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Abstract—A new Student’s t-distribution finite mixture
model is proposed which incorporates the local spatial
information of the pixels. The pixels’ label probability
proportions are explicitly modelled as probability vectors in
the proposed model. We use the gradient descend method
to estimate the parameters of the proposed model. Compre-
hensive experiments are performed for synthetic and natural
grayscale images. The experimental results demonstrate that
the superiority of the proposed model over some other
models.

Index Terms—Spatially variant finite mixture model, Stu-
dent’s t-distribution, Image segmentation, Gradient descent

I. I NTRODUCTION

Image segmentation is one of the most widely studied
problems in computer vision. Its goal is to find the group
of pixels. In statistics, image segmentation is referred
to as cluster analysis [1]. Image segmentation has beep
successfully applied to many applications. For example,
it is used to identify the diatoms [2], simulated pattern
painting [3], vehicle type recognition [4] and medical
image segmentation [5].

The finite mixture model (FMM) [6], [7], a widely
applied clustering model, provides a flexible method
to model many random phenomena. The FMM can be
applied to image segmentation because thek clusters can
be generated by thek components of the FMM. The
component function of the FMM can be various statistical
distributions. The FMM is called Gaussian mixture model
(GMM) if its component function is Gaussian distribution.
The FMM has received increasing attention in the past
decade. It has been widely applied to many fields, such
as biology, economics, psychiatry, engineering and image
segmentation [6]. When it is used for image segmentation,
it assumes that the pixels are independent of each other.
However, the probability of the pixels belonging to the
same class is larger if the positions of the pixels are nearer.

In order to resolve the aforementioned shortcoming of
the FMM, G.S.Sanjay [8] proposed a novel spatially vari-
ant finite mixture model (SVFMM) which incorporated
the spatial relationships between the pixels. The SVFMM
is different from the Markov random field (MRF) models
in [9], [10], the former model imposes the MRF on the

label probability vectors (the probabilities of each pixel
belonging to some classes), the latter model imposes the
MRF on the label probability vector priors. Compared
to the MRF models, the SVFMM can reduce the com-
plexity and computational cost of the model. The param-
eters of SVFMM are usually estimated by Expectation-
Maximization (EM) [11] algorithm. Subsequently, some
models based on SVFMM have been proposed and ap-
plied to medical imaging segmentation [12], [13]. Markov
Chain Monte Carlo (MCMC) and Variational Bayes (VB)
[7], [14] approximation inference algorithm are used to
estimate the parameters of these models .

However, it cannot obtain closed form solutions of the
label probability vectors in the M-step of the EM. A
reparatory computation is adopted to project the solutions
onto the unit simplex (positive and summing up to one
components). A gradient projection algorithm is utilized
in [8]. Convex quadratic programming is proposed for
the SVFMM in [15] and better segmentation results are
obtained in [15] than in [8]. But the MRF prior of the
SVFMM in [8] and in [15] is not adaptive the data. A
Gauss-Markov random field prior is proposed in [16] and
imposed on the label probability vectors. The parameters
of the model can be estimated from the data. However, the
closed form solutions are still not obtained in this model.

Integrating the SVFMM with line processes [9], two
variations of the SVFMM are proposed in [17]. In the
two models, MRF smoothness priors are imposed on the
label probability proportions of the two spatially varying
Gaussian mixture models. The local differences between
the label probability proportions of the two models are
supposed to follow Gaussian distribution and continuous
univariate Student’s t-distribution, respectively. At the
same time, Bernoulli distribution is imposed on the binary
line processes (BLP) of the former model and Gamma
distribution is imposed on the continuous line processes
(CLP) of the latter model. A quadratic approximation is
used to make the label probability vectors to be probabil-
ity vectors. To avoid the projection step, a novel model
based on GMM is proposed in [18] which incorporates
the spatial information of the pixels. The label probability
proportions are explicitly modeled as probability vectors.
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The pixel value is replaced with the mean value of its
neighboring pixels value in the representation of its label
probability proportion. Gradient descent method is used
to estimate the model parameters. We refer to the model
in [18] as spatial neighborhood GMM (SNGMM).

In the aforementioned models, the component func-
tions all are Gaussian distribution. However, the Gaussian
distribution cannot meet the needs for many applications
because its tails are too short. The student’s t-distribution
owns heavier tailed and is more robust [19], [20] against
noise than Gaussian distribution. In the past few years, the
student’s t-distribution has been successfully applied to
signal analysis [21], speaker identification [22] and image
segmentation [23].

To consider the robustness of the student’s t-distribution
and the advantages of SVFMM, we propose a SVFMM
whose component function is student’s t-distribution in
this paper. At the same time, the label probability pro-
portions of the proposed model are explicitly modeled as
probability vectors. Gradient descent method is used to
estimate the model parameters instead of the EM algo-
rithm. The experiments are conducted on both synthetic
and natural grayscale images. To quantify the effective-
ness of image segmentation, the misclassification ratio
(MCR) [24] and the probabilistic rand (PR) index [25]
are adopted. The experimental results demonstrate that
the effectiveness and robustness of the proposed method
compared with the other state-of-the-art models.

The remainder of this paper is organized as follows. We
introduce the SVFMM and Student’s t-distribution in brief
in Section II. In Section III, the proposed model is de-
scribed in detail. In Section IV, we give the experimental
results conducted on both synthetic and natural grayscale
images to evaluate the efficiency of the proposed model.
Finally, the conclusions are given in Section V.

II. T HE RELATED WORKS

In this section, we first review SVFMM in brief, then
the Student’s t-distribution is introduced briefly. In this
paper, we usexn to denote the pixel in thenth position
of an image.

A. Spatially variant finite mixture model

The SVFMM which incorporates the spatial informa-
tion of pixels is an extension of FMM [8], [23]. It uses
label probability proportionπnk to denote the probability
that thenth pixel belongs to thekth class. The variable
πnk must satisfy the following constraints

0 ≤ πnk ≤ 1,

K∑

k=1

πnk = 1; n = 1, ..., N, k = 1, ..., K.

Let πn represent thenth pixel’s label probability vector.
The parameter vectorπn is equal to(πn1, πn2, ..., πnK)T ,
where T indicates the transpose of a vector. Let
Π=

{
(π1)T , (π2)T , ..., (πN )T

}
be the set of probability

vectors, andΘ = {θ1, θ2, ..., θK} be the set of component

parameters. The density function of thenth pixel is
defined as follows

f (xn|Π,Θ) =
K∑

k=1

πnkp (xn|θk) .

In general, the component function is Gaussian distri-
bution where parameterθk = {µk, σ2

k} and µk and
σ2

k represent the mean and the variance of Gaussian
distribution, respectively. The observationsX consist of
a data set{xn}, wheren=1, ..., N . The X ’s probability
density function (PDF) [8] is given by

f (X|Π,Θ) =
N∏

n=1

f (xn|Π,Θ) . (1)

A Gibbs distribution function is imposed on the parameter
setΠ in [15], which is given by

p(Π) =
1
Z

exp(−U(Π)), with U(Π) = β
N∑

n=1

VNn
(Π),

where Z is a normalizing constant andβ is a regu-
larization parameter. The functionVNn

(Π) denotes the
clique potential function within the neighborhoodNn.
According to Bayes’ theorem, a posteriori PDF is derived
as follows when the prior density is given.

p(Π|X; Θ) ∝
N∏

n=1

p(Π)f (xn|Π,Θ) .

Then the log-density function is given by [15]

log(Π|X; Θ) =
N∑

n=1

log
K∑

k=1

πnkp
(
xn|µk, σ2

k

)
+ log p(Π)

(2)
In general, the EM algorithm is used to estimate the
unknown parameters in (2). However, the results of the
πnk obtained in the M-step of the EM algorithm usually
do not satisfy these constraints:0 ≤ πnk ≤ 1 and
K∑

k=1

πnk = 1. To enforce the label probability proportion

πnk to satisfy these constraints, in the M-step of EM
algorithm a reparatory computation is in general added.
When the unknown parameters are determined, the label
obtained by the maximum a posteriori (MAP) estimation
according to the posterior probabilityp(θk|xn) in (3) is
assigned to the pixelxn.

p(θk|xn) =
πnkp (xn|θk)

K∑
j=1

πnjp (xn|θj)
. (3)

B. The Student’s t-distribution

We assume that a random variablex follows a uni-
variate Student’s t-distributionx ∼ St(x|µ, λ, ν). Its
definition is written in the following form [7]

St(x|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2

×
[
1 +

λ(x− µ)2

ν

]−ν/2−1/2

,

(4)
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where µ and λ are the mean and the precision of the
Student’s t-distribution, respectively.Γ(·) represents a
gamma function. The parameterν is called the degrees
of freedom of the Student’s t-distribution. Asν tends to
infinity, the t-distribution tends to a Gaussian distribution
with the same meanµ and precisionλ [7]. Therefore,
the tails of the Student’s t-distribution are longer than the
Gaussian distribution.

III. T HE PROPOSEDMODEL

In this section, we propose an extension of the Stu-
dent’s t-distribution mixture model which incorporates the
spatial information of the image pixels. In the proposed
model, we adopt a second-order neighborhood system to
represent the spatial relationships of the pixels.

First, we adopt a function defined in [26] to represent
the weight of thenth pixel belonging to thekth class

ξk (xn) =
∑

xi∈Nn

exp
(
− (xi − ck)2

2b2
k

)
(5)

whereNn represents the neighborhood of thenth pixel.
A new pixel’s label probability proportionπnk which
incorporates its spatial relationships between other pixels
is given by [26]

πnk =
ξk(xn)

K∑
j=1

ξj(xn)
=

∑
xi∈Nn

exp
(
− (xi−ck)2

2b2k

)

K∑
j=1

∑
xi∈Nn

exp
(
− (xi−cj)2

2b2j

) . (6)

Obviously, the value of the label probability proportion

πnk in (6) is nonnegative and subjects to
K∑

k=1

πnk = 1.

The density function of thenth pixel is given by

f (xn|θ) =
K∑

k=1

πnkSt (xn|θk) , (7)

where the component functionSt (xn|θk) is the Student’s
t-distribution defined in (4), its parameters areθk =
{µk, λk}. According to Bayes’ theorem, the posterior
probability is derived as follows

f (θk|xn) =
πnkSt (xn|θk)

K∑
j=1

πnjSt (xn|θj)
. (8)

The log-likelihood function is defined as follows

L(θ) =
N∑

n=1

log f (xn) =
N∑

n=1

log

(
K∑

k=1

πnkSt (xn|θk)

)
.

(9)
Then our objective is to estimate the parametersΩ =
{µk, λk, ck, b2

k} with respect to the maximization of the
log-likelihood function. Since the logarithm function is a
monotonically increasing function, the error function is
adopted here which is defined the negative logarithm of
the log-likelihood function [7].

J(Ω) = −L(Ω) = −
N∑

n=1

log

(
K∑

k=1

πnkSt (xn|θk)

)
.

(10)

Applying the complete data, the change of the error
function is given by

J(Ω(t+1))− J(Ω(t)) =−
N∑

n=1

log




K∑
j=1

πnjSt (xn|θj)

K∑
k=1

πnkSt (xn|θk)

×f (t) (θj |xn)
f (t) (θj |xn)

)
.

(11)
Because theSt(t) (θj |xn) always satisfies the conditions:

St(t) (θk|xn) ≥ 0 and
K∑

k=1

St(t) (θk|xn) = 1. According

to the Jensen’s inequality [27], the change of the error
function in (11) is obtained as follows:

J(Ω(t+1))− J(Ω(t)) ≤ −
N∑

n=1

K∑

k=1

St(t) (θk|xn)

× log




π
(t+1)
nk St(t+1) (xn|θk)

St(t) (θk|xn)
K∑

j=1

π
(t)
nj St(t) (xn|θj)


 .

(12)

The terms which depend on the old parameters (at thetth
iteration step) are dropped when we minimize the log-
likelihood function with respect to the new parameters
(at thet+1th iteration step). The change in error function
is rewritten as follows

E
(
Ω(t)|Ω(t+1)

)
=−

N∑
n=1

K∑

k=1

St(t) (θk|xn)

× log
(
π

(t+1)
nk St(t+1) (xn|θk)

)
.

(13)
The E in (13) can be referred to as an error function.
Therefore, we minimizeE in (13) instead of maximizing
the log-likelihood function (9). To minimize the error
functionE, we utilize the derivatives of the function with
respect toµj , λj , cj , b2

j , which can be calculated by

∂E

∂µj
= −

N∑
n=1

St(t) (θj |xn) · λj (ν + 1) (xn − µj)
ν + λj(xn − µj)2

.

(14)

∂E

∂λj
= −

N∑
n=1

St(t) (θj |xn) · ν − ν × λj(xn − µj)2

2λj [ν + λj(xn − µj)2]
.

(15)

∂E

∂cj
= −

N∑
n=1

St(t) (θj |xn) ·

∑
xi∈Nn

(xi−cj)

b2j
· exp

(
− (xi−cj)

2

2b2j

)

∑
xi∈Nn

exp
(
− (xi−cj)

2

2b2j

)

+
N∑

n=1

K∑

k=1

St(t) (θk|xn) ·

∑
xi∈Nn

(xi−cj)

b2j
· exp

(
− (xi−cj)

2

2b2j

)

K∑
p=1

[
∑

xi∈Nn

exp
(
− (xi−cp)2

2b2p

)] .

(16)
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∂E

∂b
(2)
j

= −
N∑

n=1

St(t) (θj |xn) ·

∑
xi∈Nn

(xi−cj)
2

2b4j
· exp

(
− (xi−cj)

2

2b2j

)

∑
xi∈Nn

exp
(
− (xi−cj)

2

2b2j

)

+
N∑

n=1

K∑

k=1

St(t) (θk|xn) ·

∑
xi∈Nn

(xi−cj)
2

2b4j
· exp

(
− (xi−cj)

2

2b2j

)

K∑
p=1

[
∑

xi∈Nn

exp
(
− (xi−cp)2

2b2p

)] .

(17)
After the optimization of the parameters of the error
function, the value of the posterior probability (8) is
determined. Then according to MAP, thenth pixel obtains
its class label by solution of

arg max
k

{f (θk|xn)} . (18)

The proposed model is called the spatially varying Stu-
dent’s t-distribution mixture model (SVStMM). We use
gradient descend method to estimate the unknown pa-
rameters instead of the EM algorithm used in many
models. The proposed model SVStMM is summarized in
Algorithm 1.

IV. N UMERICAL EXPERIMENTS

In this section, some experiments are conducted
on synthetic and natural grayscale images to
evaluate the effectiveness and robustness of the
proposed model. The proposed model is compared
with the K-means [7], GMM [6], SVFMM [15],
DCASV [16], CLP, BLP [17] and SNGMM [18].
The models are all implemented in MATLAB.
The source code of SVFMM can be available at
http://www.cs.uoi.gr/kblekas/sw/MAPsegmentation.html.
The source code of K-means, standard GMM, DCASV,
CLP and BLP can be download from http://www
.cs.uoi.gr/cnikou/. We implement the model SNGMM and
the proposed model (SVStMM) in MATLAB(R2010a).
We have selectedν = 0.001 for the proposed model.
According to (4), the value ofλ must be nonnegative,
so we use the absolute value ofλ in (20). The loop of
SVStMM is terminated when the percentage changed of
(8) between two consecutive iterations is less than10−5,
i.e, |∆L/L| < 10−5.

To quantify image segmentation results, two criteria are
adopted in these experiments. One criterion is the mis-
classification ratio (MCR) [24] which is used to quantify
the synthetic image segmentation results. Its definition is
given by

MCR =
number of mis-classified pixels

total number of pixels
.

The values of MCR are bounded by the interval [0, 1],
where lower values indicate better segmentation results.
The other criterion is the probabilistic rand (PR) index
[25] which is used to quantify the natural image segmenta-
tion results. The PR index measures consistency between
two segmentation labels via an overlapping fraction. The

Algorithm 1 SVStMM .

Initialize:

UseK-means to get the meanuj and the varianceσ2
j .

Then setµj=uj , λj=1/σ2
j , cj=uj andb2

j=σ2
j .

Step 1:
Compute the Student’s t-distributionSt(xi|θj) (4).
Calculate the weight functionξj (xi) (5).
Update the label probability proportionπij (6).
Compute the posterior probabilityf (θj |xi), as given
by (8).
Step 2:
Update the parametersΩ = (µj , λj , cj , b

2
j )

T by using
the gradient descend method

Ω(t+1) = Ω(t) − η∇L(Ω(t)) (19)

where η denotes the learning rate. We have setη=
10−5 for the proposed model.∇E(Ω) is the deriva-
tive of the function E with respect toΩ, where
∇E(Ω)=

[
∂E/∂µj , ∂E/∂λj , ∂E/∂cj , ∂E/∂b2

j

]T
.

Step 3:
If the value of (9) changes significantly, set
Ω(t)=Ω(t+1), and return to step 1.
Step 4:
Evaluate the posterior probabilityf (θj |xi) given in
(18) to obtain the class labels of the pixels.

definition of the PR is given by

PR(Stest, {Sk}) =
2

N (N − 1)

∑

i<j

[cijpij

+(1− cij) (1− pij)] ,

wherecij=1 when the pixelsi and j belong to the same
cluster in the test imageStest, otherwisecij=0. The values
of PR are bounded by the interval [0, 1], where the larger
PR values indicate better segmentation results.

A. Synthetic Images

A three-class synthetic image shown in Fig.1(a) is used
to demonstrate the robustness of the proposed model
against noise. The image has128× 128 image resolution
with luminance values [55, 115, 225]. The image shown in
Fig.1(b) is obtained by corrupting the original image with
the mixed noise. The image is first corrupted by Gaussian
noise (0 mean, 0.01 variance), then the salt& pepper noise
(sp=0.05) is added. The image segmentation results are
shown in Fig.1(c)-(j), respectively. It can be seen from
Fig.1 the proposed model reduces the noise significantly.
The information of the edges and contours is kept very
well in the segmentation results of the proposed model.
To further test the effectiveness of the proposed model,
the experimental results obtained with various levels of
mixed noise are given in Table 1. In order to reduce the
influence of the the randomness of the added noise and
the sensitivity of the initialization, we conduct the every
test10 times and the averages of the results are given in
Table I. It can be seen from Table I, the proposed model

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1753

© 2013 ACADEMY PUBLISHER



has a lower MCR than any other model. The experiments
indicate that the proposed model is more robust against
noise than the other models.

In the second experiment, a synthetic four-class (K=4)
image (128×128 image resolution) with luminance values
[0, 85, 170, 255] is used to test which is shown in Fig.2(a).
The image is first corrupted by Gaussian noise (0 mean,
0.005 variance), then the salt& pepper noise (sp=0.03)
is added. The corrupted image is shown in Fig.2(b). The
segmentation results of all models are shown in Fig.(c)-(j).
It can be seen that the results of the mixture models which
consider the spatial information are better than GMM.
The proposed model obtains lower MCR than any other
model. It demonstrates that the proposed model is more
robust against noise compared with the other models.
The averages of the segmentation results based on the
image shown in Fig.2(a) which is corrupted by varying
levels of noise are given in Table II. It can be seen from
Table II, the proposed model yields a lower MCR and its
effectiveness and robustness outperforms any other model
under all levels of noise.

B. Natural Images

It is a difficult and challenging task to segment the
natural images. It is also hard to provide a good model to
segment objects such as humans, animals, trees, build-
ings, etc, for the image segmentation models. In this
experiment, we choose some natural grayscale images
taken from the Berkeley image segmentation database
[28] to test for visual and quantitative purposes. Each
image of the image database has481×321 pixels. Several
manual segmentation ground-truth images are provided
for each image. In these test, some grayscale images with
or without artificial noise are used to evaluate the per-
formance of the proposed model (SVStMM), compared
with K-means, GMM, SVFMM, DCASV, CLP, BLP and
SNGMM.

Firstly, six images are chosen to apply to visual eval-
uation of the image segmentation results. The visual
segmentation results of these images are shown in Fig.3.
Three images without noise are shown in the first column
to the third column of the first row in Fig.3, another
three images corrupted by mixture noise are shown in
the forth column to the sixth column of the first row
in Fig.3. The last three images are first corrupted by
Gaussian noise (0 mean,0.002 variance) and then salt &
pepper noise (sp=0.03) is added to corrupt the images.
The segmentation results of the models are shown in
the second row to the ninth row of the Fig.3. It can be
seen from the image segmentation results of the images
without noise, the information of the contours and edges
of the segmentation results of the proposed model is kept
very well compared with any other model. For example,
there are three classes (K = 3) in the third image,
they are “snow”, “background” and “wolf”. As can be
seen, the proposed model can better classify with more
detail along the sharp edge between the “background” and
“snow”, and the “snow” and the “wolf”, as compared with

the other models. As regards the segmentation results of
the K-means, GMM, SVMM, DCASV, CLP, BLP and
SNGMM of the images with mixture noise, the noise
is not clearly reduced. Obviously, the proposed model
reduces the noise significantly. There are two classes in
the forth image, they are the sky and objects. There are
much noise in the segmentation results except for the pro-
posed model. The sky and the objects can be distinguished
very well of the segmentation results of the proposed
model. As concerns the sixth image, compared with these
state-of-art models, the proposed model reduces the noise
significantly and yields better segmentation result which
characterizes by homogeneous segmentation regions and
sharp segmentation boundaries.

Next, thirty images taken from the Berkeley image
segmentation database without and with artificial noise
are applied to quantitative evaluation. The PR value is
used to quantify the segmentation results. The PR value
of the segmentation results is given in Table III. It can be
seen from Table III, the differences of the segmentation
results of the images without noise are relatively small
for all models. But under the noise conditions, the PR
values of the proposed model are larger than any other
model. The experiment indicates that the proposed model
is more robust against noise than the other models. The
label probability proportion model of the proposed model
incorporates the effective spatial relationships between
the pixels, therefore the proposed model produces better
segmentation results.

V. CONCLUSIONS

In this paper, we propose an image segmentation model
which takes into account the spatial information of the
pixels. The component function is Student’s t-distribution
which is a robust alternative to Gaussian distribution.
Furthermore, the pixels’ label probability proportions are
explicitly modelled as probability vectors, thus a repara-
tory project step is avoided. We use the gradient descend
method to estimate the parameters of the proposed model.
The experiments conducted on both the synthetic images
with mixture noise and natural images with and without
noise show that the proposed model obtains better results
than some models. It proves that the effectiveness and
correctness of the proposed model. It also demonstrates
that the proposed model effectively captures the spatial
relationships between the pixels in an image.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. First experiment (128×128 image resolution). (a)The original image. (b) Noise image with Gaussian noise (0 mean, 0.005 variance) and
salt&pepper(sp=0.08). (c)K-means (MCR=11.73%). (d) GMM (MCR=11.73%). (e) SVFMM (MCR=8.26%). (f) DCASV (MCR=9.74%). (g) BLP
(MCR=6.49%). (h) CLP (MCR=7.03%). (i)SNGMM (MCR=6.37%) (j) SVStMM (MCR=2.01%)

TABLE I
THE COMPARISON OF THE MCR FOR THE FIRST EXPERIMENT

Methods Gaussian Noise( 0 mean,var 0.01) + salt& pepper(sp)
sp=0.07 sp=0.09 sp=0.11 sp=0.13 sp=0.15 mean

K-means 13.05% 14.18% 15.57% 16.97% 18.46% 15.65%
GMM 13.08% 14.28% 15.75% 17.27% 18.85% 15.85%
SVFMM 9.55% 10.73% 12.19% 13.51% 15.09% 12.21%
DCASV 11.03% 12.23% 13.74% 15.25% 16.89% 13.83%
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SVStMM 2.29% 2.67% 3.31% 4.09% 5.18% 3.51%

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Second experiment (128×128 image resolution). (a)The original image. (b) Noise image with Gaussian noise (0 mean, 0.005 variance) and
salt&pepper(sp=0.03). (c)K-means(MCR=3.49%). (d) GMM (MCR=5.72%). (e) SVFMM (MCR=3.86%). (f) DCASV (MCR=4.21%). (g) BLP
(MCR=2.89%). (h) CLP (MCR=2.69%). (i) SNGMM (MCR=2.08%) (j) SVStMM (MCR=1.65%)
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TABLE II
THE COMPARISON OF THE SECOND EXPERIMENT IN TERMS OF MCR

Methods Gaussian Noise( 0 mean,var) + salt& pepper(sp)
var=0.006 var=0.007 var=0.008 var=0.009 var=0.010

mean
sp=0.05 sp=0.07 sp=0.09 sp=0.11 sp=0.13

K-means 5.81% 8.20% 10.73% 13.41% 16.13% 10.86%
GMM 32.41% 33.27% 34.48% 35.62% 36.34% 34.22%
SVFMM 5.82% 8.27% 10.60% 12.77% 15.18% 10.53%
DCASV 6.98% 10.43% 13.77% 17.84% 22.26% 14.26%
CLP 4.68% 6.53% 8.67% 10.84% 13.30% 8.80%
BLP 4.37% 6.01% 7.98% 9.87% 12.21% 8.09%
SNGMM 3.46% 4.98% 6.92% 8.99% 11.24% 7.12%
SVStMM 2.61% 3.54% 4.78% 5.86% 7.67% 4.89%

Fig. 3. Segmentation examples of different methods based on the Berkeley segmentation grayscale database.The first row, from first column to
the third column: the original images, from the fourth column to the sixth column, the original images corrupted by Gaussian noise (0 mean, 0.002
variance) and salt& pepper (sp=0.03). From the second row to the ninth row, each row shows:K-means, GMM, SVFMM, DCASV, CLP, BLP,
SNGMM, SVStMM.
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TABLE III
COMPARISON OF SEGMENTATION RESULTS BASED ON BERKELEY GRAYSCALE IMAGES: PR INDEX.

Image N K K-means GMM SVFMM DCASV CLP BLP SNGMM SVStMM
167062 - 3 0.9505 0.8914 0.8999 0.9118 0.9162 0.9341 0.9284 0.9547
300091 - 2 0.6171 0.6186 0.6131 0.6180 0.6165 0.6164 0.6170 0.6189
126007 - 4 0.7187 0.7037 0.7231 0.7088 0.7172 0.7181 0.7130 0.7204
175032 - 6 0.5299 0.5305 0.5312 0.5307 0.5310 0.5313 0.5293 0.5316
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