are P1,
. . . , Ps (s ≤ t). M should be the truth table of function
f . From the table of M, there exits r rows with the same

outputs. This class of circuits could be synthesized by
adding

⌈
log2 r

⌉
s − t inputs with constant 0 and

⌈
log2 r

⌉
garbage output. Meanwhile, this could be realized by
the Controlled-Not gate, Not gate and Peres gate (CNP)
library.

Proof: The exactly proof of Lemma 1 could be found
in [16]. �

Further generalized this Lemma, we can consider the
case of ternary values. Different from the binary values,
here we use SNT instead of CNP library to deal with the
arbitrary ternary non-reversible logic circuit.

Lemma 2: Every n × n ternary reversible logic circuit
could be generated by the ternary Swap gates, NOT gates
and Toffoli gates.

Proof: It could be found that the proof of Lemma 2
is in [17]. �

Theorem 1: Let f be ternary classical non-reversible
logic circuits, where f stands for a function. Suppose that
the t inputs are B1, . . . , Bt, the s outputs are P1, . . . , Ps

(s ≤ t). M should be the truth table of function f . From
the table of M, there exits r rows with the same outputs
at most. This class of circuits could be synthesized by
adding

⌈
log3 r

⌉
s−t (if

⌈
log3 r

⌉
> (t−s), else 0) inputs with

constant values. Meanwhile, with
⌈
log3 r

⌉
garbage output,

the function f could be realized by the SNT library of
ternary Swap gates, NOT gates and Toffoli gates .
Proof: Firstly, based on Lemma 1 and 2, it could be
seen that with the SNT library the classical ternary non-
reversible logic function f could be realized.

Second, we have to proof that the amount of garbage
outputs can be expressed by

⌈
log3 r

⌉
in two cases.

Case a: consider that in the truth table of M, there
exits r (r = 3k, k ≥ 1, and k is integer) rows which are
of the same output values. Obviously, for identifying the
r outputs with same values, it needs log3 r variables. As
a result, log3 r garbage outputs would be produces.

Case b: consider in M, the case is that there are r
rows(r = m + 3k, where m and k are integers, and k ≥ 1,
3k > m ≥ 1) which have the same output values. If the
same outputs could be divided into different outputs, it
should add k + 1 variables. In the other hands, in order
to identify these outputs,

⌈
log3 r

⌉
garbage outputs are

required.
Third, refer to the amount of adding input values.

Following the property of a logic reversible circuit, the
number of inputs and outputs must be the same. In our
transformation it needs a certain number of inputs and
garbage outputs of

⌈
log3 r

⌉
. Based on this relationship,

we can calculate that
⌈
log3 r

⌉
s − t(if

⌈
log3 r

⌉
> t − s, else

0) inputs are needed.
Therefore, the proof process of the theorem is com-

pleted. �
Remark 1: Not all gates in the library SNT will be used

to synthesize some circuits. However, the SNT library is
the maximal set for all the ternary reversible circuits. This
can be seen in example 1 where the Swap gate is not used.

Corollary 1: Suppose that the function f stands for the
ternary non-reversible circuit. According to Theorem 1, it
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can be transformed to reversibility by adding s+
⌈
log3 r

⌉−t
(if (t− s) <

⌈
log3 r

⌉
, else zero) inputs with constant values

and
⌈
log3 r

⌉
garbage outputs. The qutrits of ancilla inputs

and garbage outputs are minimal.
Proof: From the intuitive insight of the proof for The-
orem 1, we obtain that the garbage outputs’ number is
minimal directly. The basic property of reversible logic
is that between inputs and outputs have an one to one
correspondence mapping. That means the amount of input
and output is same. So the number of ancilla inputs is
minimal also.

More explicitly, suppose that f can be synthesized with
(
⌈
log3 r

⌉
-1) qutrits. This means (

⌈
log3 r

⌉
-1) qutrits could

identify the same r outputs. If this is true, the rule of
one-to-one correspondence mapping between inputs and
outputs is violated. Therefor the numbers are minimal.

The result of the corollary is proved. �

IV. Permutation Group and Synthesis Algorithm

Definition 6: ( j − cycle) [24] Given S k as a
symmetric group of symbols {d1, d2, d3, . . . , dk}, then
(di1 , di2 , di3 , ..., dik ) is a j − cycle, where j ≤ k. For
particularly, a (di, di+1, di+2, ..., di+ j−1) of j − cycle is a
neighbor j − cycle of S k, for ∀1 ≤ i ≤ k − j + 1.

Definition 7: (permutation) [24] The bijection of M
onto itself is a permutation for M, where M =

{d1, d2, d3, ..., dk}. The sets of all permutations on M
compose a group under mapping composition, called as
a symmetric group on M [19]. A permutation group is
simplified as a subgroup [25] of a symmetric group.

Definition 8: (even permutation and odd permutation)
[24] Given a permutation, it is a product of an even
number of 2 − cycles and odd if it is a product of an
odd number of 2 − cycles.

Remark 2: Furthermore, as the similarly rules, it could
be summarized as followed. An odd permutation could
be obtained either by the product of odd numbers of odd
permutation or odd numbers of odd permutation with even
numbers of even permutation. An even permutation could
be obtained either by the product of even numbers of even
permutation or even numbers of odd permutation.

Some other notations are also needed. For instance, a
mapping relationship of s: M → M could be expressed
as

s =
(

d1, d2, ..., dk

di1 , di2 , ..., dik

)
, (1)

Here another notation will be written as the product of
disjoint cycles [25]. Take an example as followed,(

d1, d2, d3, d4, d5, d6, d7, d8, d9
d1, d4, d7, d2, d5, d8, d3, d6, d9

)
, (2)

could be written as (d2, d4)(d3, d7)(d6, d8). The identity
mapping relationship of ‘( )’ (direct wiring) is named
the basic unity cell in some certain permutation groups.
For convenient, it would be denoted as s−1 for inverse
mapping of s. As per convention, the product s× t means
two permutations applying mapping the s before t.

Algorithm 1 Synthesis of Arbitrary t × s Ternary Non-
reversible Logic Circuits of f (STNC)
Input: Library L and Non-reversible logic circuit f .
Output: Synthesis of Reversible logic circuit f ′;

1: According to Theorem 1, transform a t × s ternary
non-reversible f to reversible f ′;

2: f ′ = apply group theory( f )
3: if ( f ′ = odd permutation) then
4: E1,2 ∗ f ′ = L1 ∗ L2 ∗ . . . ∗ Lh,

Li ∈ {ternary Swap gate,NOT gate,To f f oli gate}
5: return f ′ = E1,2 ∗ L1 ∗ . . . ∗ Lh.
6: else if ( f ′ = even permutation) then
7: f ′ = C1 ∗C2 ∗ . . . ∗Cs, Ci is 3 − cycle
8: Ci = Li,1 ∗ Li,2 ∗ . . . ∗ Li,ti ;

1 ≤ i ≤ s, Li, j ∈
{ternary Swap gate,NOT gate,To f f oli gate}

9: return f ′ = [L1,1 ∗ L1,2 ∗ . . . ∗ L1,t1 ] ∗ . . . ∗ [Ls,1 ∗
Ls,2 ∗ . . . ∗ Ls,ts ].

10: end if

According to the Definition 6, 7 and 8, we could obtain
that the relationships of permutations and reversible logic
circuits as followed. Now we would order 3n different of
n inputs assignment vectors as Eq. 3 shown

(0, 0, . . ., 0), (1, 0, . . ., 0), (2, 0, . . ., 0),
(0, 1, . . ., 0), . . ., (2, 2, . . ., 2), (3)

and denote them by the order of a1, a2, a3, . . . , am, where
m = 3n. Thus arbitrary n×n ternary reversible logic circuit
could be expressed just by a permutation in S m (where
m = 3n). As the basic principal, if the corresponding
permutation of a ternary logic reversible circuit is an odd
(or even) permutation, it could be called the named odd
(or even) reversible logic circuit. Multiplying arbitrary
two permutations stands for cascading two logic gates. In
what follows, there is no distinctions between an arbitrary
n×n reversible logic gate and a permutation which should
be in S m (here m = 3n).

The synthesis algorithm of any t × s ternary non-
reversible logic circuit (STNC) will be described next.
Obviously, when dealing with t× s ternary non-reversible
logic circuits, we should use Theorem 1 firstly, and then
synthesize it with the SNT Library based on group theory.
This algorithm has been implemented in terms of the
lemmas in [17].

V. Examples and Discussions

We would like to illustrate our main results with two
examples of t × s non-reversible logic circuits. We also
compare the results with other methods at the end.

A. Example 1: Half Adder

First, let’s consider a half adder of ternary. a 2− qutrit
half adder’s truth table could be seen in Table I. It is
non-reversible. Let x0, x1 be the inputs; sum and Cout,
the outputs; f , the classical non-reversible half adder.
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TABLE I.
Truth Table of A 2 − qutrit Half Adder

No. x1 x0 Cout sum
1 0 0 0 0
2 0 1 0 1
3 0 2 0 2
4 1 0 0 1
5 1 1 0 2
6 1 2 1 0
7 2 0 0 2
8 2 1 1 0
9 2 2 1 1

TABLE II.
Truth Table of The Ternary Reversible Function f ′

Inputs Outputs
No. x2 x1 x0 No. s carry sum
1 0 0 0 1 0 0 0
2 0 0 1 2 0 0 1
3 0 0 2 3 0 0 2
4 0 1 0 11 1 0 1
5 0 1 1 12 1 0 2
6 0 1 2 4 0 1 0
7 0 2 0 21 2 0 2
8 0 2 1 13 1 1 0
9 0 2 2 5 0 1 1
10 1 0 0 10 1 0 0
11 1 0 1 6 0 1 2
12 1 0 2 9 0 2 2
13 1 1 0 14 1 1 1
14 1 1 1 8 0 2 1
15 1 1 2 15 1 1 2
16 1 2 0 16 1 2 0
17 1 2 1 17 1 2 1
18 1 2 2 18 1 2 2
19 2 0 0 19 2 0 0
20 2 0 1 20 2 0 1
21 2 0 2 27 2 2 2
22 2 1 0 22 2 1 0
23 2 1 1 23 2 1 1
24 2 1 2 24 2 1 2
25 2 2 0 25 2 2 0
26 2 2 1 26 2 2 1
27 2 2 2 7 0 2 0

There are 3 rows with the same outputs Cout: 0 sum: 2.
This output configuration has maximal number of repeats.
So according to Theorem 1, we need to add one constant
ancilla input x2 and one garbage output s. Then, f could
be transformed to the reversible logic function f ′. f ′ is
reversible now, and its truth table is given in Table II.
With the library of SNT, we combine the approach of
[18] with Alg. 1 to synthesize the function f ′.

The permutations of (7, 21, 27), (4, 11, 6), (8, 13, 14)
and (5, 12, 9) could be got from Table II. Here, every
number stands for the row number. Using the approach
of [18], we have to calculate every permutation group
separately, then multiply the results in the order of
(7, 21, 27), (4, 11, 6), (8, 13, 14) and (5, 12, 9). Because the
procedure is the same for each permutation, we will only
demonstrate the calculation with permutation (4, 11, 6).

The 4th row stands for (010), 11th for (101) and 6th

for (012), respectively. This can be expressed by Eq. 4.
This permutation could be decomposed into the product

TABLE III.
The Relationship of Row’s Number

Row No. Row No. of table II
0 1 2 b1 → 6
0 1 0 b2 → 4
1 1 0 b3
1 0 0 b4
1 0 1 b5 → 11

of some neighboring 3 − cycles [18]. From Table III, the
result is (b1, b2, b5) = (b2, b4, b3) ∗ (b3, b4, b5) ∗ (b1, b2, b3). 4

11
6

→
 0 1 0

1 0 1
0 1 2

→
 b2

b5
b1

 =
 b1

b2
b5

 (4)

Remark 3: The decomposition is not unique. This sug-
gests the synthesis approach is not optimal.

Firstly, from Eq. 5 we get (b2, b4, b3) = N1 ∗N2 ∗N∧2
3 ∗

C∧2
1 ∗ C2 ∗ C∧2

1 ∗ C∧2
2 ∗ C1 ∗ N3 ∗ N∧2

2 ∗ N∧2
1 . The latter

part C∧2
1 ∗C∧2

2 ∗C1 ∗ N3 ∗ N∧2
2 ∗ N∧2

1 is the inverse of the
former part N1∗N2∗N∧2

3 ∗C∧2
1 ∗C2. Similarly, (b3, b4, b5) =

N1∗N∧2
2 ∗N∧2

3 ∗C2∗C∧2
3 ∗C∧2

2 ∗C3∗C∧2
2 ∗N3∗N2∗N∧2

1 , (b1, b2,
b3) = N∧2

1 ∗N2∗N∧2
3 ∗C∧2

3 ∗C∧2
1 ∗C3∗C1∗C3∗N3∗N∧2

2 ∗N1.

 b2
b4
b3

→
 0 1 0

1 0 0
1 1 0

 N1N2N2
3−→

 1 2 2
2 1 2
2 2 2

 C2
1−→

 0 2 2
2 1 2
1 2 2

 C2−→

 0 2 2
2 2 2
1 2 2

 C2
1−→

 2 2 2
1 2 2
0 2 2


(5)

Following the same method, we can compute the
synthesis result of (5, 12, 9), (7, 21, 27) and (8, 13, 14).
Finally:
f ′ = N1∗N2∗N∧2

3 ∗C∧2
1 ∗C2∗C∧2

1 ∗C∧2
2 ∗C1∗N3∗N∧2

2 ∗N∧2
1 ∗

N1 ∗N∧2
2 ∗N∧2

3 ∗C2 ∗C∧2
3 ∗C∧2

2 ∗C3 ∗C∧2
2 ∗N3 ∗N2 ∗N∧2

1 ∗
N∧2

1 ∗N2∗N∧2
3 ∗C∧2

3 ∗C∧2
1 ∗C3∗C1∗C3∗N3∗N∧2

2 ∗N1∗N∧2
1 ∗

N2 ∗C2 ∗C3 ∗C2 ∗C∧2
3 ∗C∧2

2 ∗N∧2
2 ∗N1 ∗N∧2

1 ∗N∧2
2 ∗C∧2

1 ∗
C∧2

2 ∗C1 ∗N2 ∗N1 ∗N∧2
3 ∗C1 ∗C3 ∗C∧2

1 ∗C∧2
3 ∗C∧2

1 ∗N3 ∗C2 ∗
C∧2

3 ∗C∧2
2 ∗C3∗C∧2

2 ∗N1∗N3∗C∧2
1 ∗C2∗C1∗C∧2

2 ∗C1∗N∧2
3 ∗

N∧2
1 ∗N1 ∗N2 ∗N3 ∗C2 ∗C3 ∗C2 ∗C∧2

3 ∗C∧2
2 ∗N∧2

3 ∗N∧2
2 ∗N∧2

1
Here we use the Ni to denote ternary Not gate, i stands

for the ith column which from left to right, N∧2
i represents

two cascaded Not gates. Meanwhile, Ci means thatin the
ternary Toffoli gate, the ith line will be the controlled
under the order from left to right. The half adder verifies
our approach directly.

Remark 4: When synthesizing the ternary circuit, it
wasn’t considered the most optimal case in Algorithm
1 and example 1. It was know that the non-reversible
ternary logic circuit could be transferred into different
gate library’s products. Even if the most optimal reversible
functio could be gotten, the non-reversible circuit could
not be implemented optimally.

Meanwhile, the quantum implementation costs of vari-
ous quantum logic gates are different, such as, the CNOT
gate costs less than Toffoli gate. Hung et al. presented
a methods of optimally synthesizing the circuits with
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TABLE IV.
Truth Table of A 2 − qutrit Full Adder

No. x1 x0 Cin Cout sum
1 0 0 0 0 0
2 0 0 1 0 1
3 0 0 2 0 2
4 0 1 0 0 1
5 0 1 1 0 2
6 0 1 2 1 0
7 0 2 0 0 2
8 0 2 1 1 0
9 0 2 2 1 1
10 1 0 0 0 1
11 1 0 1 0 2
12 1 0 2 1 0
13 1 1 0 0 2
14 1 1 1 1 0
15 1 1 2 1 1
16 1 2 0 1 0
17 1 2 1 1 1
18 1 2 2 1 2
19 2 0 0 0 2
20 2 0 1 1 0
21 2 0 2 1 1
22 2 1 0 1 0
23 2 1 1 1 1
24 2 1 2 1 2
25 2 2 0 1 1
26 2 2 1 1 2
27 2 2 2 2 0

minimize cost, which also applied on the half adder
and full adder circuits [4]. The comparison between our
method and the method of Hung et al. will be given in
subsection C comparison of results and discussions.

B. Example 2: Full Adder

As another example, we consider the ternary full adder.
The truth table of it is shown in Table IV. Cin denotes the
carrier of the full adder. Actually its value is either 0 or
1, but never 2. Here, we suppose the ideal situation where
the outputs can be 0, 1 and 2. In Table IV, we can see that
the maximum number of repeated output configuration is
‘01’, which occurs seven times. According to Theorem 1,
we have to add one ancilla input and two garbage outputs.
Then, the non-reversible function of the full adder f could
be transformed to the reversible logic function f ′′. As a
result of its four inputs, there are 81 rows in the truth
table of f ′′. Due to the length of the transformed truth
table, we won’t show it here.

We use the same method to synthesize f ′′ with the SNT
library. Because there are more than 150 gates to be used,
the result is not shown here. This example only illustrates
the correctness of our main results, it does not consider
the optimization.

C. Comparison of Results and Discussions

Our examples verify Theorem 1 and Corollary 1. Com-
pared with other methods, its advantage is that the number
of ancilla input bits and garbage outputs are minimal.
This can be seen from Table V directly. In [11], for the
binary full adder case, three different gates are used for

TABLE V.
The Comparison Between Different Approaches of Synthesis Half and

Full Adder

Circuits Gate Library Ancilla Garbage Gates Number Used
Input Bits Outputs in Synthesis Circuits

Binary Full
Adder in [11]

Feynman Gate
2 3 3Toffoli Gate

New Gate

Ternary Half
Adder in [23]

Ternary Feynman Gate
2 2 4Ternary C2NOT Gate

Ternary Toffoli Gate

Ternary Half Adder
of Our

Ternary NOT Gate 1 1 122Ternary Toffoli Gate

Ternary Full
Adder in [23]

Ternary Feynman Gate

4 5 8Ternary C2NOT Gate
Ternary Toffoli Gate
Generalized Ternary Gate

Ternary Full Adder
of Our

Ternary Swap Gate
1 2 > 150Ternary NOT Gate

Ternary Toffoli Gate

synthesis. Two ancilla input bits and three garbage outputs
are added, whereas our method uses one ancilla input bit
and two garbage outputs. Meanwhile, [11] defined a NG
gate. Even if this increases the cost of the circuit, it has
lower cost than our method because we have to use more
than 150 gates for a full adder. Furthermore, we make a
more intuitive comparison between the ternary cases. S.
Mandal et al. [23] had proposed a method of expressing
the logic function of ternary with the operations of Li and
Ji. And the definition of a minterm was also presented.
With this method, the synthesis of ternary half-adder and
ternary full-adder logic circuits have fewer gates but more
ancilla bits and garbage bits. Our examples show that
our method uses 50% fewer bits for a half adder and
66.7% fewer bits for a full adder in comparison with [23].
However, the numbers of gates used are 30.5 times and
20+ times of those used in [23] in the half and full adder
cases, respectively.

In this paper, the optimal quantum cost of these exam-
ples is not considered. There is a shallow analysis why
it is not considered. J. Smolin et al. [4] introduced a
method of cost evaluation for quantum gates . Commonly,
every 2-qubit logic gates has a cost of 1 for quantum
implementation. Similarly, if the quantum XOR gate or
quantum C-V gate are worked on the two qubits for a
symmetric pattern, it is considered the total cost as 1 also.
In [3] it gives two examples of quantum half-adder circuit
of cost 4, and quantum full-adder of cost 6, respectively.
However, our method focuses on the minimal number
of ancilla input bits and garbage outputs. Hence, it is
unnecessary to take account into the quantum cost of
these examples. As a result, there is a trade off among
the number of gates, ancilla bits and garbage outputs.
Our future work will investigate more optimization of the
synthesis algorithm for ternary logic circuits.

VI. Conclusions

In summary, we demonstrate a universal method for
synthesizing arbitrary classical ternary non-reversible cir-
cuits. This work takes into account the combination of
classical logic and quantum logic circuits. With the library
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of ternary Toffoli gate, ternary NOT gate and ternary
Swap gate, out method presents how to transform these
non-reversible circuits. Combining with their group theory
notations, we can synthesize these ternary non-reversible
logic circuits by adding s+ ⌈log3r⌉− t input with constant
values and garbage output of ⌈log3r⌉. According to the
main result, it could be seen that the quantum ternary
logic circuit is various of the quantum binary reversible
circuit. Simultaneously, the qutrits we use are minimal
compared to other methods [11], [23]. The SNT library
is no the unique one to synthesize the ternary quantum
logic circuit. As show in [18], the library of ternary of
1 − CNOT gate, ternary NOT gate and ternary Swap
gate has more properties and characteristics to transform
the ternary circuits, which is more universal to realize
arbitrary n − qutrit logic circuits with non ancilla qutrits.
Furthermore, out approach of realizing arbitrary ternary
logic circuits is constructive. Despite is is not the most
optimal case. It could be used further to develop methods
of synthesizing d − level circuits with minimal qutrits.
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