
QoS-oriented Web Service Framework by Mixed
Programming Techniques

Changsong Liu, Dongbo Liu

School of Computer and Communication, Hunan Institute of Engineering, Xiangtan, 411104, China
Email: liuchangsong74@126.com

Abstract—Web service based applications have been widely
applied in various kinds of domains with the development of
service-oriented architecture. However, service selection
and composition under user’s QoS constraints still remains
to be a challenging issue because of the changing of user’s
requirements. In this work, we present a QoS-oriented web
service framework and its implementation, which is aiming
to optimize the performance of service-based application
with constraints to user’s QoS requirements. In this
framework, the optimum mapping between abstract web
services and application’s processes is implemented through
mixed programming technique. In addition, an embedded
QoS negotiation mechanism is also implemented in this
framework for refining the execution of service-based
application at runtime. Massive experiments based on real
workloads are performed to evaluate the effectiveness of the
proposed framework in both static environment and
dynamical environment. The results indicate that the
proposed framework and its service selection/composition
algorithm can significantly improve the user’s QoS
satisfaction in terms of five most-mentioned QoS
parameters.

Index Terms—service selection, mixed programming,
workflow, heterogeneous systems

I. INTRODUCTION

Conventionally, web services are defined as
autonomous components that can be located, advertised,
and queried by standard protocols such as XML [1, 2].
With the development of network-based service
computing, web service systems are creating many
opportunities for various domains to cooperate with their
potential consumers or business partners. In service-based
platforms, complex applications are generally formulized
as processes which invoking distributed services and
compositing them in dynamical manner [3]. As a set of
functionally equivalent services may implement the same
functionality, more importantly, applications are required
to discriminate those candidates based on their quality of
service (QoS) requirements. So, selecting the most
suitable set of services available at execution time and
compositing them with desirable performance and costs
plays a key role in the web service systems [4, 5].

In typical web service systems, service selection and
composition is often implemented by mapping the
running activities to the best set of candidate services [6].
Unfortunately, such approaches can only guarantee the
local QoS constraints such as the cost of a service [7]. To

overcome these shortcomings, researchers have proposed
many global-optimization techniques with aiming to
satisfying the performance constraints as well as
application’s preferences [8,9,13,15]. Nevertheless, such
approaches will result in significantly increasing in terms
of computational complexity compared with those local
solutions. At the same time, the performance of global
optimization approaches tend to be unpredictable because
the workloads on the target system are often fluctuating
and unpredictable in runtime [16, 17]. For example, when
a business application is required to run for long period,
selected web services might adjust their QoS attributes
even in the duration of execution, some of them even can
be un-available any more. Therefore, dynamic and
adaptive technique for service selection and composition
is required in such scenarios, which requires taking into
account the runtime changes in terms of service’s QoS
attributes.

In this work, we proposed an integrated framework
which can optimize the performance of service-based
application with constraints to user’s QoS requirements.
At the same time, the proposed framework also allows
the system flexibly deploy the underlying services with
constraints to resource provider’s expectation. In our
framework, the optimum mapping between abstract web
services and application’s processes is implemented
through programming technique [18]. In addition, QoS
negotiation functionality is also implemented for
providing better service through Service-Level-
Agreement (SLA) negotiation.

II. RELATED WORK

Conventionally, service selection and composition can
be categorized into 3 classes: automatic, semi-automatic,
and manual. As to the manual approaches, the process of
service composition is described by using the standard
service description language such as BPEL4WS [2], and
this procedure often requires that the designers have the
knowledge of the target domain. Clearly, it is a labor-
intensive and error-prone job, which is not appropriate for
the large-scale applications. In the studies of [6,12,19],
some semi-automatic approaches have been presented
with aiming to deal with the problems of manual
approaches.

Multi-agent based service selection and composition is
one of the popular techniques and has be widely studied
in many previous studies. In [15], an agent-based service
composition model is designed and implemented for

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1763

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.7.1763-1770

automatic service selection and composition. To support
adaptive service computing, a context-oriented service
composition approach is presented in [14], which is
incorporated with a adaptive mechanism for dynamically
adjusting the composition parameter when the execution
context is changed. In [22], an agent-based workflow
model is presented with aiming to supporting
collaboration for multiple enterprises. In this model, a set
of software agents are designed for taking participant in
the conversations with other peers so as to obtain global
agreements in terms of user’s performance requirements
as well the system’s performance constraints.

Recently, dynamic Web service composition has
attracted many attentions by many researchers, including
planning-based service composition and process-based
composition optimization [8,16,19]. The former
approaches often investigate the problem of service
selection by translating the desirable performance into
certain utility functions and then solve these problems
through heuristic policies. The later approaches tend to
solve the problem from the perspective of specific
domains, which makes them able to obtain optimal
performance for specific applications.

In many practical web systems, semantic-based web
has been widely deployed because of its automatic and
flexible features. For instance, the service composition
process can be automatically programmed by a domain-
level specification, which only contains the required
functionality of the given domain. For example, study in
[13] presented an integrated service framework, which
uses the assertions of XSAL languages to specify the
application’s objectives and QoS requirements. Similarly,
the study of [8] proposed a semantic service planning
technique, which also constructs large-scale web
application by applying contingency planning technique.
Nevertheless, the semantic-based approaches often have
very high complexity in terms time and space. So, many
of these approaches resort to approximate technique for
obtain the suboptimal solution by certain heuristic-based
techniques.

In order to execute large-scale BPEL processes based
applications in high-performance distributed systems, i.e.
grid or cloud, workflow technique has been widely
investigated for implementing service composition [24].
However, workflow applications are often not enable to
perform QoS negotiation as well SLA mechanism on per-
service basis. Therefore, it can only be applied in relative
closed systems, instead of Internet-oriented open systems.
In our paper, we propose an optimization technique that
is applicable to the abovementioned application with
fined-grained QoS negotiation mechanism.

III. THE FRAMEWORK AND DESCRIPTIONS

The architectural framework of a typical service-based
system is presented in Fig. 1. In such a framework, there
are three critical components including web services,
service broker, and service compositor. The broker is
designed for allowing providers to register their services
specifications onto the UDDI registry, in which each
service is described in terms of their functionality,

capability, performance, and other QoS metrics. The
service compositor is designed for application’s service
selection and execution engine. When a service-based
application instance is initiated, the execution planner
interacts with the service broker for retrieving candidate
services, then it generates an abstract execution plan for
upper-level applications. When invoking the concrete
services, the execution engine also monitors the
component services in case the availability and
performance of these services violates the execution plan.

Fig. 1. Framework of Web Service Systems

Fig. 2. Framework of Integrated Web Service Platform

In this work, we present a novel web service
framework which is shown in Fig. 2. In our integrated
web service framework, applications firstly submit their
specifications through the portal component, which will
translate the application-level descriptions into
middleware-level requirements containing service’s
abstract interfaces and application’s QoS constraints.
There is another user-level component called
Performance Monitor Utility, which is designed to
monitor the application’s runtime performance including
responsive time, executing progress, web service status
and etc.

The mapper component is designed for selecting the
most suitable services for user’s applications based on the
QoS constraints as shown in the next sections. It is
noteworthy that application’s QoS constraints are
different in various scenarios. In this paper, we mainly
focus on the five most mentioned QoS measurements
including availability, execution time, reliability,
trustiness and costs. As to the broker component, it is
designed for invoking services that selected by the

Web Service Portal

Abstract Service
Invoker

Mapper Service

Service Broker

QoS Negotiator

Performance Monitor Utility

Workflow Engine

Concrete Service Enactor

Web Service Web Service Web Service……

Resource Profiling Service

Web Service Web Service Web Service

…

Internet Infrastructure

Service
Broker

Service
Compositor

User’s
Applications

Service Execution Engine

UDDIe Registry
Execution
Schema

Service
Planning

1764 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

mapper component. Also, it is responsible for executing
QoS negotiation by interacting with the negotiator
component. Unlike the existing web service systems
which generally evaluating the performance metrics by
static information, we designed performance profiling
subsystem in our framework, which periodically collects
the runtime performance logs including both
applications’ execution and the services’ dynamic
attributes. Based on these runtime logs, our framework
provide an adaptive mechanism to provide better QoS
performance for user’s applications. The component
called abstract service invoker is designed for calling the
abstract service corresponding to application’s
requirements through the mapper component. After the
service schema is decided, the component called concrete
service enactor is responsible for enabling the schema by
interacting with the underlying services. The workflow
engine is designed for managing the execution for
complex applications which is designed in the form of
precedent-constrained task graph.

IV. SEVICE SELECTION AND COMPOSITION ALGORITHM

As mentioned previously, when there are multiple
services which provides identical or similar functionality.
Therefore, it is the responsibility of users to discriminate
these alternatives based on certain QoS constraints.
Typically, the concept of QoS measurement involves a
large set of non-functional attributes, such as responsive
time, throughput, availability, execution time, reliability,
security, trustiness, costs and so on. These QoS properties
may apply to standalone web services, composition of
multiple services, or the whole system. To formulate the
QoS properties of individual services, we first design the
QoS model which mainly concentrates on the
requirements from the perspective of upper-level users. In
this QoS model, multiple dimensions are taken into
account for service composition in the next step.

Based on the above QoS model, we design the web
service execution model, which is aiming to generate
concrete service execution schema under QoS constraints
of users. When building a complex service-based
application, a large number of services will be involved
for successfully completion. More importantly, the set
size of the available candidate services is much larger and
the finally selected set. On the other side, the finally
obtained QoS performance depends on too many factors.
For instance, the application may require minimizing the
execution time as well as meet the budget and trustiness
constraints, while other application may put more weight
on the real-time responsiveness such as the interactive-
intensive applications. To satisfying the various
requirements of so many applications, QoS-aware
approach to service selection and composition is of
significant importance. While, how to evaluating so many
QoS measurements is a challenging task, not mentioned
their overlapping and interaction with each other. So, the
first step for QoS-aware service selection and
composition is to distinguish these measurements in
terms of evaluation model. And then certain optimization
techniques can be applied to maximize/minimize the total

QoS utility of the service-based application by taking the
constraints or preferences of users into account.

A. QoS Model of Individual Web Service
To differentiate the performance of available web

services, we need to define a quantitative model that is
applicable to most of the web services. Typically, there
are multiple measurements can be associated when
running a service-based application. In this work, we
select five most mentioned QoS measurements including
availability, execution time, reliability, trustiness and
costs as the basic measurement to evaluate the system
performance. To facilitate quantitative model, those QoS
measurements are all defined as real numbers which can
be changed in certain range. So, if two services are
providing identical functionalities, we can easily
differentiate them by these QoS quantitative models. In
our framework, the static measurements are assumed to
stored in the registry database and the dynamical
measurements can be retrieved through the performance
profiling component as shown in Fig. 2. Here, we firstly
list the considered QoS measurements for individual
services as following:

 Availability. The availability a service is the
probability that the service is accessible. It is
noteworthy that the value of availability may vary
depending on a particular application. For example, if
a service is frequently accessed, it should be assigned
a small availability value from the perspective of the
application; If the service is less frequently accessed,
using a larger availability value is more appropriate.
Therefore, we define the availability of a service as
following:

() () ()exec
access

iSAvail T Ts s=∑ (1)
where Taccess(s) is the accessing time during the running
the service , Texec(s) is the total execution time the
service, which is described in the next.
 Execution Time. Generally speaking, this metric

should measure the expected delay in seconds
between the moment when a request is sent and the
moment when the results are received. However, it is
common that specific operations that have various
execution for most services. To take this into account,
we use the average execution time of all operations
that give service exposed, which is evaluated as
following

1
()

1 (,)n i
exec exec ii

ST T op s
n =

= ∑ (2)

 Reliability. This metric is to evaluate the successful
execution rate of the given service. In common sense,
the successful execution rate is related to hardware
and software configuration of web services. In
addition, the network connections between the service
requesters and providers are also of significant
importance with this metric. To accurately evaluate it,
the service system should log all the execution results
as well as the resources reliability. In this work, we
simple use the historical logs of the execution results
obtained from user’s feedback because of its objective.

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1765

© 2013 ACADEMY PUBLISHER

 Trustiness. This metric is to measure the
trustworthiness of a given service in terms of the
differences between the proposed QoS and the
practical QoS performance. Therefore, it mainly
depends on end user’s experiences of using the
service. Different end users may have different
opinions on the same service. Therefore, we define
the value of the trustiness as the average ranking
given to the service by end users, which is shown as
following

2 1
()

()
()

i
STrusty

Trusty s
N t t

=
−

∑ (3)

where N(t2-t1) is the number of users who accessed
this service during time interval [t1, t2]

 Costs. It is the fee that the user has to pay for
invoking the service. For many service provider, they
often charge user on basis of invoking operations. So,
cost of a service is the function of the invoking
interface noted as Cost(s, opi).

B. Composition QoS Model of Applications
Typically, a web service will expose its functionalities

by a set of interfaces (also called operations). After the
procedure of service composition, the composed services
is often described as a set of activities, which consist of
of precedent-constrained execution graph. In this work,
we note the execution grapgh as a directed graph G=<T,
E>, where T={t1, t2, …, tn} is the set of tasks, E={ei,j|if
<ti,tj>∈T×T}. The first task is noted as tinit and the final
task is noted as texit . After mapping operation, an abstract
application execution graph will be translate into concrete
execution schema. Here, we note a concreted execution
graph as G*=<S, P>, where S={ws1, ws2, …, wsn} is the
set of Web services, P={p1, p2, …, pn } is the set of
execution path. If a task ti is mapped onto sj and invokes
the k-th operation interface, such a mapping relationship
is noted by < ti, wsj,k>. Invoking path ipk={pi,…,pj} is a
set of order execution path, which starts from pi and ends
at pj. Based on the above QoS model of individual service
and the execution model, we model the application QoS
requirements (or constraints) by following equations:

, ,

,()
i j l k

k i j
t ws ip

Avail ip Avail
< >∈

= ∏ (4)

, ,

() max (,)
i j l k

k

t ws ip

exec kExecT ip T s ip
< >∈

=
⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ (5)

,

,
,

()
i j l k

i jk
t ws ip

Cost ip Cost
< >∈

= ∑ (6)

, ,

,()
1

i j l k

i j
k

k
t ws ip

Trusty ip Trusty
ip < >∈

= ⋅ ∑ (7)

,,

()() max
i j l k

k

t ws ip

Rel sRel ip
< >∈

=
⎧ ⎫
⎨ ⎬
⎩ ⎭

∏ (8)

According to the above QoS models as shown in
(4)~(8), the QoS-aware selection and composition

problem can be described as the following optimization
programming problem.

()
1

, ,

, ,

, ,

() () () () ()

1

max

max max max { { { }}}

. .

k k k k k

k

k

k

cost

k

i

m
i j i j

i T j S m ip

m
i j i j exec

i T j S m ip

m
i j i j tru

k i T j S m ip

Cost ip Avail ip Trusty ip Exec ip Rel ip

Cost QoS

QoS

Trusty QoS
ip

Exec

c

e

r

s t
=

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

+ + + +

⋅

⋅ ≤

⋅ ≤

⋅ ≤

∑

∑∑∑

∑∑∑

, ,

, , , , 1

k

k k k k

sty

m
i j i j rel

i T j S m ip

m m m m
i j i j i j i j

m ip m ip m ip m ip

Rel QoSj

c e r j

∈ ∈ ∈

∈ ∈ ∈ ∈

⋅ ≤

= = = =

∏∏∏

∑ ∑ ∑ ∑

 (9)

where cm
i,j, rm

i,j and em
i,j, are all 0-1 flag variants which

indicate that whether < ti, wsj,m> is in the invoking path
ipk; QoScost, QoSexec and QoSrep are the QoS constraints
which is specified by applications and submitted through
the portal services. Clearly, the problem described in (9)
is a multiple-dimension constrainted 0-1 integrated
programming problem, which can be solve by
commercial solver tools.

It is noteworthy other QoS measurements can be easily
incorporated in the problem (9), only if it can be defined
as range-bounded real number like the previous QoS
models. Adding too many measurements will
significantly increase the complexity of the solving
algorithms, which in turn reduces the application’s
execution performance. So, we merely choose the most
mentioned measurements in our study.

C. QoS Negotiation Model and Algorithm

Fig. 3. QoS Negotiation Framework

The QoS negotiation process requires multiple
interactions between users and the service broker as
shown in Fig. 2 until they reach an agreement. The goal is
to generate abstract mapping schema as optimal as
possible with aiming to minimize the communication
costs between service providers and applications and
maximize the resource utilization as much as possible.
The service broker will accept application’s request by
WS-Agreement protocol, and then generates a set of
schemes in the WS-Agreement format. In this work, we

QoS Negotiation API

Feasibility Assessment Service Evaluation

QoS Negotiation Protocol

Off-line analyzer

Online analyzer

Schedulability

Service QoS Model

QoS Optimization

…… Web Service

1766 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

designed and implemented a QoS negotiation service to
support the proposed QoS-negotiation model as shown in
Fig. 3. This negotiation service is responsible for
managing a distributed pool of web services to guarantee
user’s QoS requirements. It employs a WS-agreement
extension protocol to keep track of service pool and
report service’s status. Schedulability analysis is used to
provide service-mapping related guarantees. We assume
that user’s request arrival patterns are not known a priori.
Therefore, user QoS requirements may be characterized
off-line. Clients of the QoS negotiation service are user’s
service brokering requests.

Each request for guaranteeing a request includes its
rejection penalty and the negotiation options of the
client’s requirements that specify different QoS levels
and their respective rewards. A client task's QoS level is
specified by the parameters of its execution model, which
is described by XML files as shown in the following.
With respect to negotiability, the QoS measurement such
as costs and execution time are negotiable, while
availability and reputation are not negotiable. An
example of QoS constraints specified by a user is shown
as following. The individual QoS measurement in the
negotiation options describes the user’s corresponding
requirements when their applications are executed in the
system. This allows users to define different versions of
the task to be executed at different QoS levels or to
compose tasks with mandatory and optional modules.
User’s QoS requests for guaranteeing tasks may arrive
dynamically at any time including the execution period.

To guarantee a request, QoS optimization component

is responsible for conducting QoS-optimization procedure
by calculating the QoS levels for user’s requirements and
evaluate the potential benefits of guarantee them. The
request may be rejected if the sum of benefits is lower
than the pre-defined threshold, or the difference between
the current and previous calculation is larger than the
request’s rejection penalty. In other cases, the user’s QoS
requirements can be considered as guaranteed for now. It
is noteworthy that some typical admission controlling
polices often defined high request rejection penalty if the
system can not actually guarantee the user’s requirements
at runtime. In our framework, we provide an adaptive
negotiation mechanism, which allows users decreasing
their requirements not only before the execution, but also

during the execution of their applications. This
mechanism is implemented by incorporating a set of
admission control rules into the service broker component,
which will communicate with QoS negotiation subsystem
at runtime. In this way, our proposed QoS framework
achieves higher successful rate as well as decreased
rejection penalties.

V. EXPERIMENTS AND PERFORMANCE EVALUATION

A. Experiments Parameters
In order to examine the effectiveness of our service

framework and corresponding selection and composition
algorithm, a series of experiments in the real-world
platform are performed. In the experimental platform, we
use the IBM WS-Toolkit as the basic deployment
middleware. The benchmark application used in the
experiments is deprived from the classical service-
oriented numerical optimization project that originally
developed by the University of Southampton [23]. In the
testing platform, the underlying computing nodes are
homogeneous in both hardware and software, each being
configured with Pentium IV 2.8 MHz, 2 GB memory,
Windows 2K as OS, J2EE as the execution environment,
and Oracle XML Developer Kit. The network bandwidth
between these computing nodes is 100 MB/s LAN. As to
the QoS data, we set that all of them are retrieved by the
service execution engine. As mentioned in Section III, the
dynamical QoS measurements are logged by the
performance profiling component, in which the individual
measurements are calculated by the models described in
the Section III.A. The static QoS measurements, such as
availability, are collected when there are some services
are boot up or shut down in the service provider’s side.

B. Service Selection and Composition Algorithms
In the first set of experiments, we want to compare the

performance of proposed MPWS (Mixed Programming
based Web Service Selection) with two well-known
heuristic algorithm: WFlow [25] and RWSCS_KP [26].
When using WFlow algorithm, service selection problem
are categorized into two classes: service selection with
sequential structure and the other is to composite services
with a general flow structure. When the application
belongs to the latter, its structure between function nodes
might be of complex recursive calling chain (i.e., loop
calling). To deal with such a problem, WFlow is designed
to remove the loop operations by consequentially un-
folding the loop. To generate the benchmarks, we
randomly generate the abstract processes, each containing
multiple control flows. Also, we set that each abstract
service has the same number of candidate service
operations. For each candidate service, five QoS
parameters are noted as Qexec, Qtrusty, Qrel, Qcost and Qrep.
Each quality value is randomly generated with a uniform
distribution in a range.

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1767

© 2013 ACADEMY PUBLISHER

(a) Execution Time

(b) Costs

(c) Trusty

(d) Reliability

(e) Availability

Fig. 4. Comparison of Five QoS Measurements

In this work, we mainly concentrate on the analysis of
the impact of the number of services on the performance
of QoS parameters. Since the number of services will
affect the failure of finding a feasible solution. The more
the abstract services are, the lower failure rate in finding a
feasible solution is. Similarly, the number of candidate
service also has effects on the other parameters in the
same way. In the experiments, the numbers of services
are set from 10 to 60 to analyze the influence over the
four algorithms. As depicted in Fig. 4, PMWS has higher
reliability and trusty when generating a feasible service
composition schema than the other three algorithms for
almost of the test cases. As to the execution time metric,
we noticed that PMWS will select those services with
better RPC (ratio of performance to costs) as the
candidate. In this way, it obtained short execution time as
well as low cost. Unlike PMWS, both two WFlow
algorithms are aiming for improving the execution
performance. So, when the number of service is small,
they can obtain better performance in term of execution
time; While the number of service is high, they tends to
significantly increase the costs.

In the four algorithms, we found that RWSCS_KP
seems performs worst in all cases except for the
execution time. It is because that our test platform has
twelve service container distributed in four locations.
Between the different service containers, the network
bandwidth is very unstable. For example, the average
available bandwidth is only 23% of the maximal
limitation when in 10:00 ~ 12:00 am. Unfortunately, the
test applications require massive remote data transferring
when executing on the system. Since the RWSCS_KP
algorithm uses dataset location as its main heuristic for
service selection, it performs better than WFlow
algorithms in our experimental settings. At the same time,
we found that its performance can not be maintained
when the service number is increased to above 40. The
reason may be the available candidate pool is not bigger
enough in our testing platform.

Peformance Comparison in Dynamical Environments
In the static environment, the QoS measurements of all

services will not be alternated during the execution of the
given composite application, and services are capable of
executing the tasks successfully under the pre-required
QoS constraints; In the dynamical environments, the QoS
measurements of underlying services are assumed to be
changeable during the execution of the application. It
means that some of the selected services might be
unavailable although it is no so at first; also, new services
with better QoS measurement might be emerging; or the
selected services might not be able to complete the
execution of application in time. Therefore, in this
experiment we mainly concentrate on the dynamical
environment. Unlike static environment, the availability
measurement is of no meanness any more. So, we only
test four QoS measurements in this experiment. It is
noteworthy, in static environment we can adjust the
number of services manually; however, it can not be done

1768 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

any more in dynamical environment. So, we change the
size of subtask in the target application so as to simulate
this situation. The experiment results are shown in Fig.5.

(a) Execution Time

(b) Costs

(c) Trusty

(e) Reliability

Fig. 5. QoS Performance in Dynamical Environment
As shown in Fig. 5, the performance of reputation and

availability measurements are reduced about 12 percent
to 21 percent when in dynamic environments. Since the
availability of services is unpredictable in dynamical
environments, the selected services according to optimal
QoS-aware strategy might be un-available at the time
when they are invoked. In our service framework shown
in Fig. 2, re-negotiation mechanism is incorporated for

dealing with such a problem. However, the re-negotiation
operations can not be guaranteed to be successfully. So,
the practical execution of the application might be sub-
optimal as the candidate services with sub-optimal QoS
measurements will be picked out for execution. At the
same time, the re-negotiation operation requires extra
costs, which will significantly increase the delay of
underlying application. Therefore, the whole execution
time the practical execution time is very uncertain.
Fortunately, most of the re-negotiation operations can
obtain the candidate services with better QoS
measurements, in these cases, the extra benefits will
compensate the execution latency caused by re-
negotiation or re-optimization operations. These
mechanisms make our service framework exhibiting
better adaptive whether in static or dynamical
environments. For example, combing Fig. 4 and Fig. 5,
we can see that the QoS measurements of both cost and
execution time are very similar whether in static
environment or in dynamical environment.

Summarizing the previous experimental results, we
draw the following three conclusions on the proposed
service platform: (1) Generally, MPWS and WFlow_HP
outperforms WFlow_EU and RWSCS_PK in terms of all
QoS measurements; (2) when the system is facing some
large-scale applications, MPWS is more adaptive than
other existing algorithms to obtain global optimal/sub-
optimal solution under user’s QoS constraints; (3) In the
dynamical environments, MPWS performs far more
stably than other three strategies, which is the major
improvement of the proposed framework.

V. CONCLUSION

In this work, we proposed an integrated framework
which can optimize the performance of service-based
application with constraints to user’s QoS requirements.
At the same time, the proposed framework also allows
the system flexibly deploy the underlying services with
constraints to resource provider’s expectation. In our
framework, the optimum mapping between abstract web
services and application’s processes is implemented
through programming technique. Experimental result
based on static and dynamical environments shown that
the proposed framework and its QoS-based algorithm an
significantly improve the user’s QoS satisfaction in terms
of five most-mentioned QoS parameters.

In the future work, we are planning to incorporate
more emerging user’s QoS parameters into our systems,
i.e., security and accountability. Also, we are planning to
migrate it for virtualization-based web-servers so as to be
adaptable for cloud-based systems.

ACKNOWLEDG

This work was supported by Scientific Research Fund
of Hunan Provincial Education Department (No. 09c270).

REFERENCES

[1] Y. Li, Z. Zhu. “A User-oriented and Context-aware Web
services Composition”. Journal of Software, Vol. 7, No. 4,

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1769

© 2013 ACADEMY PUBLISHER

pp. 878-883, 2012.
[2] T. Andrews and F. Curbera, “Business Process Execution

Language for Web Services (version 1.1),”
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
specification-draft.pdf, 2003.

[3] A. Ankolekar, et al., “DAML-S: Web Service Description
for the Semantic Web,” Proc. First Int’l Semantic Web
Conf. (ISWC 02), 2002.

[4] B. Zhou, K. Yin, H. Jiang, S. Zhang, A.J. Kavs. “QoS-
based Selection of Multi-granularity Web Services for the
Composition”. Journal of Software, Vol. 6, No. 3, pp.
366-373, 2011.

[5] G. Bartoli, et al. “An Optimized Resource Allocation
Scheme Based on a Multidimensional Multiple-Choice
Approach with Reduced Complexity”, Proc. of IEEE
International Conference on Communications (ICC), pp.
1-6, 2011.

[6] W.-L. Lin, C.-C. Lo, K.-M. Chao et al., “Multi-group QoS
consensus for web services,” Journal of Computer and
System Sciences, vol. 77, no. 2, pp. 223-243, 2011.

[7] S. Ceri, F. Daniel, M. Matera, and F. Facca, “Model-
Driven Development of Context-Aware Web
Applications,” ACM Trans. Internet Technology, vol. 7,
no. 2, 2007.

[8] Z. He, L. Wu, H. Li, H. Lai, Z. Hong. “Semantics-based
Access Control Approach for Web Service”. Journal of
Computers, Vol. 6, No. 6, pp. 1152-1161, 2011.

[9] A.B. Hassine, S. Matsubara, and T. Ishida, “A Constraint-
Based Approach to Horizontal Web Service
Composition,” Proc. Fifth Int’l Semantic Web Conf.
(ISWC), pp. 130-143, 2006.

[10] S. Hwang et al., “Dynamic Web Service Selection for
Reliable Web Service Composition,” IEEE Trans.
Services Computing, vol. 1, no. 2, pp. 104-116, Apr.-June
2008.

[11] M.I. Islam and M.M. Akbar, “Heuristic algorithm of the
multiple-choice multidimensional knapsack problem
(MMKP) for cluster computing”, Proc. of International
Conference on Computers and Information Technology
(ICCIT'09), pp.157-161, 2009.

[12] K. Kritikos, and D. Plexousakis, “Requirements for QoS-
Based Web Service Description and Discovery,” IEEE
Transactions on Services Computing, vol. 2, no. 4, pp.
320-337, 2009.

[13] H.-Y. Jeong, and Y. S. Lee, “CSP Based Web Service
Composition Model with Buffer at the Business Logic
Process Level,” Journal of Internet Technology, vol. 13,
no. 3, pp. 501-508, 012.

[14] Z. Maamar, S.K. Mostefaoui, and H. Yahyaoui, “Toward
an Agent-Based and Context-Oriented Approach for Web
Services Composition,” IEEE Trans. Knowledge and Data
Eng., vol. 17, no. 5, pp. 686-697, May 2005.

[15] H. Tong, J. Cao, S. Zhang et al., “A Distributed Algorithm
for Web Service Composition Based on Service Agent
Model,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 12, pp. 2008-2021, 2011.

[16] S. Oh, D. Lee, and S.R.T. Kumara, “Web Service Planner
(WsPr): An Effective and Scalable Web Service
Composition Algorithm,” J. Web Services Research, vol.
4, no. 1, pp. 1-23, 2007.

[17] W. Niu, G. Li, H. Tang et al., “CARSA: A context-aware
reasoning-based service agent model for AI planning of
web service composition,” Journal of Network and
Computer Applications, vol. 34, no. 5, pp. 1757-1770,
2011.

[18] S. Patil and E. Newcomer, “ebXML and Web Services,”

IEEE Internet Computing, vol. 7, no. 3, pp. 74-82, 2003.
[19] J. Schaffner, H. Meyer, and C. Tosun, “A Semi-

Automated Orchestration Tool for Service-Based
Business Processes.” Proc. Second Int’l Workshop Eng.
Service-Oriented Applications: Design and Composition
(WESOA), pp. 50-61, 2006.

[20] D. Chiu, Y. Yueh, H.-f. Leung et al., “Towards ubiquitous
tourist service coordination and process integration: A
collaborative travel agent system architecture with
semantic web services,” Information Systems Frontiers,
vol. 11, no. 3, pp. 241-256, 2009.

[21] D.C. Vanderster, N.J. Dimopoulos, R.J. Sobie,
“Metascheduling Multiple Resource Types using the
MMKP”, Proc. of IEEE/ACM International Conference
on Grid Computing, pp.231-237, 2006.

[22] S. Wang, W. Shen, and Q. Hao, “An Agent-Based Web
Service Workflow Model for Inter-Enterprise
Collaboration,” Expert Systems with Applications, vol. 31,
no. 4, pp. 787-799, 2006.

[23] G. Xue, W. Song, S.J. Cox, A. Keane. Numerical
Optimisation as Grid Services for Engineering Design.
Journal of Grid Computing, vol.2, no.3, pp.223-238, 2004.

[24] V. Chifu, and I. Salomie, “A Fluent Calculus Approach to
Automatic Web Service Composition,” Advances in
Electrical and Computer Engineering, vol. 9, no. 3, pp.
75-83, 2009.

[25] T. Yu, Y. Zhang, K.J. Lin. “Efficient algorithms for web
services selection with End-to-End QoS constraints”,
ACM Transactions on the Web, vol. 1, no. 1, 2007.

[26] H. Cao, X. Feng, Y. Sun, Z. Zhang, Q. Wu. “A service
selection model with multiple QoS constraints on the
MMKP”, Proc. of the IFIP International Conference on
Network and Parallel Computing Workshops, pp.584-589,
2007.

Changsong Liu was born in 1974. He received his master
degree in Xian University of Technology in 2004. Now, he is a
Ph.D candidate in Central South University, and currently
works in Hunan Institute of Engineering as lecturer. His
research interests include service computing, quality of service
management, distributed intelligence.

Dongbo Liu was born in 1974. He received his master degree in
Jiangsu University of in 2004. He obtains the Ph.D degree in
Hunan University in 2010, and currently works in Hunan
Institute of Engineering as associate professor. His research
interests include Web service, distributed intelligence, cloud
computing and etc.

1770 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

