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Abstract—A multi-layered fault injection mode is explored 
and a multi-layered system robustness testing strategy based 
on abnormal parameter is put forward. Fault injection 
methods for three layers (API, DPI and system calls based 
on workloads) of Linux operation system are designed. And 
an integrated fault injection platform to multi-layered fault 
injection for testing robustness of operating system is 
implemented. Using the multi-layered system robustness 
testing strategy based on abnormal parameter under the 
platform, various layers of system robustness evaluation are 
achieved. Finally, the results under different layers of fault 
injection are compared and analyzed in order to evaluate 
the robustness of target system. 

 
Index Terms — abnormal parameter, fault-injection, 
multi-layered robustness testing 

I. INTRODUCTION 

System robustness is a measure of the ability to 
maintain a normal condition in the environment of 
abnormal input or pressure system [1], reflecting the 
system’s detection and processing capabilities for failures, 
external events and system maintenance events. In critical 
industrial applications, system delays and failures may 
cause incalculable damage, so under the premise to 
ensure the system's high-performance transaction 
processing capabilities, the system's robustness is 
essential. 

Robustness test is a more emerging area of research, 
the study of this topic focused on some foreign 
universities. Professor Miller of University of Wisconsin 
proposed by means of fault injection to evaluate the 
system robustness earlier. Professor Siewiorek of 
Carnegie Mellon University proposed the definition of 
robustness testing benchmark to test system handling 
error input or unexpected input in different levels, 
distinguish robustness testing and traditional performance 
testing for the first time; Professor Koopman described a 
portable testing benchmark to test the robustness of 
UNIX operating systems, and proposed an approach to 
classify the testing results and compare between different 
operating systems. Mukherjee and Siewiorek proposed a 

hierarchical approach to building robust testing 
benchmarks [2].A workload-aware reliability evaluation 
model is introduced in [3]. 

In recent years, software testing technology has 
developed rapidly, a large number of software testing 
tools are developed, the tools for system robustness 
testing are more and more, and they can automatically 
detect software failures, and find a large number of 
software failures and security risks in some large 
commercial software and open source software testing. A 
failure detection scheme in order to improve the fault 
tolerance of the service is proposed in [4]. EXPLODE 
found a number of serious problems in some common file 
storage systems; MC found nearly 500 faults and more 
than 100 security vulnerabilities in Linux, OpenBSD and 
other software; SDV found 65 faults, including 12 serious 
software failure in the test of drivers of Windows 
operating system, etc.[5]. 

Although there have been a lot of study results of fault 
injection, and many fault-injection tools have been used, 
the research of fault injection techniques for the unity of 
its own formal model is still lacking [6].Most researches 
have focused on two aspects: 

1) Improvement and innovation to the concrete 
realization of fault injection, including the 
methods injecting faults to different abstraction 
levels, simulating the real fault impact as 
accurately as possible, improving the trigger 
accuracy of fault injection, reducing overhead and 
improving accuracy of testing results, etc.; 

2) Fault injector designed for certain specific projects, 
which aims to get some interesting characteristics 
or indicators through fault injection to a specific 
system. The research limitations led to these 
specific fault injection techniques simple rather 
than system application. 

All in all, the traditional fault injection tools are often 
designed to assess a target system, limited to a specific 
architecture, and fault injection method simple, such as 
early fault injection tools FIAT, FERRARI, etc.; recent 
years, the study of fault injection began to develop to the 
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multiplex direction, many new fault-injection tools 
integrate a variety of fault-injection techniques and can 
be transplanted between multiple operating systems, such 
as integrated fault injection tool GOOFI [7], which 
combines four fault injection means, including software 
fault injection, scan chain implemented fault injection, 
through the on-chip debug interface fault injection and 
standard interface fault injection. 

Table 1 compared the characteristics of the classic 
robustness testing tools:  

TABLE 1  
PERFORMANCE COMPARISON FOR A VARIETY OF ROBUSTNESS TESTING 

TOOLS 

Tool Portability Coverage Scalability Level of 
detail 

Repeatabi
lity 

Crashme Good Low Bad Low Low 

FIAT Bad High Bad High Low 

FUZZ Good Low Good Low High 
Ballista Good High Good High High 
FINE Good High Bad High High 

 
We can see Ballista has the advantages of portability, 

high test coverage, scalability, high level of detail, and 
good repeatability. And Ballista has high degree of 
automation and tests software without source code. 
Nevertheless, Ballista only calls API functions in user 
mode frequently, causing the user-level failures, can’t 
trigger kernel-level failures, and not consider the 
workload running on the system, the robustness testing of 
the system is not entire. 

Utilizing thoughts of injecting abnormal parameters to 
the interface functions, integrating the classic abnormal 
parameter injection methods and a variety of fault 
injection strategies of dynamic and static, user mode and 
kernel mode, this paper proposed a multi-layered system 
robustness testing strategy based on abnormal parameters 
for the architecture of Linux operating system, using a 
consistent fault injection method to the different levels of 
fault injection, testing system programming interface 
robustness in user mode and kernel mode, and system 
robustness of dynamic load. As robustness testing results 
are produced from the consistent fault injection strategy, 
so that different levels of the test results have good 
comparability. 

II. MULTI-LAYERED FAULT INJECTION STRATEGIES BASED 
ON ABNORMAL PARAMETERS 

According to the process system provide service mode 
to user process, system can be divided into three levels: 
user programming interface layer, the system call layer 
and the core function layer. Thus, to provide services, the 
system robustness failures can be attributed to these three 
levels, a certain level of testing which can test system 
robustness from a certain point, but it is incomplete. The 
multi-layered system robustness testing strategy based on 
abnormal parameters integrates the classic method of 
abnormal parameters and the dynamic and static, user 
mode and kernel mode for a variety of fault injection 
strategies, uses the consistent fault injection method to 
different levels of system, and tests system robustness of 

user mode and kernel mode programming interface and 
dynamic load of the system. 

  

Figure 1 Fault injection strategy of multi-layered system robustness 
testing 

 

A. Fault Injection Strategy of User Mode and Kernel 
Mode 
1. Fault parameters generated 

The fault injection objects to test API robustness are 
API function calls in line with the POSIX standard [8]. 
The fault injection objects of DPI robustness testing are 
the commonly used DPI function calls compatible with 
some target systems [9], including C library functions of 
the core API, memory management functions, etc. 

Fault parameters generating process: 
1) fault_line = grep ($ function, list) //match the 

function name, get the function information of 
the list; 

2) if (no matching information) {the function is 
not the injecting object}; 

3) @params = split(fault_line) //get the type of 
fault parameters of the function @ params;  

4) ./paramGen @params //generate the fault 
parameters set of use cases corresponding to 
parameter type;  

5) Sequentially select a set of fault parameters 
fault_params;  

6) ./inject function fault_params //perform fault 
injection. 

2. Fault injection method  

Robustness testing of API layer through abnormal 
parameters fault injection to a single API function calls, 
the injection process is: 

1) initialize use cases of fault parameter, 
perform the corresponding functions 
generating the fault parameters, and return the 
address of the abnormal parameters;  

2) call the test functions after the first step 
generating the abnormal parameters, record 
call results when the function return value is 
not empty or structure type; 
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3) Release the resources use cases applied to 
construct parameters, construct clean 
‘environment’ for the next fault injection.

Because the fault injection of API interface is function 
call based on the user mode, only lead to user state failure, 
the thinking of abnormal parameters is used to kernel 
functions, inject fault parameters to the driver 
programming interface (DPI) compatible in target 
systems, trigger a kernel-level failure, further test the 
system robustness. 

Fault injection is implemented through system calls 
written by ourselves. Specific process is: 

1) match the kernel module file ModuleSyscall.c 
for the tested Kernel function (the module 
implements the system call SYS_kernelfunc 
to call the objective function);  

2) Compile the kernel module to get 
ModuleSyscall.o;  

3) Insert kernel module;  
4) Hook system calls;  
5) Initialize the fault parameters of the objective 

function;  
6) Pass the initialized fault parameters to the 

kernel space by executing the system call, test 
the kernel function, and return the function 
returned values to the user state;  

7) Finally, clean up the resources the 
initialization applied;  

8) Unload kernel modules. 
  

B. Fault Injection Strategy of Application Load Running 
According to system call’s functions, the fault 

injections intercepted system calls are divided into four 
categories:  

1) The system calls for file operations  
2) The system calls for process control  
3) The system calls for system signal  
4) The system calls for disk read and write  
Fault injection object on the application load is a set 

of a certain type of system calls of the four categories 
above. 
1. Fault parameters generated  

Because it is the runtime fault injection, this part of the 
fault parameters generation in addition to the method of 
abnormal parameters, also takes into account the most 
common type of fault in the actual operation: bit flip 
fault. 

The selection of abnormal parameters refer to the 
statistic results of the system robustness failure causes of 
ballista project, statistics show that six categories of 
abnormal parameters caused the highest probability of 
system robustness failure, they are as follows: illegal file 
pointer (not including the empty file pointer), an empty 
file pointer, illegal buffer pointer (excluding empty cache 
pointer), an empty cache pointer, the smallest integer 
value, the maximum integer value [10].  

Bit flip faults can be classified according to the bits 
damaged: single bit flip, two bits (compensation) flip and 

the whole word (32 bits) flip. 
By flipping can be divided into: inversion, set 0 and set 

1. 
Fault parameters can choose the Cartesian product of 

the above types, also can randomly generate 32-bit mask, 
which and the original parameter values. 
2. Runtime fault injection method 

The fault injection to the system call called in the load 
is carried out in the load running, in Linux operating 
environment, to achieve fault injection to the running 
process, we need control the running process, read and 
write the process context. This paper uses system call 
ptrace to achieve the target process tracking, set traps, 
read the context, fault injection and result monitoring. 
Ptrace can intercept and modify the user level system 
calls, using ptrace system call, a process can dynamically 
read and write memory image and register values of 
another process, including the code segment, data 
segment and stack segment; and access and modify the 
general registers and special registers.  

Runtime fault injection process is: 
1) debugger forks a child process pid = fork();  
2) The child process calls the system call 

PTRACE_TRACEME, the result is: the kernel set a 
trace bit in the child process table, requiring the parent 
process trace into debug state;  

3) The child process executes the tracked program, 
i.e. the work load. Kernel executes the system call 
exec(workload), when execution to the last, due to the 
track bit is set, sends a soft interrupt signal SIGTRAP to 
the child process; 

4) When the system call exec(workload) returns, 
check the soft interrupt signal. If the tracking bit is set in 
the process table, the child process wake up the parent 
process slept in the system call waitpid, into a tracking 
state similar to sleep state, and complete the context 
switch [11].  

Meanwhile, the parent process executes the system 
call waitpid(), wait for the wake-up by the child process. 
When the child process wake up the parent process, the 
parent process returns from waitpid(), begin to execute 
the fault injection inject_faults(), and then monitor the 
results of fault injection.

Fault injection to workload is achieved through the 
ptrace system call, the format as follows: 

int ptrace (int request, int pid, int addr, int data); 
The parameter request is an enumeration variable, its 

value determines the function of system calls, as shown 
in Table 2:  

TABLE 2  
PARAMETER FEATURES of PTRACE 

Parameter Feature 
PTRACE_TRACEME Process requires the parent process to 

track, so that the current process into debug 
state 

PTRACE_ATTACH Track user process 
PTRACE_DETACH Stop debugging the process 
PTRACE_PEEKTEXT Read a word of the user instruction space 
PTRACE_PEEKDATA Read a word of the user data space 
PTRACE_PEEKUSR Read a word of the user process data area 
PTRACE_POKETEXT Write a word of the user instruction space 
PTRACE_POKEDATA Write a word of the user data space 
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PTRACE_POKEUSR Write some units of the user process data 
area 

PTRACE_SYSCALL Track system calls, continue until return 
from the next system call 

PTRACE_CONT Set soft interrupt number to continue to 
execute child process number 

PTRACE_KILL Stop child process 
PTRACE_SINGLESTEP Set capture flag, single step process  
PTRACE_GETREGS Read register data 
PTRACE_SETREGS Write register values 

pid is the process number of the process tracked; addr 
is the read or write data’s address in the child process; 
and data is data values to write. When executing the 
system call ptrace, the kernel first test whether the 
process has a child process with a process identification 
number pid, and that the child process is in a state to be 
tracked, then track it using a global data structure, to 
transfer data between two processes, and lock the track 
data structures to prevent other tracking process 
rewriting. 
3. Runtime fault injection trigger mechanism 

Fault injection on the application load is different from 
fault injection on single function call, fault injection time 
need to be chosen, because the system call injected is not 
always the first system call of the application load, also 
can choose to skip the initialization phase of the process, 
injecting faults when the load provides services. 
Therefore, under certain circumstances, trigger the fault 
injection through the mode of fault trigger. This strategy 
offers two fault trigger modes: single-step trigger and 
time trigger.  

Single-step trigger that is trigger fault injection after 
the process executes the specified number of steps is 
implemented by the function run_step(). For the specified 
number of instructions, each instruction is executed in the 
function and keep the signal lastsig before the step to 
continue processing. 

Time Trigger that is after the program execution time 
exceeds the specified time (unit: microseconds) trigger 
fault injection. Implement by the function run_time() to 
complete the following tasks:  

1) Register a signal SIGALRM, the signal 
processing function is sig_alrm(), sigalrm() will send a 
signal SIGTRAP to the child process wordload to 
interrupt the child process.  

2) Get the current machine time, resume operation of 
the sub-process interruption caused by ptrace 
(PTRACE_TRACEME). 

3) Generate timer interrupt, the interrupt signal is 
SIGALRM, then sig_alrm() will take over the operating 
system's handling of SIGALRM, interrupt the child 
process. 

III. INTEGRATED FAULT INJECTION PLATFORM BASED ON 
MULTI-LAYERED FAULT INJECTION 

For Fault injection to API function calls, DPI calls and 
the application process, a single fault injection measure is 
not enough, we need to combine multi-level fault 
injection and multi-angle robustness testing. Based on 
multi-level fault injection strategies, the paper designs 
and implements an integrated fault-injection platform to 

complete evaluation of different levels of system 
robustness.  

  
Figure 2 Integrated fault injection platform 

 
It can be seen from Figure 2, at different levels of fault 

injection and results monitoring collection requires 
different fault injector and results monitor, fault set, fault 
trigger and injection strategies are different, but robust 
testing tools at home and abroad are basically to achieve 
a particular aspect of test, their architectures are not 
compatible, cannot construct an integrated test 
environment. The integrated fault-injection platform 
designed in this paper, whose advantage is most of the 
classical fault injection tools and robust testing tools can 
achieve compatibility in this platform through small 
changes, and jointly build an integrated robust test 
environment. In the platform, the development of robust 
testing tools implements the incremental development 
mode. 

A. Control Module  
Fault injection control module determines the fault 

injection object, generates fault parameters (fault load), 
and determines the application-oriented workloads.  

Fault injection object: i.e. the target need fault injection. 
For example, fault injection to API function calls, an API 
function call is a fault injection object; in memory fault 
injection, memset1 is a fault injection object. The fault 
injection objects in this paper have three categories: API 
functions, DPI functions and the system calls in the 
application process. 

Fault parameter generation is to generate the required 
parameters for the fault injection object. For example, for 
fault injection to the API function access, the fault 
parameters are a set of parameters {S1, CHAR, EMPTY, 
R_OK}; for the fault injection to memory fault memset1, 
the parameters are the memory address injected 
necessarily and parameter 1. 

Load library is the load needed to use in fault injection, 
the control module designates the fault injection to the 
target system in which load.  

Results collection module recycles the results of fault 
injection collected by the target system monitoring 
module and analyzes. 

B. Fault Injection Module  
Fault injection module selects fault injection method 

according to the fault injection object, generates the 
workload the control module selected, injects faults 
according to the fault parameters, and uses different 
strategies to inject faults to different levels respectively. 

Injection method selection module: select the 
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appropriate injection method for the fault injection object. 
For example, select the ballista tools to inject abnormal 
parameters for all of the API functions. The relationship 
between objects and methods is many to one, that is 
many objects may use the same injection method.  

Injection method module: corresponding to different 
fault injection tools, injection method module selected by 
the injection method selection module injects faults 
corresponding to the parameter information in the 
interface information. 

Load generation module: run the workload according 
to the type of load the control module specified. 

C. Results Monitoring Module  
Results monitoring module is actually the parent 

process executing fault injection monitors function calls 
or work load injected faults by the method of monitoring 
the child process, record the results of fault injection, and 
feedback to the control module for analysis. The fault 
injection results are divided into three categories:  

Restart: process timeout restarts after fault 
injection;  

Abort [12]: process throws an exception signal after 
fault-injection, causing the process to abort;  

Pass: after fault injection, the process ends 
normally or returns the corresponding error code.  

Fork child process first, implement fault injection, 
monitor the function call result is restart, abort or pass 
through monitoring the termination status of the child 
process [13].  

Statistical analyzing the results collected by result 
monitoring module, results analysis module performs the 
following functions: 

1) Read the result documents generated by result 
monitoring module, count the number of fault 
injection for each test function;  

2) Read the results files, count the number of failures 
in fault injection and the number of the various 
results (pass/abort/restart) occurrences after fault 
injection for each test function; 

3) Calculate the ratio of three outcomes 
(pass/abort/restart) in case of fault injection 
success for each function, and proportion of total 
failure;  

4) Calculate the average failure rate of all measured 
functions, determine an overall robustness score.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Robustness Testing Results of Application 
Programming Interface  
1. Experimental Environment  

Test environment I:  
VMware OS: Redhat6.0 i386; kernel: Linux2.2.14; 

Memory: 128M; Host OS: Windows XP; CPU: 
AMD2800 +  
Test environment II:  

VMware OS: Redhat9.0 i386; kernel: Linux2.4.20; 
Memory: 128M; Host OS: Windows XP; CPU: 
AMD2800 +  

Test environment III: 
OS: RHEL5.1 i386; kernel 2.6.18; Inspur server 

NX7140D; CPU: Intel Xeon E5405  
API package is different for different versions of the 

Linux kernel, so API robustness is different too for 
different versions of the Linux operating system. The 
operating systems in the three experimental environments 
above are based on three versions of the kernel 2.2, 2.4 
and 2.6 of Linux respectively. 
2. Experimental results and analysis 

POSIX standard API test of Redhat 6 system (Linux 
2.2.14 kernel) started from 8:00 on March 28, 2009 and 
ended at 3:30 p.m. on March 28, 2009 (to obtain the test 
results). Test 213 API functions, generate 345974 test 
cases, of which the effective implementation of test cases 
281267, each API function implemented 1320.5 effective 
test cases averagely. The test results are 1241 times to 
restart, accounting for effective test cases of 0.4412%; 
32519 times to abort, accounting for effective test cases 
of 11.5606%; 247507 times to normally pass, accounting 
for effective test cases of 87.9971%.  

 
Figure 3 Linux-2.2.14 kernel API robustness test results  

 
System API functions are divided into 15 categories, 

including file management, directory management, 
process control, process scheduling, signals, semaphores, 
terminal I/O, advanced I/O, standard library functions, 
string handling, character handling, mathematical 
functions , time functions, memory management, and 
other library functions. The function failure rate 
according to the classification above is as follows:  

 
Figure 4 Linux-2.2.14 kernel API failure rate 

 
Test 211 POSIX standard APIs of Linux 2.4.20 kernel, 

generate 365735 test cases, of which the effective 
implementation of test cases 305201, each API function 
implemented 1446.5 effective test cases averagely. The 
test results are 3255 times to restart, accounting for 
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effective test cases of 1.0663%; 46055 times to abort, 
accounting for effective test cases of 15.0898%; 255891 
times to normally pass, accounting for effective test cases 
of 83.8434%. 

 

 
Figure 5 Linux-2.4.20 kernel API robustness test results  

 
Figure 6 Linux-2.4.20 kernel API statistics of failure rate 

 
POSIX standard API test of Redhat 5EL system (kernel 

version 2.6.18) started from 18:00 on March 12, 2009 and 
ended at 15:32 on March 30, 2009 (to obtain the test 
results). Test 208 API functions, generate 370665 test 
cases, including the effective implementation of test cases 
326301, each API function implemented 1568.75 
effective test cases averagely. The test results are 5253 
times to restart, accounting for effective test cases of 
1.61%; 72434 times to abort, accounting for effective test 
cases of 22.1986%; 248614 times to normally pass, 
accounting for effective test cases of 76.1916%. 

 

 
Figure 7 Linux-2.6.18 kernel API robustness test results  

 
API robustness test results of different Linux kernel 

versions were compared, as shown in Figure 8. We found 

the probability of robustness increases with the 
improvement of the kernel version and the gradual 
powerful functionality realized. 

 
Figure 8 Test results of different Linux kernel versions 

 
By comparing failure rate of different types of 

functions (file management, directory management, 
process control, process scheduling, signals, semaphores, 
terminal I/O, advanced I/O, string handling, character 
handling, math functions, time functions, memory 
management and other library function), as shown in 
Table 3, further analyze the reason of robustness failure 
rate increasing for different kernel versions. 

 
TABLE 3  

FUNCTION ROBUSTNESS FAILURE RATE FOR DIFFERENT KERNEL 
VERSIONS (%)  

 linux2.2.14 linux2.4.20 linux2.6.18 

file management 2.3895 2.4949 5.0101 

directory management 46.8822 51.3514 66.1193 

process control 8.7339 4.7188 16.4803 

process scheduling 1.2361 0 0 

signals 7.1246 4.7901 7.545 

semaphores 32.6615 27.1955 28.7383 

terminal I/O 0.0063 0.0063 0 

advanced I/O 9.5281 19.3929 33.2777 

stdlib 13.0155 9.9452 13.8521 

string handling 38.9493 40.22 64.3342 

character handling 6.7692 74.4615 81.2308 

math functions 2.3522 2.3522 1.6529 

time functions 21.1428 19.8549 20.5587 

memory management 0 1.4493 2.8802 

others 4.9091 4.4641 5.1048 

From figure 9 can be found the increase of robustness 
failure probability was mainly due to the rapid increase of 
advanced I/O function, string handling function and 
character handling function. Typically in linux2.2 kernel, 
the robustness failure probability of fault injection to 
character handling function is only 6.7692%, while the 
failure probability of 2.4 kernel and 2.6 kernel is 
74.4615% and 81.2308% respectively. The reason is 
mainly due to robustness failure of the high version 
function implementation in the wrong argument type.  

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1887

© 2013 ACADEMY PUBLISHER



 
Figure 9 Comparison of failure rate of various types of functions for 

different Linux kernel versions  

B. Robustness Testing Results of Driver Programming 
Interface 
1. Experimental Environment  

VMware OS: Redhat9.0 i386; Kernel: Linux2.4.20; 
Memory: 128M; Host OS: Windows XP; CPU: 
AMD2800 +  
2. Experimental results and analysis 

Figure 10 shows the robustness test results of some 
commonly used DPI functions. For each function to be 
tested, count the probability of restart, abort and pass 
after injecting abnormal function parameters respectively. 

 
Figure 10 Robustness test results for DPI 

Fault injection to functions such as memcopy, 

memmove, memset, strcpy, kmem_cache_destroy will 
lead to the kernel stack fault, resulting in system crash.  

From the experimental results can be seen, robustness 
failure of DPI level is mainly due to the operation of 
string and memory. The mainly failure reason is caused 
by illegal string pointer and buffer pointer.  
 

C. System Robustness Testing Results of Fault Load  
1. Experimental Environment  

OS: RHEL5.1 i386; Kernel 2.6.18; Inspur server 
NX7140D; CPU: Intel Xeon E5405  
2. Experimental results and analysis  

Workload: DBT-5 (simulate securities company’s 
online transaction processing)  

Injection timing: Skip 1000steps, skip 1000-8000 steps 
randomly  

Fault Injection times: 100 times  
Fault Response Time: 8000 mocrosecond  
Injection object: system calls of file operations 
Figures 11 and 12 are the fault injection results for the 

parameters of one bit flip and two bits flip. 

 
Figure 11 Fault injection results of parameters of one bit flip  

 

 
Figure 12 Fault injection results of parameters of two bits flip  

Fault injection results on all types of bit flip of four 
types of system calls are shown in Table 4 to Table 7:

TABLE 4  
FAULT INJECTION RESULTS OF FILE OPERATION SYSTEM CALLS 

 1 bit  
inversion 

2 bits 
inversion 

32 bits 
inversion

1 bit  
set zero

2 bits 
set zero

32 bits 
set zero

1 bit  
set one

2 bits  
set one 

32 bits 
set one 

Mask 

Exit 13 7 13 36 34 31 42 18 17 17 
Abort 81 93 87 64 64 68 57 87 82 82 
Alarm 6 0 0 0 2 1 1 1 1 1 

 
 

TABLE 5  
FAULT INJECTION RESULTS OF DISK READ AND WRITE SYSTEM CALLS  

 1 bit  
inversion 

2 bits 
inversion 

32 bits 
inversion

1 bit  
set zero

2 bits 
set zero

32 bits 
set zero

1 bit  
set one

2 bits  
set one 

32 bits 
set one 

Mask 

Exit 64 70 75 67 81 67 62 77 70 57 
Abort 34 27 25 32 18 32 37 22 30 41 
Alarm 2 3 0 1 1 1 1 1 0 2 
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TABLE 6  
FAULT INJECTION RESULTS OF PROCESS CONTROL SYSTEM CALLS  

 1 bit  
inversion 

2 bits 
inversion 

32 bits 
inversion

1 bit  
set zero

2 bits 
set zero

32 bits 
set zero

1 bit  
set one

2 bits  
set one 

32 bits 
set one 

Mask 

Exit 34 6 0 100 100 100 20 2 0 100 
Abort 13 34 25 0 0 0 28 35 29 0 
Alarm 53 60 75 0 0 0 52 63 71 0 

 
TABLE 7  

FAULT INJECTION RESULTS OF SYSTEM SIGNAL SYSTEM CALLS 
 1 bit  

inversion 
2 bits 
inversion 

32 bits 
inversion

1 bit  
set zero

2 bits 
set zero

32 bits 
set zero

1 bit  
set one

2 bits  
set one 

32 bits 
set one 

Mask 

Exit 0 0 0 0 0 0 0 0 0 0 
Abort 51 52 44 40 46 52 44 40 53 46 
Alarm 49 48 56 60 54 48 56 60 47 54 

 
 

The traditional fault injection method is to use ptrace to 
inject faults into registers and memory to simulate 
hardware failures. Table 8 is the fault injection results of 
the traditional fault injection method:  

TABLE 8  
FAULT INJECTION RESULTS OF THE TRADITIONAL METHOD 

 IP  
1 bit 
flip 

Status 
register 
1 bit flip 

General 
register 
1 bit flip 

Memory(code/data 
segment) flip 

Exit 15 12 74 100 
Abort 81 0 26 0 
Alarm 4 88 0 0 

 
From the above results, we can see, the traditional fault 

injection tool for evaluating the robustness of the system 
has significant limitations, such as memory fault injection, 
judging from the robustness of the system are all normal 
exits and returns an error code. Using the method of 
abnormal parameters fault injection to the interface of 
system calls proposed in this paper compared with the 
traditional fault injection, can effectively lead to failure of 
the system robustness, and different types of system 
functionality can be classified to evaluate ,which help to 
assess robustness.  

Calculate the system failure rate of this workload:  
1) Calculate the average system failure rate after 

fault injection to the file operation system calls, 
disk read and write system calls, the 
process-related system calls and signal-related 
system calls under this workload: were 76.5%, 
29.8% , 16.4% and 46.8% respectively.  

2) Under normal circumstances of the workload, 
count various types of system calls used, results 
are as follows: system calls related to file 
operations are 320 times; system calls related to 
disk read and write are 410 times; system calls 
related to process control are 155 times; and 
system calls related to system signals are 747 
times.  

3) According to the proportion of various types of 
system calls, calculate the weights respectively: 
0.20, 0.25, 0.10 and 0.45.  

4) Calculate the system failure rate under this load:  

4545.0
2106.00164.00745.0153.0

468.0*45.0164.0*10.0298.0*25.0765.0*20.0
1

=
+++=

+++=

=∑
=

N

i i

i
i t

fwF
 

That is the system failure rate under this load is 
0.4545. 

 
 
 

D. Comparison and Analysis of Different Levels of System 
Robustness Test Results 
1. Robustness comparison and analysis of API layer and 
DPI layer 

Shown in Figure 13, the failure rate caused by DPI 
fault injection is greater than API, because the protection 
for functions of system kernel state decreases compared 
to the application functions [14,15], and therefore the 
robustness problems detected increase.  

 
Figure 13 Comparison of DPI-API failure rate  

 
In the API fault injection experiments, the case of 

system crash does not occur, and in the DPI fault 
injection experiments, five functions lead to system crash, 
because the kernel stack fault. Because fault injection to 
the kernel function can trigger a kernel state of failure, 
the seriousness of the failure sometimes is greater than 
the failure caused by the user state.  

 
2. Robustness test results comparison and analysis of 
static function call and dynamic load 

The robustness failure generated by fault injection to 
four different types of system call functions and the 
corresponding API function calls are shown in Figure 14:  
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Figure 14 System failure rate comparison for run-time system call and 

static API functions after fault injection 
 

Visibly, the probability of system failure caused by 
dynamic fault load is mostly greater than system failure 
caused by fault injection to the single interface. 
Especially for fault injection to the system calls 
associated with system signals in the load, the system 
failure probability is much larger than the corresponding 
single API call. There are two reasons:  

1) System call interface is the kernel mode function, 
system failures injecting abnormal parameters in 
kernel mode are more than in user mode. 

2) The spread of the fault caused by abnormal 
parameters of the function interface in the 
application will further lead to system failure, and 
which is closely related to the robustness of the 
application itself.  

V. CONCLUSION  

By comparing the classic robustness testing tools, this 
paper proposed the multi-level robustness testing strategy 
based on abnormal parameters for the architecture of 
Linux operating system, using the consistent fault 
injection method to inject faults to dynamic and static, 
user mode and kernel mode, to test the system robustness 
of the programming interface of user mode and kernel 
mode and the system robustness of dynamic load. The 
integrated fault injection platform implemented 
multi-level fault injection based on abnormal parameters 
and the incremental development of robustness testing 
tools. Using the integrated fault injection platform, test 
robustness of different levels for different versions of 
Linux systems, compare and analyze the relationship of 
the system failure rate between the robustness of static 
interface and dynamic load running. As robustness test 
results are generated from the consistent fault injection 
strategy, the test results of different levels have good 
comparability.  

Due to the protection mechanism for system calls of 
high version of the kernel different, fault injection on DPI 
layer lacks portability, currently only implemented fault 
injection in the kernel of linux2.4. The fault injection 
strategy on the application load also requires further 
improvement, for a fuller evaluation of the system's 
robustness.  
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