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Abstract—Previous research suggests that genetic 

algorithms (GAs) offer a promising solution to path 

planning for mobile robots.  We examine six simple GAs 

used in prior studies, comparing them to a new node 

sequence approach that includes a two-step fitness function.  

Through a series of repeated trials using a simple 16x16 

grid, a 100x100 grid, a 600x600 Mars landscape, and a 

complex maze-like environment, we compare the 

chromosome structures and fitness functions of these seven 

methods.  The results of our empirical testing indicate that 

the proposed dual goal approach, which uses a fixed length 

chromosome structure, outperformed both monotonic and 

other node sequence approaches, consistently finding a 

feasible path in even the most challenging of these 

environments. 

 

Index Terms—artificial intelligence, routing, genetic 

algorithms, robotics. 

 

I.  INTRODUCTION 

Autonomous mobile robots, which have the ability to 

navigate without direct human control, have potential 

value in a wide variety of settings, including factories, 

warehouses, mining, construction, healthcare, and space 

exploration. To operate in natural settings such as these, 

however, robots must be able to map the environment, 

and plan their path of movement to minimize distance, 

time, and other performance objectives, while avoiding 

obstacles [1]. Thus, path planning is an area of research 

that has garnered considerable attention in recent years. 

Finding an optimal path is typically a computationally 

intensive task that is necessary to goal achievement, but 

does not fulfill the robot's primary goal. Because the 

robot's processing capabilities are limited, researchers 

have sought to develop efficient path planning algorithms 

that conserve resources and quickly find a clear path. 

Evolutionary search techniques such as genetic 

algorithms (GAs) are especially well-suited to this task 

because they are robust, relatively easy to apply, and 

capable of finding the global optimum via a search of the 

entire space [2]. Key to their success are two design 

issues -- the construction of the chromosomes, which 

capture path information, and the specification of the 

fitness function used to evaluate them. 

Prior research has described successful approaches to 

the path planning problem [3] and a number of GA-based 

approaches to path planning under various scenarios; 

however, their relative effectiveness has not been 

empirically assessed. As a result, no guidance or 

recommendation as to the most efficient GA-Based 

approach has emerged. To establish a baseline for 

assessing more complex techniques and scenarios, we 

evaluate seven GA-based planning approaches that use a 

simple GA, working in 2D, for a single robot with a 

single goal. Through repeated trials using a 16x16 grid, a 

100x100 grid, a 600x600 Mars landscape image, and a 

more complex maze-like environment, we conduct 

statistical comparisons, demonstrating that a fixed 

chromosome design coupled with a two-step fitness 

function that does not accept infeasible paths may be the 

most efficient and effective technique for path planning 

in this scenario.  

II.  GENETIC ALGORITHMS FOR PATH PLANNING 

Genetic algorithms begin with a population of 

chromosomes representing random solutions to a 

particular search problem. Each chromosome or solution 

is first tested and the results are evaluated by a fitness 

function to determine how close it came to achieving the 

search objective. Based on the resulting fitness values, 

the chromosomes are then subjected to genetic operations 

to form a new population of potential solutions. In simple 

GAs, diversification of the chromosomes is achieved 

through a process of selection and recombination based 

on crossover and mutation. In more complex, hybrid 

GAs, other specialized operators may be added to assist 

in this process. As each new population is generated, the 

fitness values increase the likelihood that better solutions 

will survive and contribute to the evolving gene pool. 

These actions continue until a stopping condition is met -

- either a set number of generations has been created and 

evaluated or an acceptable solution has been found. (For 

a more complete introduction to genetic algorithms, see 

[4,5]). 
1
 

Like other adaptive search techniques, GAs are not 

guaranteed to find an optimal solution, but they have 

proven useful in finding very good solutions where time 

and system resources are constrained [5]. Because GAs 

are especially well-suited to problems where the search is 

 
 

____________________________________________ 
Manuscript received July 24, 2012; accepted November 19, 2012. 

This work was supported in part by the Florida Space Grant 
Consortium under Grant No. 0000029716 

 

 

1912 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.8.1912-1922



large, complex, or not well understood, they are of 

interest in path planning, where they have been used to 

generate efficient routes between two or more locations 

[6 - 17]. 

The literature also provides many examples of path 

planners that use a GA in conjunction with other 

specialized optimization algorithms, for example, neural 

networks [18,19], synthetic pheromones [20], B-Spline 

Curves [21], A* Algorithm [22], rough sets [23] and 

fuzzy logic [24]. In addition, a number of researchers 

have extended the basic GA approach, producing the 

Immune GA [25] and the Hierarchical GA [26]. Although 

these extended approaches are potentially quite powerful, 

this research focuses on evaluating the simple GA for 

point-to-point 2D path planning.  

The performance of a GA on a given search problem 

depends on a number of factors, including the size of the 

population in each generation, the genetic operators that 

are applied in the reproductive process and their values, 

the number of generations allowed, the construction of 

the chromosomes, and the fitness function used in 

evaluating them. Because many prior studies using GAs 

for path planning focus on different scenarios, varying 

two or more of these factors, it is very difficult to make 

comparisons across studies or draw conclusions as to the 

most effective techniques. We address the issue of non-

comparability via a series of experiments designed to 

evaluate the relative performance of six previously-

published GAs as well as one new one, focusing 

specifically on two issues – the construction of the 

chromosomes and the fitness functions that are used to 

assess them – while holding other GA features constant. 

A.  Chromosome Construction 

The first step in formulating a GA to solve a particular 

search problem is translating the problem into biological 

terms by encoding information in the chromosomes. In 

path planning problems, each chromosome represents a 

series of straight line segments or a sequence of nodes 

that, taken together, describe a path. Any given 

chromosome or path can be feasible, if no obstacles are 

encountered, or infeasible, if any of the intermediate 

nodes contains an obstacle that would interfere with the 

robot’s movement.  

Techniques for encoding a path vary in terms of the 

actual genotype structure, i.e., the number of variables 

used to describe each movement. Generally, simpler 

genotype structures require less processing time, while 

more complex structures provide greater flexibility in 

terms of allowable moves. Additionally, some 

approaches utilize a fixed length chromosome, while 

others use a variable length chromosome. In many of the 

fixed length approaches, the rows (or columns) of the 

grid space are represented by the gene’s position within 

the chromosome, while the column (or row) coordinates 

are stored within the genes. Thus, for an n x n grid, a 

fixed length chromosome would contain at a minimum, n 

genes. In variable length approaches, both the x and y 

coordinates are represented in some way in the individual 

genes, either explicitly or as numbered grid locations. 

Prior research suggests that fixed length representations 

are typically very efficient and, because the genes are 

specifically organized, very logical and easy to interpret 

[27]. On the other hand, variable length approaches may 

be more adaptable [27] and better suited to dynamic 

environments with many obstacles [12], but the 

traditional genetic operators must be modified to process 

them [28]. (Further issues associated with variable length 

chromosomes are discussed in later sections of this 

paper.) 

B.  Fitness Function 

After each of the chromosomes is tested, a fitness 

function is used to evaluate it, determining how close it 

comes to satisfying the search goal. How quickly a GA 

converges on an acceptable solution depends in large 

measure on the objective function used in evaluating the 

performance of each chromosome. The fitness function in 

effect guides the search, based on the knowledge and 

experience of previous chromosomes, rewarding those 

that are “better” in some respect and punishing others 

with poorer fitness values [29]. Not only can a well-

constructed fitness function improve the likelihood of 

finding a short, obstacle free path in fewer iterations but, 

when coupled with an efficiently-sized chromosome, it 

will consume fewer system resources in the process [5].  

Previous research on path planning has utilized a wide 

range of measures to assess the fitness of candidate 

solutions, including the distance between moves, the 

length of the path, collisions with solid obstacles, the 

number of turns or the smoothness of the path, etc. 

However, without empirical assessment of these 

alternative approaches, no firm conclusion can be 

reached with respect to the best fitness measures for robot 

guidance. The experiments described in the remainder of 

this paper compare the chromosome structures and fitness 

functions described in six previously published path 

planning studies as well as one new approach. Although 

several of the original demonstrations used hybridized 

GAs that incorporated domain-specific operators, these 

operators were not included in our experiments to enable 

direct comparison of the chromosome structures and 

fitness functions, without the potentially confounding 

effects of such ad hoc efficiency improvements [30].  

III.  GA-BASED PATH PLANNING APPROACHES 

A review of the literature identified six GA-based path 

planning approaches for single point mobile robots with a 

single goal as shown in Table I. In each of them, the 

tested path is allowed to travel through obstacles; 

however, they differ in terms of how such infeasible 

segments are evaluated by the fitness function. One new 

technique, the Dual Goal Approach was also included in 

these experiments. In the sections that follow, each 

approach is first described and its navigation abilities 

demonstrated using the 16x16 grid shown in Fig. 1, 

which contains 8 obstacles (shown as black squares). In 

this sample problem, the goal of each path planner is to 

develop an efficient route from the starting position is 

{1,1} (upper left corner) to the goal {16,16} (lower right 

corner) while avoiding all obstacles. Some of the 
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approaches have an additional objective which is to reach 

the goal with the fewest number of turns. The shortest 

route through this grid is 30 moves with only two turns. 

  

A.  The Monotonic Approaches 

The first two approaches listed in Table I can be 

defined as monotonic insofar as a path is represented by a 

row- or column-wise sequence of steps. For example, in 

row-wise movement the next move on the x coordinate is 

represented by the genome position and the y by the 

genome value. The advantage to this approach is that the 

length of the chromosome can be fixed, potentially 

speeding up real-time processing [28, 34, 35]. On the 

other hand, although GAs using this approach may be 

able to conquer most paths, they sometimes have 

difficulty navigating around obstacles and thus they can 

miss an optimum path [28].  

Local Path Planner (LPP) 

The local path planner, described by [35,36], was 

designed to extend earlier methods [34], using both row- 

and column-wise planning. The chromosome consists of  

TABLE II 

EXAMPLE OF PARTIAL CHROMOSOME 

FOR LOCAL PATH PLANNER (LPP) 

Position Value 

2 10 

3 8 

4 3 

5 0 

6 9 

7 11 

8 14 

9 14 

10 11 

11 1 

12 2 

13 5 

14 10 

15 8 

  

four parts: The first value is a path-flag to indicate 

whether the path should travel in a row- or column-wise 

manner. The second part gives the x,y coordinate for the 

path. For example, in the chromosome fragment shown in 

Table II, position 2 indicates both the gene number and 

the x coordinate value, while 10 is the actual value of the 

gene and represents the y coordinate on the grid. 

Therefore, the first move from the starting position {1,1} 

would be to position {2,10}. 

  The third part of the chromosome (not shown) is the 

path direction, which indicates whether travel should be 

initiated in a horizontal or vertical direction. The final 

two bits are described as path switch indicators, which 

indicate when a route should switch from a row- to 

column-wise direction. Each chromosome has the 

possibility of changing directions twice. The total length 

of the chromosome for a 16x16 grid would include 35 

values. 

LPP uses a relative fitness function where each 

chromosome is assessed based on its performance in 

relation to its peers with respect to the length of the path 

generated, the number of turns made, and the number of 

collisions. A collision occurs when a path goes through 

an obstacle. The best chromosome will have a value of 1 

in each of the three categories, indicating that it found the 

TABLE  I 
APPROACHES EXAMINED 

Citation Name Type 

Chromosome 

Length Fitness Function Measures 

Sedighi et al., 2004 

[35], 2009 [36] 
Local path planner (LPP) Monotone Fixed Turns, collisions and length of path 

Sugihara & Smith, 

1997  [28] 
Adaptive motion planner (AMP) Monotone Fixed Length of path and collisions. 

Elshamli et al., 2004 

[29] 
Dynamic path planner (DPP) 

Node 

Sequence 
Variable 

Distance between moves, smoothness of path and distance 

from obstacles. 

Hu & Yang, 2004 [32] 
Knowledge based path planner 

(KBPP) 

Node 

Sequence 
Variable Distance between moves and depth of collision 

Liu et al., 2004 [12] Connected path planner (CPP) 
Node 

Sequence 
Variable 

Number of disconnect paths (paths that hit obstacles) and 

length of valid paths. 

Gombosi, 2001 [33] Evolutionary navigator (EN) 
Node 

Sequence 
Variable 

Distance between moves, length of chromosome, number of 

infeasible parts. 

New Dual-goal approach (DGA) 
Node 
Sequence 

Fixed Distance to goal and length of path. 

Figure 1. Demonstration Grid 
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goal in the smallest number of steps, the fewest turns, and 

the least number of collisions. These values are input into 

the following equation:  

[ ] ))/(100(# TLTfLfff ofTurnsLengthcollisionspath ++= .    (1) 

where L and T are constants which have been assigned 

the values 1 and 2, respectively. When a path contains an 

obstacle, a penalty is imposed as follows: 

))/(#(*1.0
2

nsofcollisioff pathpath = .      (2) 

Although the best results were reported for search 

environments with two or fewer switching points, LPP’s 

success rate was reported to be consistently better than 

the earlier methods on which it was based. Measuring the 

performance of each chromosome relative to its peers 

helps to ensure that the best chromosomes will survive 

into the next generation.  

DistToGoaln*  (10) 

Adaptive Motion Planner (AMP) 

The adaptive motion planner [28] is another 

monotonic approach but, in this case, once a direction is 

selected, the entire route is either row-wise or column-

wise. While the technique also allows the robot to move 

diagonally, our example allows only 90 degree angle 

turns.  

The first value in this fixed length chromosome 

indicates whether travel is in a row- or column-wise 

direction. This indicator is followed by 16 2-value blocks 

where the first value indicates direction and the second 

the number of moves to make. This second value is only 

used if the move is on the same monotonic plane. For 

example, the partial chromosome in Table III represents 

the first 5 moves along a path, where the first value (0) 

represents a row-wise approach and the next pair of 

values (0,3)  indicates the direction of movement and 

number of moves. If traveling row-wise and the first 

value is 0, the movement is horizontal to column 3 and 

then down one. The pair of values in the third position of 

the chromosome (1,x) indicate a one-position vertical 

move; in this case, because the direction of travel has 

changed, the second value is ignored. To facilitate 

obstacle avoidance, a slight modification has been made 

to the original in this study, allowing the robot to traverse 

both left and right along an axis. For example, when 

traveling to row 2, the column coordinate is read as 3, 

whereas in the original, the movement would have been 

three steps in the positive horizontal direction. See [28] 

for a fuller explanation. 

For a path that avoids obstacles, the fitness calculation 

is as follows:   

( ) pathLengthwf path −+=
2

max1 ;       (3) 

 

where the constant wmax is a weight applied to all solid 

objects.  This constant was set to 4 in the original paper.  

 
TABLE III 

EXAMPLE OF PARTIAL CHROMOSOME  

FOR ADAPTIVE MOTION PLANNER (AMP) 

Position Value 

R/C 0 

2 0 

3 

3 1 

x 

4 1 

x 

5 0 

7 

6 0 

10 

7 0 

11 

The key advantage of this approach is that no specific 

operators are required to process the fixed length 

chromosomes. The initial study indicated that this 

technique is adaptable to changing environments. 

B.  Node Sequence Approaches 

Node sequence approaches differ from the monotonic 

techniques in that the values in the chromosomes 

represent both the x and y coordinates, and each move 

can traverse multiple rows and/or columns. The only 

limit placed on the selected coordinates is that they must 

not contain obstacles, although a path between two 

coordinates may contain obstacles. The chromosome 

does not contain information on the direction of travel; 

therefore, each single step is first tested horizontally and, 

if unsuccessful (due to an obstacle), a vertical move is 

tried. Some of the approaches also use problem-specific 

operators such as repair and deletion operators to fix 

infeasible nodes [32, 33]. However, because our 

experiments were designed to focus solely on fitness 

functions, these special operators were not applied. This 

subject is revisited in our discussion. 

Dynamic Path Planner (DPP) 

DPP [31] uses a variable length chromosome that can 

be anywhere in length from 2 to n*2, where each pair of 

values represents one obstacle free location on the grid. 

The fitness function evaluates individual paths based on 

their length, smoothness, and clearance or closeness to 

obstacles. Smoothness attempts to find a path that has 

few turns and is defined as the curvature at a knot or 

intermediate node [14]. The equation for calculating 

smoothness can be found in [27]. The fitness function is 

as follows: 

)()()( pclearwpsmoothwpdistwf csdpath ++=  (4) 

where wd, ws and wc represent constant weight values. 

(Although the exact values were not given in the original 

paper, the weights applied in this study were 10, 2 and 50 

respectively, to emphasize the goal of finding an 

adequate route with good clearance.)  If a generated path 

is infeasible because of obstacles, the fitness value is the 

ratio of the number of feasible to infeasible segments.  
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This approach was reportedly effective in both static 

and dynamic environments for 10 runs but the size of the 

search space was not indicated. The DPP fitness function 

takes into consideration one of the key issues in path 

planning -- that is, an optimal path must be straight as 

well as short. 

Knowledge Based Path Planner (KBPP) 

KBPP [32] uses a slightly different approach to its 

chromosome formation. Instead of including separate x 

and y coordinates to indicate moves, a single value is first 

assigned to each position in the grid. The resulting 

chromosome can vary in length from 2 to n. The reported 

technique allowed diagonal moves between positions; 

however, in this study, movement is limited to 90 degree 

turns. The fitness function is as follows: 

)(
1

cos CdF
N

t

iit ∑
=

+= β                     (5) 

where d is the Euclidean distance between two moves, 

C is a constant, and β is the coefficient denoting the depth 

of collision. Depth of collision is 0 if there are no 

collisions; otherwise, it is the number of moves from the 

current position to the closest feasible location.  

Unlike the previous technique, this method uses only 

infeasibility and distance traveled as fitness 

measurements. The addition of the depth of collision 

would allow specific genetic operators to be written to 

amend a path. However, in some real-world applications 

the size of an obstacle is unknown or as in the case of 

long wall, measurements of depth may be meaningless. 

Connected Path Planner (CPP) 

CPP [11] uses a variable length chromosome where 

the intermediate nodes are represented by x and y 

coordinates and each node entry contains a pointer to the 

next logical node in the path. To establish these links, the 

x and y coordinates of each chromosome are sorted, row 

dominant, prior to testing on the grid. The purpose of this 

procedure is to make shorter, closer moves rather than 

jumping back and forth across the grid. The size of the 

variable length chromosome ranges from 2 to n*2. The 

fitness function, which is designed to minimize infeasible 

segments and produce short chromosomes, is defined as 

follows: 

if (infeasibleSegments != 0) then                 (6) 

      fitness = 1/(infeasibles+1) 

else 

     fitness = 1+(1/chromosomeLength) 

 

The variable, infeasibleSegments, refers to the number 

of infeasible path segments. When a feasible path is 

found, the fitness value reverts to the length of the 

chromosome.  

This process places strong emphasis on short 

chromosomes, ignoring the actual length of the path. As a 

result, more longer moves through the grid may occur. 

This problem is offset by sorting the segments so that 

closer moves are made first. CPP was reportedly quite 

successful in simulations. 

Evolutionary Navigator 

EN [33] uses a variable length chromosome that is 

very similar to the DPP chromosome to represent the x 

and y coordinates. Each pair of coordinates is 

accompanied by a state variable to capture information 

about infeasible points and segments. The fitness 

function is defined as follows: 

)(*)(*)(* pinvwplengthwpdistwfitness ild ++=   (7) 

where dist  is the distance traveled, length is the length 

of the chromosome, and inv is the number of infeasible 

segments. Although the values of the three constants (w) 

were not specified in the original paper, they have been 

set to 10, 2, and 50 respectively for these experiments. 

Like CPP, EN uses the chromosome length as part of 

the fitness function but combines it with the distance 

traveled. This may give it an advantage over CPP; but, in 

contrast to DBPP, it does not take into consideration the 

smoothness of the path, i.e., the number of turns. One of 

the cited advantages of this approach is that it offers 

effective tradeoffs between near-optimality of the path 

and planning efficiency. 

Dual Goal Approach 

The proposed Dual Goal Approach (DGA) uses a fixed 

length chromosome of size (n*2). In this approach, the 

path between pairs of x,y coordinates is examined and, if 

an obstacle interferes with the path, that segment is 

ignored and the next segment is tested.  

For example, given the chromosome in Table IV, the 

first move would be from {1,1} to {10,6}; however, it is 

impossible to reach {10,6} without encountering an 

obstacle and this move is not made. The next move 

attempted is {1,1} to {11,1},  which is valid, and the 

move made. Therefore, while a chromosome may have 

many segments, the invalid segments are not used.  

Because testing invalid segments is time consuming, the 

fitness function penalizes a chromosome for invalid tests 

in an attempt to reduce their number. This approach is 

similar to the gene decomposition method proposed by 

[37]. 

After each valid move, a test is performed to determine 

whether there is a clear path from the current location to 

the goal. This avoids needless moves when the goal is 

within reach. Again, the chromosome is penalized for 

each goal check it must perform. A path is never allowed 

to travel through an obstacle and, if a path cannot find the 

goal without hitting an obstacle, it is given a low fitness 

value.   

 

 

TABLE  IV 

PARTIAL CHROMOSOME FOR DUAL GOAL 

APPROACH 

 x y  

 10 6  

 11 1  

1916 JOURNAL OF COMPUTERS, VOL. 8, NO. 8, AUGUST 2013

© 2013 ACADEMY PUBLISHER



Fitness is assessed via a 2-step process that uses three 

fitness functions: 

)/0.1(* DistToGoalt                     (8) 

If no previous chromosome has reached the goal, 

fitness is evaluated as follows to give higher fitness 

values to those that came closest to reaching the goal: 

where t is the number of successful moves made for this 

chromosome and DistToGoal is the Euclidean distance 

between the last valid position and the goal.  

When a chromosome reaches the goal, a flag is raised 

and the fitness of all subsequent chromosomes is 

evaluated as follows: 

a.   If the chromosome has reached the goal, the 

fitness is:  

numTrnsinvSegsgoalCheckspLen *)(/0.1(1 ++   (9) 

where pLen is the Euclidean distance from the starting 

position through each intermediary node to the goal.  

 

b. If the flag has been raised by a previous 

chromosome, but the current chromosome has not 

found the goal, the fitness is:  

DistToGoaln*                           (10) 

where n is the size of the grid. 

This method has two features that make it significantly 

different from the others. First, a move is not made that 

would travel through an infeasible location. Second, 

DGA rewards a chromosome for finding a clear path that 

comes close to the goal. Although similar to the work of 

[38], where only valid trajectories between start and goal 

are allowed, the approach presented here does not 

presume that a chromosome represents a valid path. Both 

of these features are unique among the fitness functions 

discussed here. Like the others, however, when the goal 

is found, the length of path is again used as a 

measurement of fitness. 

IV.  EXPERIMENTAL STUDIES 

The sections that follow describe a series of 

experiments designed to evaluate the performance of the 

seven approaches relative to one another. The primary 

research question is: 

Which path planning approach is best in terms of 

consistently finding a path from the starting position to 

the goal in the fewest number of moves (efficiency), 

while avoiding obstacles (reliability)? 

In each of these experiments, the value encoding 

technique was used to encode the chromosomes, because 

the monotonic techniques require the genes’ array 

positions in order to create a route from start to goal [30]. 

Value encoding is more natural than binary, and 

extensive testing indicates that it produces more 

consistent results across replications and consumes fewer 

resources in the process [38, 39]. To ensure 

comparability, the population size for all trials was set at 

60, while the crossover and mutation rates were set at 

0.80 and 0.03 respectively [41]. Selection was performed 

using the fitness-proportionate technique described by 

[27].  In the first experiment, the number of generations 

was restricted to 20; in the subsequent experiments, 

which used a much larger search space, the number of 

generations was set at 50. 

In all experiments, reliability was evaluated based on 

the number of runs the GA completed; the measure of 

efficiency was the number of moves between the starting 

position and goal. "Completed runs" refers to the number 

of times the GA succeeded in producing an obstacle-free 

path, given the generational constraints established for 

each experiment. One-way analysis of variance 

(ANOVA), an extension of the t-test that compares 

multiple group means, was used to evaluate the 

significance of the observed differences between 

approaches in each experiment. In cases where the F-test 

was significant, pairwise comparisons were made using 

the Tukey test, a statistical procedure that determines if 

the difference between two treatments is due to the 

treatments themselves or if the difference is simply due to 

random chance. The Tukey test was chosen for these 

pairwise comparisons because the family-wise error rate 

is exactly equal to the assumed value of alpha [42]. In all 

cases, the significance level was set at 0.05.  
TABLE VI 

PAIRWISE COMPARISON OF MEAN NUMBER OF MOVES FOR 

16X16 GRID. 

  AMP DPP 

KB 

PP CPP EN DGA 

LPP 25.1 23.9 24.8 24.4 23.5 25.3 

AMP   1.2 0.4 0.8 1.7 0.2 

DPP     0.9 0.5 0.4 1.4 

KBPP       0.9 1.3 0.9 

CPP         0.9 1.0 

EN           1.9 

TABLE  V 

SUMMARY RESULTS FOR THE 16X16 GRID. 

 LPP AMP DPP KBPP CPP EN DGA 

Mean Number of 

Moves 55.3 30.2 31.4 30.6 31.0 31.9 30.0 

Median 56.0 30.0 30.0 30.0 30.0 30.0 30.0 

Std Dev 10.6 0.9 4.3 3.1 3.6 6.3 0.0 

Avg. Number of Turns 17.3 7.7 4.8 4.2 4.3 4.8 2.0 

Completed Runs 51 100 100 100 100 100 100 

TABLE  VII 

RESULTS FOR 100X100 GRID 2 

 

Mean 

Moves 

Comple-

tions Turns 

LPP 2386 96 183.5 

AMP 963 100 86.8 

DPP 202 100 6.9 

KBPP 203 98 7.3 

CPP 276 100 9.9 

EN 212 100 7.4 

DGA 198 100 2.2 
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A.  Demonstration 16x16 Grid 

The first experiment used the small 16x16 grid shown 

in Fig. 1, which contains eight obstacles. A similar sized 

grid  

was used in previous research [28]. The GA was run 

100 times for each approach and each run was limited to 

20 generations regardless of whether or not an obstacle-

free path had been found. The results shown in Table V 

indicate that DGA consistently found a path in the fewest 

number of steps and turns, while LPP completed only 51 

of its 100 runs. The ANOVA results (F=223.41, 

p<0.0001) led to rejection of the null hypothesis that all 

population means are equal. 

The values in Table VI represent the absolute 

difference in the mean number of moves for each pair of 

approaches; shading indicates significant differences. To 

determine whether the observed differences are 

statistically significant, the Tukey test was performed on 

all possible pairs. In this case only LPP, the worst 

performer, was significantly different from the other six 

in terms of path length. The other monotonic approach, 

AMP, performed as well as the node sequence 

approaches; however, it produced a path with 

significantly more turns. The mean number of moves for 

DGA was approximately the same as the other six path 

lengths, but it consistently produced solutions with fewer 

turns. 

B.  Expanded 100x100 Grids 

For the next series of experiments, the size of the grid 

was increased to 100x100 and four different obstacle 

configurations were tested (see Appendix A). Each 

approach was run for 50 generations, increased over the 

previous test because of the larger grid size. The start 

position was {1,1} and the goal {100,100}. All GA 

parameters remained the same, and the mean number of 

moves was again used as the measure of efficiency. 

ANOVA was run on the results from each of these 

four trials, leading to rejection of the null hypothesis in 

each case. The monotone approaches produced 

consistently poorer results overall, as illustrated by the 

results for Grid 2, which are shown in Table VII.  

LPP and AMP averaged 1674 moves when combined 

versus an average of 218 moves for the node sequence 

approaches. This is more than likely due to the column 

and row restrictions they impose, which produce initial 

routes with considerable back and forth movement. 

Given the generational restrictions, there was simply not 

enough time for  

them to converge on a straighter path. Because 

efficiency is a primary concern in path planning and the 

monotone approaches performed no better on subsequent 

trials, their performance on the remaining three 100x100 

grids is not reported here. 

To isolate the significant differences in the node 

sequence approaches, pairwise Tukey tests were run. The 

results for three of the four 100x100 grids, shown in 

Table VIII, were remarkably consistent, with CPP 

performing significantly worse than the other node 

sequence techniques on grids 2, 3, and 4. CPP has a 

characteristic that makes it unique: it sorts the 

chromosomes prior to testing them to reduce back and 

forth motion and produce shorter, closer moves. While 

the resulting segments may be shorter, however, 

sometimes longer steps are needed to avoid obstacles, 

causing a reduction in its efficiency.  

Not evident from the results shown in Table VIII are 

the completion rates. On grids 2, 3, and 4, all node 

sequence approaches completed each of the 100 runs 

except KBPP, which finished 98, 90, and 97 runs 

respectively, making it somewhat less reliable than the 

others. On grid 5, only EN and DGA completed all 100 

runs, with DPP (97) and CPP (98) coming close. KBPP 

fell significantly behind on this grid, completing 78 of its 

runs. 

C.  Comparison of Node Sequence Approaches in a Mars 

Landscape and a Maze-like Environment 

In the third set of experiments, the five node sequence 

approaches were compared using two real-world 

scenarios, the Mars landscape and a maze-like 

environment with multiple obstacles and narrow 

passages. Fig. 2 is a simplified the binary image from 

http://science.nationalgeographic.com/science/photos/ma

rs/#/mars-blueberries_1066_600x450.jpg where only the 

larger obstacles must be avoided. Although the landscape 

image does not contain a large number of obstacles, it is 

the shape of the obstacles combined with the 600x600 

grid size that poses challenges for path planners. One 

start and end position was tested and the arrows and line 

in the figure show one possible route.  

The results shown in Table IX indicate that only two 

techniques, CPP and DGA, were consistently able to find 

TABLE  VIII 
PAIRWISE COMPARISON OF MEAN NUMBER OF MOVES FOR 100X100 

GRIDS. 

Grid 2 KBPP CPP EN DGA 

DPP 0.2 72.9 9.0 4.9 

KBPP   73.1 9.2 4.7 

CPP     63.9 77.8 

EN       13.8 

Grid 3 KBPP CPP EN DGA 

DPP 9.5 119.5 2.4 10.4 

KBPP   129.0 7.1 0.9 

CPP     122.0 130.0 

EN       8.0 

Grid 4 KBPP CPP EN DGA 

DPP 9.9 43.5 11.5  15.6 

KBPP   53.4 1. 7 5.7 

CPP     55.0 59.0 

EN       4.0 

Grid 5 KBPP CPP EN DGA 

DPP 0.2 4.2 2.7 4.9 

KBPP   3.9 2.5 5.2 

CPP     1.4 9.1 

EN       7.6 

Shading indicates significant results 
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a valid route within the 50 generation limit. DGA 

successfully completed all 100 runs, while CPP 

completed only 78. A T-test performed on the means 

shown in Table IX indicated that the two techniques were 

significantly different from one another (t=11.319, 

p<0.0001) with DGA requiring half as many moves as 

CPP. 

Because robots are often used for search and rescue 

missions, finding routes around obstacles such as walls 

and through doorways is a common experimental task in 

robotics research. The maze-like environment in Fig. 3 is 

built on a 100x100 grid and indicated by numbers are the 

three different start and goal combinations tested. The 

first search, represented by the number ‘1’, requires a 

path from the upper left at {1,1} to lower right {98,98}; 

the second is a path from {86,46} to {10,10} (upper left); 

and the third from {32,93} (middle right) to {68,65}. Of 

the three, path two should be the most difficult because 

there are many narrow passages to find along the route. 

While other paths could have been selected for these 

tests, these explore a range of path difficulty for this grid. 

Again each approach was run for 50 generations for three 

different searches. 

DGA was most successful at this task, finding a route 

for grid 1 on all 100 runs; 68 times out of 100 for grid 2; 

and 99 times for grid 3. Additionally, the average length 

of these paths and the number of turns is quite 

conservative considering the size of the grid. However, 

the results in Table X show that the remaining 

approaches were unable to find the goal more than a few 

times and KBPP never found a goal. This rather poor 

performance is likely the result of the limited number of 

generations allowed. 

Unlike the simple grids tested previously, these two 

problem types were significantly more challenging for 

the GAs. In the case of the Mars landscape, where CPP 

does fairly well relative to its peers, the sorting of the 

chromosomes prior to testing and/or the chromosome 

length-based fitness function may be better measures of 

fitness than distance traveled. However, in the maze-like 

problem, neither the distance traveled nor the 

chromosome length appears to give CPP an advantage 

when a path travels through infeasible locations. DGA 

which only uses feasible paths had much better results, 

finding a feasible path on most runs. 

V.  EXPERIMENT SUMMARY 

The results of these experiments, which are 

summarized in Table XI, are not inconsistent with one 

another. Overall, the node sequence approaches 

outperformed the monotonic approaches. However, on 

more complex grids, DGA performed significantly better 

than the other node sequence methods. The goal-oriented 

feature of DGA, which measures an infeasible path from 

its point of infeasibility to the goal, appears to encourage 

feasible paths that are close to the goal over those that are 

far away. This feature enables the GA to quickly find a 

feasible path. On the other hand, techniques that measure 

the number of infeasible segments have a significant 

problem to overcome – while an infeasible path may 

contain just one obstacle, finding a way around the 

obstacle may be very difficult because a clear route could 

be quite far away. Another feature of DGA that 

differentiates it from the other node sequence approaches 

is the fact that it uses fixed length chromosomes, 

although only part of the chromosome may actually be 

used. The selective use of the chromosome segments 

ensures that only feasible moves are made, but a greater 

number of possible moves are produced. Testing for a 

direct path to the goal after each valid move, while 

potentially resource intensive, avoids inefficient moves 

away from the goal. Building valid move lists might 

reduce the potentially resource-intensive nature of this 

approach.  

TABLE  X 

RESULTS FOR THE THREE SEARCHES WITHIN THE MAZE 

    DPP KBPP CPP EN DGA 

Route 1 

Mean 

Moves 198 - 201 222 205 

  Completions 2 0 2 1 100 

Route 2 

Mean 

Moves - - - - 247 

  Completions 0 0 0 0 68 

Route 3 
Mean 
Moves 152 - 138 134 139 

  Completions 1 0 2 2 99 

TABLE  IX 

RESULTS FOR MARS LANDSCAPE 

  DPP KBPP CPP EN DGA 

Mean Number of 

Moves 1788 1247 2265 - 1158 

Median 1977 1247 2108 - 1215 

Std Dev 589 - 938 - 245 

Avg Number of 

Turns 13 10 16 - 4 

Completed Runs 3 1 78 0 100 

Figure 2. Simplified Binary Image of Mars Lunar 

Landscape http://tinyurl.com/d9hu55z 
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VI.  LIMITATIONS 

This study demonstrates the potential usefulness of 

GAs in motion planning; however, the limited context in 

which the seven approaches were tested restricts the 

generalizability of our findings in several ways. First, 

although a series of increasingly complex grids was used 

to evaluate the GAs, they do not represent all possible 

terrains and obstacle distributions. Further investigation 

using a variety of other layouts, including more real-

world environments, would provide greater assurance as 

to the external validity of the results reported here. 

Second, the crossover and mutation settings in the GAs 

were held constant across methods and trials. Different 

settings could produce quite different outcomes. Third, 

these experiments used a point robot in a two-

dimensional environment. Tests using an actual mobile 

robot are needed to confirm the validity of our 

experimental results. 

Another concern is the internal validity of the 

experiments, i.e., the extent to which differences in the 

observed outcomes are in fact a result of the methods 

(chromosome structure and/or fitness functions) under 

test. In studies such as this one, internal validity could be 

affected by the selection of outcome measures or 

statistical analysis techniques [43]. Reliability was 

assessed based on the number of times a given approach 

found an obstacle free route; efficiency was assessed in 

terms of the number of moves needed to follow that route 

from start to goal. Similar investigations using other 

performance measures, (e.g., time or resource utilization) 

could lead to different conclusions as to the best fitness 

function for path planning. In addition, limitations were 

placed on the GAs to simulate the time and processing 

constraints that impinge on path planning in real-world 

applications. Additional experiments that vary the 

generational limit or the crossover and mutation rates 

would provide greater assurance of the internal validity 

of these findings.  

The statistical analyses were performed using standard 

analysis of variance (ANOVA), which assumes that the 

population means are normally distributed. In most of the 

trials reported above, the distribution is heavily skewed. 

Although skewness can make it difficult to detect true 

differences in the population means using one-way 

ANOVA, in the majority of the trials, the large number of 

data points and constant sample sizes would offset this 

shortcoming. Furthermore, ANOVA is considered robust 

with respect to both validity and efficiency, even when 

the underlying distribution of means is non-normal [42].  

VII.  CONCLUSIONS AND DIRECTIONS FOR FUTURE 

RESEARCH 

The results reported here were designed to assess a 

number of different GA approaches to path planning for 

mobile robots. Initially seven approaches were compared 

to one another. Then the best performers, the node 

sequence approaches, were tested in a more complex 

search space. The results suggest that GAs can be quite 

useful path planning tool for mobile robots, but the 

design of the fitness function will have an impact on the 

results, affecting both reliability and efficiency. On the 

smallest grid, most approaches performed reasonably 

well but, when the size of the grid was increased, the 

node sequence techniques outperformed the monotonic 

methods. In the most difficult task environments – the 

Mars landscape and a complex maze -- only the dual goal 

approach (DGA) had a consistently high success rate. A 

thorough evaluation of the components of the DGA 

fitness function would need to be performed in order to 

determine whether its success is a result of a single 

component, such as the fixed length chromosome, or the 

combination of components.  

Currently the DGA approach is being used in a support 

capacity in our lab for a mapping mobile robot. It is used 

during the mapping process to generate an efficient 

backtracking route when the robot has encountered a 

dead-end or fully investigated a particular area. This 

technique could also be used to map routes between 

cooperating robots on search and rescue exercises, for 

example, should one robot need assistance. It is also 

possible for robots to work in parallel to generate the 

route. 

This study provides a starting point for further 

empirical research focusing on path planning using GAs. 

Possible directions for future research include replicating 

this study in a real-world environment, amending the GA 

to work with multiple degrees of freedom, looking more 

TABLE  XI 

SUMMARY OF RESULTS 

16x16 Grid AMP, and the node sequence 
approaches performed equally well for 

this small grid. 

4  - 100x100 Grids  
The node sequence approaches 
performed significantly better than the 

monotonic approaches. 

Mars Landscape DGA significantly outperformed all 

other approaches 

Maze DGA significantly outperformed all 

other approaches 

Figure 3. Maze-like environment - numbers represent the 

three start and goal positions examined. 
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closely at the operators of the GA to determine whether it 

can be made more efficient, or comparison to non-GA-

based path planning techniques. 

APPENDIX A  SAMPLE GRIDS 
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