
GA-based Path Planning for Mobile Robots: An

Empirical Evaluation of Seven Techniques

Alison Watkins, Ph.D.
College of Business, University of South Florida St. Petersburg, FL 33730

Email: awatkins@usfsp.edu

Abstract—Previous research suggests that genetic

algorithms (GAs) offer a promising solution to path

planning for mobile robots. We examine six simple GAs

used in prior studies, comparing them to a new node

sequence approach that includes a two-step fitness function.

Through a series of repeated trials using a simple 16x16

grid, a 100x100 grid, a 600x600 Mars landscape, and a

complex maze-like environment, we compare the

chromosome structures and fitness functions of these seven

methods. The results of our empirical testing indicate that

the proposed dual goal approach, which uses a fixed length

chromosome structure, outperformed both monotonic and

other node sequence approaches, consistently finding a

feasible path in even the most challenging of these

environments.

Index Terms—artificial intelligence, routing, genetic

algorithms, robotics.

I. INTRODUCTION

Autonomous mobile robots, which have the ability to

navigate without direct human control, have potential

value in a wide variety of settings, including factories,

warehouses, mining, construction, healthcare, and space

exploration. To operate in natural settings such as these,

however, robots must be able to map the environment,

and plan their path of movement to minimize distance,

time, and other performance objectives, while avoiding

obstacles [1]. Thus, path planning is an area of research

that has garnered considerable attention in recent years.

Finding an optimal path is typically a computationally

intensive task that is necessary to goal achievement, but

does not fulfill the robot's primary goal. Because the

robot's processing capabilities are limited, researchers

have sought to develop efficient path planning algorithms

that conserve resources and quickly find a clear path.

Evolutionary search techniques such as genetic

algorithms (GAs) are especially well-suited to this task

because they are robust, relatively easy to apply, and

capable of finding the global optimum via a search of the

entire space [2]. Key to their success are two design

issues -- the construction of the chromosomes, which

capture path information, and the specification of the

fitness function used to evaluate them.

Prior research has described successful approaches to

the path planning problem [3] and a number of GA-based

approaches to path planning under various scenarios;

however, their relative effectiveness has not been

empirically assessed. As a result, no guidance or

recommendation as to the most efficient GA-Based

approach has emerged. To establish a baseline for

assessing more complex techniques and scenarios, we

evaluate seven GA-based planning approaches that use a

simple GA, working in 2D, for a single robot with a

single goal. Through repeated trials using a 16x16 grid, a

100x100 grid, a 600x600 Mars landscape image, and a

more complex maze-like environment, we conduct

statistical comparisons, demonstrating that a fixed

chromosome design coupled with a two-step fitness

function that does not accept infeasible paths may be the

most efficient and effective technique for path planning

in this scenario.

II. GENETIC ALGORITHMS FOR PATH PLANNING

Genetic algorithms begin with a population of

chromosomes representing random solutions to a

particular search problem. Each chromosome or solution

is first tested and the results are evaluated by a fitness

function to determine how close it came to achieving the

search objective. Based on the resulting fitness values,

the chromosomes are then subjected to genetic operations

to form a new population of potential solutions. In simple

GAs, diversification of the chromosomes is achieved

through a process of selection and recombination based

on crossover and mutation. In more complex, hybrid

GAs, other specialized operators may be added to assist

in this process. As each new population is generated, the

fitness values increase the likelihood that better solutions

will survive and contribute to the evolving gene pool.

These actions continue until a stopping condition is met -

- either a set number of generations has been created and

evaluated or an acceptable solution has been found. (For

a more complete introduction to genetic algorithms, see

[4,5]).
1

Like other adaptive search techniques, GAs are not

guaranteed to find an optimal solution, but they have

proven useful in finding very good solutions where time

and system resources are constrained [5]. Because GAs

are especially well-suited to problems where the search is

__
Manuscript received July 24, 2012; accepted November 19, 2012.

This work was supported in part by the Florida Space Grant
Consortium under Grant No. 0000029716

1912 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.8.1912-1922

large, complex, or not well understood, they are of

interest in path planning, where they have been used to

generate efficient routes between two or more locations

[6 - 17].

The literature also provides many examples of path

planners that use a GA in conjunction with other

specialized optimization algorithms, for example, neural

networks [18,19], synthetic pheromones [20], B-Spline

Curves [21], A* Algorithm [22], rough sets [23] and

fuzzy logic [24]. In addition, a number of researchers

have extended the basic GA approach, producing the

Immune GA [25] and the Hierarchical GA [26]. Although

these extended approaches are potentially quite powerful,

this research focuses on evaluating the simple GA for

point-to-point 2D path planning.

The performance of a GA on a given search problem

depends on a number of factors, including the size of the

population in each generation, the genetic operators that

are applied in the reproductive process and their values,

the number of generations allowed, the construction of

the chromosomes, and the fitness function used in

evaluating them. Because many prior studies using GAs

for path planning focus on different scenarios, varying

two or more of these factors, it is very difficult to make

comparisons across studies or draw conclusions as to the

most effective techniques. We address the issue of non-

comparability via a series of experiments designed to

evaluate the relative performance of six previously-

published GAs as well as one new one, focusing

specifically on two issues – the construction of the

chromosomes and the fitness functions that are used to

assess them – while holding other GA features constant.

A. Chromosome Construction

The first step in formulating a GA to solve a particular

search problem is translating the problem into biological

terms by encoding information in the chromosomes. In

path planning problems, each chromosome represents a

series of straight line segments or a sequence of nodes

that, taken together, describe a path. Any given

chromosome or path can be feasible, if no obstacles are

encountered, or infeasible, if any of the intermediate

nodes contains an obstacle that would interfere with the

robot’s movement.

Techniques for encoding a path vary in terms of the

actual genotype structure, i.e., the number of variables

used to describe each movement. Generally, simpler

genotype structures require less processing time, while

more complex structures provide greater flexibility in

terms of allowable moves. Additionally, some

approaches utilize a fixed length chromosome, while

others use a variable length chromosome. In many of the

fixed length approaches, the rows (or columns) of the

grid space are represented by the gene’s position within

the chromosome, while the column (or row) coordinates

are stored within the genes. Thus, for an n x n grid, a

fixed length chromosome would contain at a minimum, n

genes. In variable length approaches, both the x and y

coordinates are represented in some way in the individual

genes, either explicitly or as numbered grid locations.

Prior research suggests that fixed length representations

are typically very efficient and, because the genes are

specifically organized, very logical and easy to interpret

[27]. On the other hand, variable length approaches may

be more adaptable [27] and better suited to dynamic

environments with many obstacles [12], but the

traditional genetic operators must be modified to process

them [28]. (Further issues associated with variable length

chromosomes are discussed in later sections of this

paper.)

B. Fitness Function

After each of the chromosomes is tested, a fitness

function is used to evaluate it, determining how close it

comes to satisfying the search goal. How quickly a GA

converges on an acceptable solution depends in large

measure on the objective function used in evaluating the

performance of each chromosome. The fitness function in

effect guides the search, based on the knowledge and

experience of previous chromosomes, rewarding those

that are “better” in some respect and punishing others

with poorer fitness values [29]. Not only can a well-

constructed fitness function improve the likelihood of

finding a short, obstacle free path in fewer iterations but,

when coupled with an efficiently-sized chromosome, it

will consume fewer system resources in the process [5].

Previous research on path planning has utilized a wide

range of measures to assess the fitness of candidate

solutions, including the distance between moves, the

length of the path, collisions with solid obstacles, the

number of turns or the smoothness of the path, etc.

However, without empirical assessment of these

alternative approaches, no firm conclusion can be

reached with respect to the best fitness measures for robot

guidance. The experiments described in the remainder of

this paper compare the chromosome structures and fitness

functions described in six previously published path

planning studies as well as one new approach. Although

several of the original demonstrations used hybridized

GAs that incorporated domain-specific operators, these

operators were not included in our experiments to enable

direct comparison of the chromosome structures and

fitness functions, without the potentially confounding

effects of such ad hoc efficiency improvements [30].

III. GA-BASED PATH PLANNING APPROACHES

A review of the literature identified six GA-based path

planning approaches for single point mobile robots with a

single goal as shown in Table I. In each of them, the

tested path is allowed to travel through obstacles;

however, they differ in terms of how such infeasible

segments are evaluated by the fitness function. One new

technique, the Dual Goal Approach was also included in

these experiments. In the sections that follow, each

approach is first described and its navigation abilities

demonstrated using the 16x16 grid shown in Fig. 1,

which contains 8 obstacles (shown as black squares). In

this sample problem, the goal of each path planner is to

develop an efficient route from the starting position is

{1,1} (upper left corner) to the goal {16,16} (lower right

corner) while avoiding all obstacles. Some of the

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 1913

© 2013 ACADEMY PUBLISHER

approaches have an additional objective which is to reach

the goal with the fewest number of turns. The shortest

route through this grid is 30 moves with only two turns.

A. The Monotonic Approaches

The first two approaches listed in Table I can be

defined as monotonic insofar as a path is represented by a

row- or column-wise sequence of steps. For example, in

row-wise movement the next move on the x coordinate is

represented by the genome position and the y by the

genome value. The advantage to this approach is that the

length of the chromosome can be fixed, potentially

speeding up real-time processing [28, 34, 35]. On the

other hand, although GAs using this approach may be

able to conquer most paths, they sometimes have

difficulty navigating around obstacles and thus they can

miss an optimum path [28].

Local Path Planner (LPP)

The local path planner, described by [35,36], was

designed to extend earlier methods [34], using both row-

and column-wise planning. The chromosome consists of

TABLE II

EXAMPLE OF PARTIAL CHROMOSOME

FOR LOCAL PATH PLANNER (LPP)

Position Value

2 10

3 8

4 3

5 0

6 9

7 11

8 14

9 14

10 11

11 1

12 2

13 5

14 10

15 8

four parts: The first value is a path-flag to indicate

whether the path should travel in a row- or column-wise

manner. The second part gives the x,y coordinate for the

path. For example, in the chromosome fragment shown in

Table II, position 2 indicates both the gene number and

the x coordinate value, while 10 is the actual value of the

gene and represents the y coordinate on the grid.

Therefore, the first move from the starting position {1,1}

would be to position {2,10}.

 The third part of the chromosome (not shown) is the

path direction, which indicates whether travel should be

initiated in a horizontal or vertical direction. The final

two bits are described as path switch indicators, which

indicate when a route should switch from a row- to

column-wise direction. Each chromosome has the

possibility of changing directions twice. The total length

of the chromosome for a 16x16 grid would include 35

values.

LPP uses a relative fitness function where each

chromosome is assessed based on its performance in

relation to its peers with respect to the length of the path

generated, the number of turns made, and the number of

collisions. A collision occurs when a path goes through

an obstacle. The best chromosome will have a value of 1

in each of the three categories, indicating that it found the

TABLE I
APPROACHES EXAMINED

Citation Name Type

Chromosome

Length Fitness Function Measures

Sedighi et al., 2004

[35], 2009 [36]
Local path planner (LPP) Monotone Fixed Turns, collisions and length of path

Sugihara & Smith,

1997 [28]
Adaptive motion planner (AMP) Monotone Fixed Length of path and collisions.

Elshamli et al., 2004

[29]
Dynamic path planner (DPP)

Node

Sequence
Variable

Distance between moves, smoothness of path and distance

from obstacles.

Hu & Yang, 2004 [32]
Knowledge based path planner

(KBPP)

Node

Sequence
Variable Distance between moves and depth of collision

Liu et al., 2004 [12] Connected path planner (CPP)
Node

Sequence
Variable

Number of disconnect paths (paths that hit obstacles) and

length of valid paths.

Gombosi, 2001 [33] Evolutionary navigator (EN)
Node

Sequence
Variable

Distance between moves, length of chromosome, number of

infeasible parts.

New Dual-goal approach (DGA)
Node
Sequence

Fixed Distance to goal and length of path.

Figure 1. Demonstration Grid

1914 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

goal in the smallest number of steps, the fewest turns, and

the least number of collisions. These values are input into

the following equation:

[]))/(100(# TLTfLfff ofTurnsLengthcollisionspath ++= . (1)

where L and T are constants which have been assigned

the values 1 and 2, respectively. When a path contains an

obstacle, a penalty is imposed as follows:

))/(#(*1.0
2

nsofcollisioff pathpath = . (2)

Although the best results were reported for search

environments with two or fewer switching points, LPP’s

success rate was reported to be consistently better than

the earlier methods on which it was based. Measuring the

performance of each chromosome relative to its peers

helps to ensure that the best chromosomes will survive

into the next generation.

DistToGoaln* (10)

Adaptive Motion Planner (AMP)

The adaptive motion planner [28] is another

monotonic approach but, in this case, once a direction is

selected, the entire route is either row-wise or column-

wise. While the technique also allows the robot to move

diagonally, our example allows only 90 degree angle

turns.

The first value in this fixed length chromosome

indicates whether travel is in a row- or column-wise

direction. This indicator is followed by 16 2-value blocks

where the first value indicates direction and the second

the number of moves to make. This second value is only

used if the move is on the same monotonic plane. For

example, the partial chromosome in Table III represents

the first 5 moves along a path, where the first value (0)

represents a row-wise approach and the next pair of

values (0,3) indicates the direction of movement and

number of moves. If traveling row-wise and the first

value is 0, the movement is horizontal to column 3 and

then down one. The pair of values in the third position of

the chromosome (1,x) indicate a one-position vertical

move; in this case, because the direction of travel has

changed, the second value is ignored. To facilitate

obstacle avoidance, a slight modification has been made

to the original in this study, allowing the robot to traverse

both left and right along an axis. For example, when

traveling to row 2, the column coordinate is read as 3,

whereas in the original, the movement would have been

three steps in the positive horizontal direction. See [28]

for a fuller explanation.

For a path that avoids obstacles, the fitness calculation

is as follows:

() pathLengthwf path −+=
2

max1 ; (3)

where the constant wmax is a weight applied to all solid

objects. This constant was set to 4 in the original paper.

TABLE III

EXAMPLE OF PARTIAL CHROMOSOME

FOR ADAPTIVE MOTION PLANNER (AMP)

Position Value

R/C 0

2 0

3

3 1

x

4 1

x

5 0

7

6 0

10

7 0

11

The key advantage of this approach is that no specific

operators are required to process the fixed length

chromosomes. The initial study indicated that this

technique is adaptable to changing environments.

B. Node Sequence Approaches

Node sequence approaches differ from the monotonic

techniques in that the values in the chromosomes

represent both the x and y coordinates, and each move

can traverse multiple rows and/or columns. The only

limit placed on the selected coordinates is that they must

not contain obstacles, although a path between two

coordinates may contain obstacles. The chromosome

does not contain information on the direction of travel;

therefore, each single step is first tested horizontally and,

if unsuccessful (due to an obstacle), a vertical move is

tried. Some of the approaches also use problem-specific

operators such as repair and deletion operators to fix

infeasible nodes [32, 33]. However, because our

experiments were designed to focus solely on fitness

functions, these special operators were not applied. This

subject is revisited in our discussion.

Dynamic Path Planner (DPP)

DPP [31] uses a variable length chromosome that can

be anywhere in length from 2 to n*2, where each pair of

values represents one obstacle free location on the grid.

The fitness function evaluates individual paths based on

their length, smoothness, and clearance or closeness to

obstacles. Smoothness attempts to find a path that has

few turns and is defined as the curvature at a knot or

intermediate node [14]. The equation for calculating

smoothness can be found in [27]. The fitness function is

as follows:

)()()(pclearwpsmoothwpdistwf csdpath ++= (4)

where wd, ws and wc represent constant weight values.

(Although the exact values were not given in the original

paper, the weights applied in this study were 10, 2 and 50

respectively, to emphasize the goal of finding an

adequate route with good clearance.) If a generated path

is infeasible because of obstacles, the fitness value is the

ratio of the number of feasible to infeasible segments.

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 1915

© 2013 ACADEMY PUBLISHER

This approach was reportedly effective in both static

and dynamic environments for 10 runs but the size of the

search space was not indicated. The DPP fitness function

takes into consideration one of the key issues in path

planning -- that is, an optimal path must be straight as

well as short.

Knowledge Based Path Planner (KBPP)

KBPP [32] uses a slightly different approach to its

chromosome formation. Instead of including separate x

and y coordinates to indicate moves, a single value is first

assigned to each position in the grid. The resulting

chromosome can vary in length from 2 to n. The reported

technique allowed diagonal moves between positions;

however, in this study, movement is limited to 90 degree

turns. The fitness function is as follows:

)(
1

cos CdF
N

t

iit ∑
=

+= β (5)

where d is the Euclidean distance between two moves,

C is a constant, and β is the coefficient denoting the depth

of collision. Depth of collision is 0 if there are no

collisions; otherwise, it is the number of moves from the

current position to the closest feasible location.

Unlike the previous technique, this method uses only

infeasibility and distance traveled as fitness

measurements. The addition of the depth of collision

would allow specific genetic operators to be written to

amend a path. However, in some real-world applications

the size of an obstacle is unknown or as in the case of

long wall, measurements of depth may be meaningless.

Connected Path Planner (CPP)

CPP [11] uses a variable length chromosome where

the intermediate nodes are represented by x and y

coordinates and each node entry contains a pointer to the

next logical node in the path. To establish these links, the

x and y coordinates of each chromosome are sorted, row

dominant, prior to testing on the grid. The purpose of this

procedure is to make shorter, closer moves rather than

jumping back and forth across the grid. The size of the

variable length chromosome ranges from 2 to n*2. The

fitness function, which is designed to minimize infeasible

segments and produce short chromosomes, is defined as

follows:

if (infeasibleSegments != 0) then (6)

 fitness = 1/(infeasibles+1)

else

 fitness = 1+(1/chromosomeLength)

The variable, infeasibleSegments, refers to the number

of infeasible path segments. When a feasible path is

found, the fitness value reverts to the length of the

chromosome.

This process places strong emphasis on short

chromosomes, ignoring the actual length of the path. As a

result, more longer moves through the grid may occur.

This problem is offset by sorting the segments so that

closer moves are made first. CPP was reportedly quite

successful in simulations.

Evolutionary Navigator

EN [33] uses a variable length chromosome that is

very similar to the DPP chromosome to represent the x

and y coordinates. Each pair of coordinates is

accompanied by a state variable to capture information

about infeasible points and segments. The fitness

function is defined as follows:

)(*)(*)(* pinvwplengthwpdistwfitness ild ++= (7)

where dist is the distance traveled, length is the length

of the chromosome, and inv is the number of infeasible

segments. Although the values of the three constants (w)

were not specified in the original paper, they have been

set to 10, 2, and 50 respectively for these experiments.

Like CPP, EN uses the chromosome length as part of

the fitness function but combines it with the distance

traveled. This may give it an advantage over CPP; but, in

contrast to DBPP, it does not take into consideration the

smoothness of the path, i.e., the number of turns. One of

the cited advantages of this approach is that it offers

effective tradeoffs between near-optimality of the path

and planning efficiency.

Dual Goal Approach

The proposed Dual Goal Approach (DGA) uses a fixed

length chromosome of size (n*2). In this approach, the

path between pairs of x,y coordinates is examined and, if

an obstacle interferes with the path, that segment is

ignored and the next segment is tested.

For example, given the chromosome in Table IV, the

first move would be from {1,1} to {10,6}; however, it is

impossible to reach {10,6} without encountering an

obstacle and this move is not made. The next move

attempted is {1,1} to {11,1}, which is valid, and the

move made. Therefore, while a chromosome may have

many segments, the invalid segments are not used.

Because testing invalid segments is time consuming, the

fitness function penalizes a chromosome for invalid tests

in an attempt to reduce their number. This approach is

similar to the gene decomposition method proposed by

[37].

After each valid move, a test is performed to determine

whether there is a clear path from the current location to

the goal. This avoids needless moves when the goal is

within reach. Again, the chromosome is penalized for

each goal check it must perform. A path is never allowed

to travel through an obstacle and, if a path cannot find the

goal without hitting an obstacle, it is given a low fitness

value.

TABLE IV

PARTIAL CHROMOSOME FOR DUAL GOAL

APPROACH

 x y

 10 6

 11 1

1916 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

Fitness is assessed via a 2-step process that uses three

fitness functions:

)/0.1(* DistToGoalt (8)

If no previous chromosome has reached the goal,

fitness is evaluated as follows to give higher fitness

values to those that came closest to reaching the goal:

where t is the number of successful moves made for this

chromosome and DistToGoal is the Euclidean distance

between the last valid position and the goal.

When a chromosome reaches the goal, a flag is raised

and the fitness of all subsequent chromosomes is

evaluated as follows:

a. If the chromosome has reached the goal, the

fitness is:

numTrnsinvSegsgoalCheckspLen *)(/0.1(1 ++ (9)

where pLen is the Euclidean distance from the starting

position through each intermediary node to the goal.

b. If the flag has been raised by a previous

chromosome, but the current chromosome has not

found the goal, the fitness is:

DistToGoaln* (10)

where n is the size of the grid.

This method has two features that make it significantly

different from the others. First, a move is not made that

would travel through an infeasible location. Second,

DGA rewards a chromosome for finding a clear path that

comes close to the goal. Although similar to the work of

[38], where only valid trajectories between start and goal

are allowed, the approach presented here does not

presume that a chromosome represents a valid path. Both

of these features are unique among the fitness functions

discussed here. Like the others, however, when the goal

is found, the length of path is again used as a

measurement of fitness.

IV. EXPERIMENTAL STUDIES

The sections that follow describe a series of

experiments designed to evaluate the performance of the

seven approaches relative to one another. The primary

research question is:

Which path planning approach is best in terms of

consistently finding a path from the starting position to

the goal in the fewest number of moves (efficiency),

while avoiding obstacles (reliability)?

In each of these experiments, the value encoding

technique was used to encode the chromosomes, because

the monotonic techniques require the genes’ array

positions in order to create a route from start to goal [30].

Value encoding is more natural than binary, and

extensive testing indicates that it produces more

consistent results across replications and consumes fewer

resources in the process [38, 39]. To ensure

comparability, the population size for all trials was set at

60, while the crossover and mutation rates were set at

0.80 and 0.03 respectively [41]. Selection was performed

using the fitness-proportionate technique described by

[27]. In the first experiment, the number of generations

was restricted to 20; in the subsequent experiments,

which used a much larger search space, the number of

generations was set at 50.

In all experiments, reliability was evaluated based on

the number of runs the GA completed; the measure of

efficiency was the number of moves between the starting

position and goal. "Completed runs" refers to the number

of times the GA succeeded in producing an obstacle-free

path, given the generational constraints established for

each experiment. One-way analysis of variance

(ANOVA), an extension of the t-test that compares

multiple group means, was used to evaluate the

significance of the observed differences between

approaches in each experiment. In cases where the F-test

was significant, pairwise comparisons were made using

the Tukey test, a statistical procedure that determines if

the difference between two treatments is due to the

treatments themselves or if the difference is simply due to

random chance. The Tukey test was chosen for these

pairwise comparisons because the family-wise error rate

is exactly equal to the assumed value of alpha [42]. In all

cases, the significance level was set at 0.05.
TABLE VI

PAIRWISE COMPARISON OF MEAN NUMBER OF MOVES FOR

16X16 GRID.

 AMP DPP

KB

PP CPP EN DGA

LPP 25.1 23.9 24.8 24.4 23.5 25.3

AMP 1.2 0.4 0.8 1.7 0.2

DPP 0.9 0.5 0.4 1.4

KBPP 0.9 1.3 0.9

CPP 0.9 1.0

EN 1.9

TABLE V

SUMMARY RESULTS FOR THE 16X16 GRID.

 LPP AMP DPP KBPP CPP EN DGA

Mean Number of

Moves 55.3 30.2 31.4 30.6 31.0 31.9 30.0

Median 56.0 30.0 30.0 30.0 30.0 30.0 30.0

Std Dev 10.6 0.9 4.3 3.1 3.6 6.3 0.0

Avg. Number of Turns 17.3 7.7 4.8 4.2 4.3 4.8 2.0

Completed Runs 51 100 100 100 100 100 100

TABLE VII

RESULTS FOR 100X100 GRID 2

Mean

Moves

Comple-

tions Turns

LPP 2386 96 183.5

AMP 963 100 86.8

DPP 202 100 6.9

KBPP 203 98 7.3

CPP 276 100 9.9

EN 212 100 7.4

DGA 198 100 2.2

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 1917

© 2013 ACADEMY PUBLISHER

A. Demonstration 16x16 Grid

The first experiment used the small 16x16 grid shown

in Fig. 1, which contains eight obstacles. A similar sized

grid

was used in previous research [28]. The GA was run

100 times for each approach and each run was limited to

20 generations regardless of whether or not an obstacle-

free path had been found. The results shown in Table V

indicate that DGA consistently found a path in the fewest

number of steps and turns, while LPP completed only 51

of its 100 runs. The ANOVA results (F=223.41,

p<0.0001) led to rejection of the null hypothesis that all

population means are equal.

The values in Table VI represent the absolute

difference in the mean number of moves for each pair of

approaches; shading indicates significant differences. To

determine whether the observed differences are

statistically significant, the Tukey test was performed on

all possible pairs. In this case only LPP, the worst

performer, was significantly different from the other six

in terms of path length. The other monotonic approach,

AMP, performed as well as the node sequence

approaches; however, it produced a path with

significantly more turns. The mean number of moves for

DGA was approximately the same as the other six path

lengths, but it consistently produced solutions with fewer

turns.

B. Expanded 100x100 Grids

For the next series of experiments, the size of the grid

was increased to 100x100 and four different obstacle

configurations were tested (see Appendix A). Each

approach was run for 50 generations, increased over the

previous test because of the larger grid size. The start

position was {1,1} and the goal {100,100}. All GA

parameters remained the same, and the mean number of

moves was again used as the measure of efficiency.

ANOVA was run on the results from each of these

four trials, leading to rejection of the null hypothesis in

each case. The monotone approaches produced

consistently poorer results overall, as illustrated by the

results for Grid 2, which are shown in Table VII.

LPP and AMP averaged 1674 moves when combined

versus an average of 218 moves for the node sequence

approaches. This is more than likely due to the column

and row restrictions they impose, which produce initial

routes with considerable back and forth movement.

Given the generational restrictions, there was simply not

enough time for

them to converge on a straighter path. Because

efficiency is a primary concern in path planning and the

monotone approaches performed no better on subsequent

trials, their performance on the remaining three 100x100

grids is not reported here.

To isolate the significant differences in the node

sequence approaches, pairwise Tukey tests were run. The

results for three of the four 100x100 grids, shown in

Table VIII, were remarkably consistent, with CPP

performing significantly worse than the other node

sequence techniques on grids 2, 3, and 4. CPP has a

characteristic that makes it unique: it sorts the

chromosomes prior to testing them to reduce back and

forth motion and produce shorter, closer moves. While

the resulting segments may be shorter, however,

sometimes longer steps are needed to avoid obstacles,

causing a reduction in its efficiency.

Not evident from the results shown in Table VIII are

the completion rates. On grids 2, 3, and 4, all node

sequence approaches completed each of the 100 runs

except KBPP, which finished 98, 90, and 97 runs

respectively, making it somewhat less reliable than the

others. On grid 5, only EN and DGA completed all 100

runs, with DPP (97) and CPP (98) coming close. KBPP

fell significantly behind on this grid, completing 78 of its

runs.

C. Comparison of Node Sequence Approaches in a Mars

Landscape and a Maze-like Environment

In the third set of experiments, the five node sequence

approaches were compared using two real-world

scenarios, the Mars landscape and a maze-like

environment with multiple obstacles and narrow

passages. Fig. 2 is a simplified the binary image from

http://science.nationalgeographic.com/science/photos/ma

rs/#/mars-blueberries_1066_600x450.jpg where only the

larger obstacles must be avoided. Although the landscape

image does not contain a large number of obstacles, it is

the shape of the obstacles combined with the 600x600

grid size that poses challenges for path planners. One

start and end position was tested and the arrows and line

in the figure show one possible route.

The results shown in Table IX indicate that only two

techniques, CPP and DGA, were consistently able to find

TABLE VIII
PAIRWISE COMPARISON OF MEAN NUMBER OF MOVES FOR 100X100

GRIDS.

Grid 2 KBPP CPP EN DGA

DPP 0.2 72.9 9.0 4.9

KBPP 73.1 9.2 4.7

CPP 63.9 77.8

EN 13.8

Grid 3 KBPP CPP EN DGA

DPP 9.5 119.5 2.4 10.4

KBPP 129.0 7.1 0.9

CPP 122.0 130.0

EN 8.0

Grid 4 KBPP CPP EN DGA

DPP 9.9 43.5 11.5 15.6

KBPP 53.4 1. 7 5.7

CPP 55.0 59.0

EN 4.0

Grid 5 KBPP CPP EN DGA

DPP 0.2 4.2 2.7 4.9

KBPP 3.9 2.5 5.2

CPP 1.4 9.1

EN 7.6

Shading indicates significant results

1918 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

a valid route within the 50 generation limit. DGA

successfully completed all 100 runs, while CPP

completed only 78. A T-test performed on the means

shown in Table IX indicated that the two techniques were

significantly different from one another (t=11.319,

p<0.0001) with DGA requiring half as many moves as

CPP.

Because robots are often used for search and rescue

missions, finding routes around obstacles such as walls

and through doorways is a common experimental task in

robotics research. The maze-like environment in Fig. 3 is

built on a 100x100 grid and indicated by numbers are the

three different start and goal combinations tested. The

first search, represented by the number ‘1’, requires a

path from the upper left at {1,1} to lower right {98,98};

the second is a path from {86,46} to {10,10} (upper left);

and the third from {32,93} (middle right) to {68,65}. Of

the three, path two should be the most difficult because

there are many narrow passages to find along the route.

While other paths could have been selected for these

tests, these explore a range of path difficulty for this grid.

Again each approach was run for 50 generations for three

different searches.

DGA was most successful at this task, finding a route

for grid 1 on all 100 runs; 68 times out of 100 for grid 2;

and 99 times for grid 3. Additionally, the average length

of these paths and the number of turns is quite

conservative considering the size of the grid. However,

the results in Table X show that the remaining

approaches were unable to find the goal more than a few

times and KBPP never found a goal. This rather poor

performance is likely the result of the limited number of

generations allowed.

Unlike the simple grids tested previously, these two

problem types were significantly more challenging for

the GAs. In the case of the Mars landscape, where CPP

does fairly well relative to its peers, the sorting of the

chromosomes prior to testing and/or the chromosome

length-based fitness function may be better measures of

fitness than distance traveled. However, in the maze-like

problem, neither the distance traveled nor the

chromosome length appears to give CPP an advantage

when a path travels through infeasible locations. DGA

which only uses feasible paths had much better results,

finding a feasible path on most runs.

V. EXPERIMENT SUMMARY

The results of these experiments, which are

summarized in Table XI, are not inconsistent with one

another. Overall, the node sequence approaches

outperformed the monotonic approaches. However, on

more complex grids, DGA performed significantly better

than the other node sequence methods. The goal-oriented

feature of DGA, which measures an infeasible path from

its point of infeasibility to the goal, appears to encourage

feasible paths that are close to the goal over those that are

far away. This feature enables the GA to quickly find a

feasible path. On the other hand, techniques that measure

the number of infeasible segments have a significant

problem to overcome – while an infeasible path may

contain just one obstacle, finding a way around the

obstacle may be very difficult because a clear route could

be quite far away. Another feature of DGA that

differentiates it from the other node sequence approaches

is the fact that it uses fixed length chromosomes,

although only part of the chromosome may actually be

used. The selective use of the chromosome segments

ensures that only feasible moves are made, but a greater

number of possible moves are produced. Testing for a

direct path to the goal after each valid move, while

potentially resource intensive, avoids inefficient moves

away from the goal. Building valid move lists might

reduce the potentially resource-intensive nature of this

approach.

TABLE X

RESULTS FOR THE THREE SEARCHES WITHIN THE MAZE

 DPP KBPP CPP EN DGA

Route 1

Mean

Moves 198 - 201 222 205

 Completions 2 0 2 1 100

Route 2

Mean

Moves - - - - 247

 Completions 0 0 0 0 68

Route 3
Mean
Moves 152 - 138 134 139

 Completions 1 0 2 2 99

TABLE IX

RESULTS FOR MARS LANDSCAPE

 DPP KBPP CPP EN DGA

Mean Number of

Moves 1788 1247 2265 - 1158

Median 1977 1247 2108 - 1215

Std Dev 589 - 938 - 245

Avg Number of

Turns 13 10 16 - 4

Completed Runs 3 1 78 0 100

Figure 2. Simplified Binary Image of Mars Lunar

Landscape http://tinyurl.com/d9hu55z

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 1919

© 2013 ACADEMY PUBLISHER

VI. LIMITATIONS

This study demonstrates the potential usefulness of

GAs in motion planning; however, the limited context in

which the seven approaches were tested restricts the

generalizability of our findings in several ways. First,

although a series of increasingly complex grids was used

to evaluate the GAs, they do not represent all possible

terrains and obstacle distributions. Further investigation

using a variety of other layouts, including more real-

world environments, would provide greater assurance as

to the external validity of the results reported here.

Second, the crossover and mutation settings in the GAs

were held constant across methods and trials. Different

settings could produce quite different outcomes. Third,

these experiments used a point robot in a two-

dimensional environment. Tests using an actual mobile

robot are needed to confirm the validity of our

experimental results.

Another concern is the internal validity of the

experiments, i.e., the extent to which differences in the

observed outcomes are in fact a result of the methods

(chromosome structure and/or fitness functions) under

test. In studies such as this one, internal validity could be

affected by the selection of outcome measures or

statistical analysis techniques [43]. Reliability was

assessed based on the number of times a given approach

found an obstacle free route; efficiency was assessed in

terms of the number of moves needed to follow that route

from start to goal. Similar investigations using other

performance measures, (e.g., time or resource utilization)

could lead to different conclusions as to the best fitness

function for path planning. In addition, limitations were

placed on the GAs to simulate the time and processing

constraints that impinge on path planning in real-world

applications. Additional experiments that vary the

generational limit or the crossover and mutation rates

would provide greater assurance of the internal validity

of these findings.

The statistical analyses were performed using standard

analysis of variance (ANOVA), which assumes that the

population means are normally distributed. In most of the

trials reported above, the distribution is heavily skewed.

Although skewness can make it difficult to detect true

differences in the population means using one-way

ANOVA, in the majority of the trials, the large number of

data points and constant sample sizes would offset this

shortcoming. Furthermore, ANOVA is considered robust

with respect to both validity and efficiency, even when

the underlying distribution of means is non-normal [42].

VII. CONCLUSIONS AND DIRECTIONS FOR FUTURE

RESEARCH

The results reported here were designed to assess a

number of different GA approaches to path planning for

mobile robots. Initially seven approaches were compared

to one another. Then the best performers, the node

sequence approaches, were tested in a more complex

search space. The results suggest that GAs can be quite

useful path planning tool for mobile robots, but the

design of the fitness function will have an impact on the

results, affecting both reliability and efficiency. On the

smallest grid, most approaches performed reasonably

well but, when the size of the grid was increased, the

node sequence techniques outperformed the monotonic

methods. In the most difficult task environments – the

Mars landscape and a complex maze -- only the dual goal

approach (DGA) had a consistently high success rate. A

thorough evaluation of the components of the DGA

fitness function would need to be performed in order to

determine whether its success is a result of a single

component, such as the fixed length chromosome, or the

combination of components.

Currently the DGA approach is being used in a support

capacity in our lab for a mapping mobile robot. It is used

during the mapping process to generate an efficient

backtracking route when the robot has encountered a

dead-end or fully investigated a particular area. This

technique could also be used to map routes between

cooperating robots on search and rescue exercises, for

example, should one robot need assistance. It is also

possible for robots to work in parallel to generate the

route.

This study provides a starting point for further

empirical research focusing on path planning using GAs.

Possible directions for future research include replicating

this study in a real-world environment, amending the GA

to work with multiple degrees of freedom, looking more

TABLE XI

SUMMARY OF RESULTS

16x16 Grid AMP, and the node sequence
approaches performed equally well for

this small grid.

4 - 100x100 Grids
The node sequence approaches
performed significantly better than the

monotonic approaches.

Mars Landscape DGA significantly outperformed all

other approaches

Maze DGA significantly outperformed all

other approaches

Figure 3. Maze-like environment - numbers represent the

three start and goal positions examined.

1920 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

closely at the operators of the GA to determine whether it

can be made more efficient, or comparison to non-GA-

based path planning techniques.

APPENDIX A SAMPLE GRIDS

REFERENCES

[1] H. Zhang, Path planning methods of mobile robot based on

soft computing technique, Advanced Materials

Research,216 (2011) 677-680.

[2] G. Nagib and W. Gharieb, Path planning for a mobile

robot using genetic algorithms, In Proceedings of the 2004

International Conference on Electrical , Electronic and

Computer Engineering, Cairo, Egypt, (2004).

[3] J-C. Latombe, Robot Motion Planning, first ed., Klewer

Academic, (1991).

[4] D. Whitley, A genetic algorithm tutorial. Statistics and

Computing, 4 (1994), 65-85.

[5] M. Srinivas and, L.M. Patnaik, Genetic algorithms: A

survey, IEEE Computer, 27 (1994), 17-26.

[6] J-W Chung, S-M. Oh, I-C Choi, A hybrid genetic

algorithm for train sequencing in the Korean railway,

OMEGA, 37 (2009) 555-565.

[7] A. Baresel, H. Sthamer, and M. Schmidt, Fitness function

design to improve evolutionary structural testing, in

Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2002). Morgan Kaufmann: New

York, (2002), 1329-1336.

[8] D. Gallardo. and O. Colomina, A genetic algorithm for

robot motion planning, in Proceedings of the Eleventh

International Conference on Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems,

Castellos, Spain, (1998), 115 - 121.

[9] M. Gerke, Genetic path planning for mobile robots, in

Proceedings of The 1999 American Control Conference,

San Diego, CA, (1999), 2424-2429.

[10] C. Hocaoglu and A.C. Sanderson, Planning multiple paths

with evolutionary speciation, IEEE Transactions on

Evolutionary Computation, 5:3 (2001), 169 - 191.

[11] Y.K. Hwang and N. Ahuja, Gross motion planning—a

survey, ACM Computing Surveys, vol. 24:3 (1992), 219-

291.

[12] S. Liu, Y. Tian, and J. Liu, Multi mobile robot path

planning based on genetic algorithm, In Proceedings of the

5th World Congress on Intelligent Control and

Automation, Hangzhou, P.R. China, (2004).

[13] J. Tu. and S. Yang, Genetic algorithm based path planning

for a mobile robot, In Proceedings of IEEE International

Conference on Robotics and Automation, Taiwan, (2003).

[14] M. Wang and T. Wu, Cooperative co-evolution based

distributed path planning of multiple robots. Journal of

Zhejiang University SCIENCE, 6A:7 (2005), 697-706.

[15] J. Xiao, Z. Michalewicz, Z. Lixin, and K. Trojanowski,

Adaptive evolutionary planner/navigator for mobile robots,

IEEE Transactions on Evolutionary Computation, 1:1,

(1997), 18-28.

[16] C. Zheng, L. Li, F. Xu, F, Sun, and M. Ding, Evolutionary

route planner for unmanned air vehicles, IEEE

Transactions on Robotics and Automation, 21:4, (2005),

609-620.

[17] O. Castillo, L. Trujillo, P. Melin, Multiple objective

genetic algorithms for path-planning optimization in

autonomous mobile robots, Soft Computing – A Fusion of

Foundations, Methodologies and Applications, 11:2,

(2007), 269 – 279.

[18] Y. Eun and Y. Bang, Cooperative task assignment/path

planning of multiple unmanned aerial vehicles using

genetic algorithms, Journal of Aircraft, 46:1 (2009), 338.

[19] L. Chen and C. Chiang, New approach to intelligent

control systems with self-exploring process, IEEE

Transactions on Systems, Man and Cybernetics, Part B,

33:1, (2003), 56- 66.

[20] N. Sadati. and J. Taheri, Genetic algorithm in robot path

planning problem in crisp and fuzzified environments, In

proceedings of IEEE International Conference on

Industrial Technology (ICIT) , Bangkok Thailand, (2002).

[21] H.C. Chang,, Liu, J-S, High-quality path planning for

autonomous mobile robots with n3-splines and parallel

genetic algorithms’ IEEE International Conference on

Robotics and Biometrics, (2009), 1671-1677.

[22] C. Zeng, Quing Zhang, Z. Wei, GA-Based global path

planning for mobile robot employing A* algorithm,

Journal of Computers, Vol 7, No 2 (2012), 470-474.

[23] L.S. Sauter, M.S. Gottlieb, K.C. Jones, V.N. Dodson, and

K.M. Rohrer, Job and health implications of VDT use:

initial results of the Wisconsin-NIOSH study,

Communications of the ACM, 26:4, (1983), 284-294.

[24] H. Seraji and A. Howard, Behavior-based robot

navigation on challenging terrain: A fuzzy logic approach,

IEEE Transactions on Robotics and Automation,18:3

(2002), 308-321.

[25] X. Luo and W. Wei, A new immune genetic algorithm and

its application in redundant manipulator path planning,

Journal of Robotic Systems, 21:3, (2004), 141-151.

[26] C. Wang, Y. C. Soh, H. Wang, and H. Wang , A

hierarchical genetic algorithm for path planning in a static

environment with obstacles, Canadian Conference on

Electrical and Computer Engineering (CCECE 2002),

Niagara Falls, NY, (2002), 1652-1657.

[27] H. Yu, A.S. Wu, K. Lin, and G. A. Schiavone, Adaptation

of length in a nonstationary environment, In Proceedings

of the Genetic and Evolutionary Computation Conference,

(2003), 1541-1553.

[28] K. Sugihara and J. Smith, Genetic algorithms for adaptive

motion planning of an autonomous mobile robot, In

Proceedings 1997 IEEE International Symposium on

Computational Intelligence in Robotics and Automation

(CIRA'97), (1997), 138-143.

JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013 1921

© 2013 ACADEMY PUBLISHER

[29] P. McMinn, Search-based software test data generation: A

survey, Software Testing, Verification and Reliability,

14(2004), 105-156, 2004.

[30] C.F. Lima, K. Sastry, D.E. Goldberg, and F.G. Lobo,

Combining competent crossover and mutation operators: A

probabilistic model building approach, In Proceedings of

the 2005 Conference on Genetic and Evolutionary

Computation, H. Beyer, ed., Washington, DC, (2005), 735-

742.

[31] A. Elshamli., H. Abdullah, and S. Areibi, Genetic

algorithm for dynamic path planning, Canadian

Conference on Electrical and Computer Engineering

(CCECE 2004), Niagara Falls, Canada, (2004), 677-680.

[32] Y. Hu and S.X. Yang, A knowledge based genetic

algorithm for path planning of a mobile robot, in

Proceedings of the 2004 IEEE International Conference on

Robotics and Automation, New Orleans, LA, (2004),

4350-4355.

[33] M. Gombosi, Evolution of path finding, In proceedings of

the 23rd International Conference Information Technology

Interfaces (ITI 2001), Pula, Croatia, (2001).

[34] T. Geisler and T. Manikas, Autonomous robot navigation

system using a novel value encoded genetic algorithm, in

Proceedings of the 45th IEEE International Midwest

Symposium on Circuits and Systems, Tulsa, OK, (2002).

[35] K. Sedighi., K. Ashenayi, and T. Manikas, Autonomous

local path planning for a mobile robot using a genetic

algorithm, in Proceedings of the 2004 IEEE Congress on

Evolutionary Computation, Portland, OR, (2004).

[36] K. Sedighi, T. Manikas, K. Ashenayi, R. Wainwright, A

genetic algorithm for autonomous navigation using

variable-monotone paths, International Journal of Robotics

and Automation, 24 (2009).

[37] A. Agogino, K. Tumer, and R. Miikkulainen, Efficient

credit assignment through evaluation function

decomposition, In Proceedings of the 2005 Conference on

Genetic and Evolutionary Computation, H. Beyer, Ed.,

Washington DC, USA,(2005), 1309-1316.

[38] V. Ayala-Ramirez, A. Perez-Garcia, F.J. Montecillo-

Puente, and R.E. Sachez-Yanez, Path planning using

genetic algorithms for mini-robotic tasks, In Proceedings

of the 2004 IEEE International Conference on Systems,

Man and Cybernetics, The Hague, The Netherlands,

(2004), 3746 – 3750.

[39] L. Davis, Ed., Handbook of Genetic Algorithms, Van

Nostrand Reinhold, New York:, (1991).

[40] Z. Michalewicz, Genetic Algorithms + Data Structures =

Evolution Programs, third ed., Springer-Verlag, New

York, (1991).

[41] A. Watkins and E.M. Hufnagel, Evolutionary test data

generation: a comparison of fitness functions, Software -

Practice and Experience, 36(2006), 95-106.

[42] S. Huck, Reading Statistics and Research, 4th Ed., Allyn &

Bacon, Boston, (2003).

[43] D. Binkley, M. Harman, Analysis and visualization of

predicate dependence on formal parameters and global

variables, IEEE Transactions on Software Engineering,

30:10 (2004), 1-21.

Alison Watkins earned a Ph.D. in Computer and Information

Systems from the University of Plymouth, United Kingdom in

1996 and an M.Sc. in Intelligent Systems from the same

institution in 1992.

She is an Associate Professor of Information Systems at the

University of South Florida St. Petersburg, Florida.

1922 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER

