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Abstract—The Multi-Depot Vehicle Routing Problem 
(MDVRP) is a generalization of SDVRP, in which multiple 
vehicles start from multiple depots and return to their 
original depots at the end of their assigned tours. The 
MDVRP is NP-hard, therefore, the development of heuristic 
algorithms for this problem class is of primary interest. This 
paper solves Multi-Depot Vehicle Routing Problem with 
Cellular Ant Algorithm which is a new optimization method 
for solving real problems by using both the evolutionary 
rule of cellular, graph theory and the characteristics of ant 
colony optimization. The simulation experiment shows that 
the Cellular Ant Algorithm is feasible and effective for the 
MDVRP. The clarity and simplicity of the Cellular Ant 
Algorithm is greatly enhanced to ant colony optimization. 
 
Index Terms—Multi-Depot Vehicle Routing Problem 
(MDVRP), Cellular Ant Algorithm, Graph theory 

I.  INTRODUCTION OF MDVRP 

The Vehicle Routing Problem (VRP) has been one of 
the central topics in optimization since Dantzig proposed 
the problem in 1959 [1]. The Vehicle Routing Problem 
involves the design of a set of minimum-cost vehicle 
routes, originating and terminating at depot, for a fleet of 
vehicles that services a set of customers with known 
demands. Each customer is serviced exactly once and, 
furthermore, all customers must be assigned to vehicles 
without exceeding vehicle capacities [2] [3]. 

In the Single-Depot Vehicle Routing Problem 
(SDVRP), multiple vehicles leave from a single location 
and must return to that location after completing their 
assigned tours. The Multi-Depot Vehicle Routing 
Problem (MDVRP) is a generalization of SDVRP, in 
which multiple vehicles start from multiple depots and 
return to their original depots at the end of their assigned 
tours. 

The MDVRP is NP-hard [4] [5], therefore, the 
development of heuristic algorithms for this problem 
class is of primary interest.  

A.  The Description of MDVRP on Graph 
Definition 1 (graph)  In the most common sense of the 

term, a graph is an ordered pair G = (V, E), comprising a 
set V of vertices or nodes together with a set E of edges 
or lines, which are 2-element subsets of V. 

Definition 2 (undirected graph) An undirected graph is 
one in which edges have no orientation. The edge (a, b) is 
identical to the edge (b, a), i.e., they are not ordered pairs, 
but sets {u, v} (or 2-multisets) of vertices. 

Definition 3 (degree) In graph theory, the degree of a 
vertex of a graph is the number of edges incident to the 
vertex, with loops counted twice. The degree of a vertex v 
is denoted deg(v). 

Definition 4 (regular graph) In graph theory, a regular 
graph is a graph where each vertex has the same number 
of neighbors; i.e. every vertex has the same degree. 

Definition 5 (complete graph) In the mathematical 
field of graph theory, a complete graph is a simple 
undirected graph in which every pair of distinct vertices 
is connected by a unique edge. The complete graph on n 
vertices has n(n − 1)/2 edges (a triangular number). It is a 
regular graph of degree n − 1. 

MDVRP is defined by complete graph G = (V, E). V is 
a set of vertices. Vertex set V is divided into two subsets 

),...,,( 21 nc vvvV =  and ),...,,( 21 Mnnnd vvvV +++= . Vc is a 
set of vertices composed of customers and Vd is a set of 
vertices composed of depots. For each customer node, 
there is a negative demand iq . For each depot node, there 

are ),...,1( MiKi =  vehicles. Each vehicle k has its 

load w . ),( ji VVE =  is a set of edges. For each edge 

),( ji VV  has a nonnegative cost ijc which indicates the 
cost from customer i to customer j. 

Note: For all the i, j, jiij cc = ; For all the i, j, k, 

jkijik ccc +≤= . 

 B.  The model of MDVRP 
First, the following variable is defined: 
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, If the vehicle k of the depot m 
runs from customer i to customer j   

, otherwise                                     (1) 
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In equation (2), ijc  represents the cost from customer i 

to customer j, which usually mean the distance from 
customer i to customer j. m is the number of the depot 
and k is the number of the vehicle. Equation (3) 
guarantees that the number of vehicles starting from the 
depot cannot exceed the vehicles owned by the depot, in 
which mK  represents the total vehicles of the m depot. 
Equation (4) ensures that the vehicles start from their 
respective depot, and return to the same depot. Equation 
(5), (6) guarantees that each customer is only visited by 
one vehicle only one time, but it is allowed that other 
vehicles pass the customer, and there is no limit of the 
pass times. Equation (7) ensures that the total demand of 
each customer is no more than the capacity of one vehicle 
on each distribution lines. Equation (8) guarantees that 
vehicles can't directly run from one depot to another 
depot. 

II.   THE IMPROVEMENT OF CELLULAR AUTOMATON FOR 
THE CELLULAR ANT ALGORITHM 

A. Introduction of Cellular Automaton 
A cellular automaton (abbrev.CA) is a discrete model 

studied in computability theory, mathematics, physics, 
complexity science, theoretical biology and 
microstructure modeling. It consists of a regular grid of 
cells, which are in one of a finite number of states, such 

as "On" and "Off" (in contrast to a coupled map lattice). 
The grid can be in any finite number of dimensions. For 
each cell, a set of cells called its neighborhood (usually 
including the cell itself) is defined relative to the other 
cell. An initial state (time t=0) is selected by assigning a 
state to each cell. A new generation is created (advancing 
t by 1), according to some fixed rule (generally, a 
mathematical function) that determines the new state of 
each cell in terms of the current state of the cell and the 
states of the cells in its neighborhood. Typically, the rule 
for updating the state of cells is the same for each cell and 
does not change over time, and is applied to the whole 
grid simultaneously, though the exceptions are known. 

A CA consists of four components: cell, state, cellular 
space, neighborhood.  

Definition 6 (cell). Cell is the basic components of CA. 
Cell distributes in one dimensional, two dimensional or 
multidimensional discrete Euclidean lattice. 

Definition 7 (cellular space). It is a lattice of N 
identical finite-state machines (cells), each with an 
identical pattern of local connections to other cells for 
input and output, along with boundary conditions if the 
lattice is finite.  

Definition 8 (neighborhood). For each cell, a set of 
cells is called its neighborhood (usually including the cell 
itself) defined by the specified rule. 

Definition 9 (rule). Rule(transition function) gives the 
update state for each cell.   

An cellular automaton is represented formally by a 4-
tuple ),,,( fNSLA = , where 

L is cellular spaces; 
S is a finite set of states; 

),...,,( 21 nsssN = , n is the neighbor number of 
center cell; 

is represents a state of cell; 

f is the transition function, that is, f:  ns → S. 
In order to use cellular automata in solving MDVRP, it 

is needed to combine CA and graph theory.  

B. The Combination of Cellular Automaton and Graph 
 
Firstly, all the vertices in graph will be defined as cells 

which are the basic components of CA. So cellular spaces 
in graph is  

{ }nvvvL ,...,, 21= . 

{ }nvvv ,...,, 21  is the set of vertices of G = (V, E). 
 In CA theory, the von Neumann neighborhood and the 

Moore neighborhood are the two most commonly used 
neighborhood types. 

In cellular automata, the von Neumann neighborhood 
comprises the four cells orthogonally surrounding a 
central cell on a two-dimensional square lattice. The 
neighborhood is named after John von Neumann, who 
used it for his pioneering cellular automata including the 
Universal Constructor.  

The Moore neighborhood comprises the eight cells 
surrounding a central cell C on a two-dimensional square 
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lattice. The neighborhood is named after Edward F. 
Moore, a pioneer of cellular automata theory.  

Of course, there are other neighborhood types, but the 
basic principle of these types is that cells can influence 
each other, whose distance between each other is short. 
The principle can be called the close principle. At certain 
times, the close principle is right to biological cells in the 
body. But in some cases, for two cells which are farther 
together, the interaction between them are relatively large. 

The close principle is not fit for the cellular automaton 
on graph. In graph, obviously to two vertices which are 
close together, if there is no edge directly connected, the 
interaction between them is weak. Also, to two vertices 
which are farther together, if there is an edge connecting 
them directly, the interaction between them is relatively 
great. For example, in Figure 1, vertex 1 is closer to 
vertex 5 than vertex 2, but there is no edge directly 
connecting vertex 1 and vertex 5, so the interaction 
between vertex 1 and vertex 5 is weaker than the 
interaction between vertex 1 and vertex 2. The same 
relation lies in vertex 1, vertex 2 and vertex 5; vertex 1, 
vertex 4 and vertex 5; vertex 3, vertex 2 and vertex 6; 
vertex 3, vertex 4 and vertex 6. 

Finally, in graph, the definition of central cell’s 
neighborhood is  

 
( ) { }xxxx vvEvvEvvvvN =∨∈∨∈= ),(),( . 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.  The cellular neighborhood on graph 

III.  THE MODEL OF ACO ON GRAPH 

The framework of ACO is inspired by the observation, 
made by ethologists, that ants use pheromone trails to 
communicate information regarding the shortest paths to 
food [6]. The ACO metaheuristic, formally developed by 
Dorigo, Di Caro, and Gambardella draws its inspiration 
from the experimental observations of emergent behavior 
in real ant colonies, such as the research and 
experimentation of Goss et al. on a laboratory-contained 
colony of Argentine ants [7][8].  

Gambardella and Dorigo (1996) have experimented 
with ACS for solving both symmetric and asymmetric 
instances of the TSP [9]. Gambardella, Taillard, and 
Agazzi utilized multiple, cooperative ACS colonies, each 
designed to optimize a specific objective function, for 
solving instances of the VRPTW. Results across 56 
VRPTW benchmark problems were compared with those 

of several other related studies and were found to be 
equally competitive with the best-known solutions [10]. 

Donati et al. has more recently applied the ACS 
algorithm for solving the TDVRP, in which the 
researchers developed the concept of time-dependent 
pheromones by partitioning time into periods during 
which overall network speeds can be considered constant 
and associating differing sets of pheromones to each of 
these sub-space “time slices”. Results showed that this 
time-dependent approach proves quite valuable when 
applied to VRPs with dynamically changing network 
conditions [11].  

Other highly relevant ACO research (besides that of 
ACS) applied to the field of VRP includes the work of 
Bullnheimer, Hartl, and Strauss. The research of this 
group focuses on the heavily related Ant System (AS) 
algorithm for solving the VRP. One of the more 
significant contributions made by this group towards 
using ACO algorithms to solve VRPs is their use of 
candidate lists [12].  

If ant colony is put on graph G = (V, E), For ant k, the 
probability k

ijP of moving from vertex i to vertex j 
depends on the combination of two values, viz., the 
attractiveness ijη  of the move, as computed by some 
heuristic indicating the a priori desirability of that move 
and the trail level ijτ  of the move, indicating how 
proficient it has been in the past to make that particular 
move. 

In general, the k'th ant moves from vertex i to vertex j 
with probability 

 
( )( )
( )( )∑

= βα

βα

ητ
ητ

ijij

ijijk
ijP , 

Where , 

ijτ  is the amount of pheromone deposited for 
transition from cell i to j,  

0 ≤ α is a parameter to control the influence of ijτ , 

 ijη  is the desirability of vertex transition ij (a priori 
knowledge, typically 1 / cij, where cij is the 
transportation cost between vertex i and vertex j ), 

 β ≥ 1 is a parameter to control the influence of ijη . 
Pheromone update is as follows: 
When all the ants have completed a solution, the trails 

are updated by  
k
ij

k
ij

k
ij ττρτ Δ+−= )1( , 

Where, 
 k

ijτ is the amount of pheromone deposited for a 
transition i to j,  
)0(ijτ  is the initial pheromone level assumed to be a 

small positive constant distributed equally on 
all the paths of the network since the start of 
the survey,  

1 

2

4

35 6 
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ρ is the pheromone evaporation coefficient,  
k
ijτΔ is the amount of pheromone deposited,  

⎩
⎨
⎧

=Δ
0

/ kk
ij

LQ
τ  

where Lk is the cost of the k'th ant's tour (typically 
length) and Q is a constant. 

IV.   THE CELLULAR ANT ALGORITHM FOR MDVRP 

 The Cellular Ant Algorithm combines ant colony 
optimization with cellular automaton to refrain from 
falling in to partial optimization while the good 
optimization ability of ant colony optimization is reserved. 

ZhuGang first completely proposes Cellular Ant 
Algorithm for function and discrete systems optimization 
based on ant algorithm and cellular automata in his Ph.D. 
thesis. His research provides a new kind algorithm for 
NP-hard problems and gives convergence proof of the 
algorithm. His paper solves the classical TSP by Cellular 
Ant Algorithm through series of typical instances. The 
computational results show the effectiveness of the 
algorithm in numerical simulation [13]. 

The above algorithm is not designed for MDVRP. The 
Cellular Ant Algorithm for MDVRP is following. 

The thought solving MDVRP with Cellular Ant 
Algorithm is to convert multi-depot problem into single 
depot problem. First, assume that there is a virtual depot, 
and each customer or actual depots are all customers of 
the virtual depot. Then all distribution vehicles set out 
from the virtual depot to each customer. 

Cellular automata ),,,( fNSLA = is constructed on 
n vertex weighted graph G (V, E), where, cellular space is  

{ }Mnnnn vvvvvvL +++= ,...,,,...,, 2110 ; 

0v  represents the virtual depot. nvvv ..., 21  represent 

the customers and Mnnn vvv +++ ,..., 21  represent the depots. 
State set is S = (S_N, S_M) where S_N means that the 
vertex is in initial state, and is not searched by ant; S_M 
indicates that the vertex is in mature state, that is the road 
has been searched by ant. 

But there are four significant differences between 
SDVRP and MDVRP that has a virtual depot, 

(1) The cost (including time, journey, fuel 
consumption, etc.) from the virtual depot to actual depots 
is zero. This point is guaranteed by the following 
expressions,                       

Mnnnjicc jiij +++==== ,...2,1,0,0 . 
(2) The vehicle starting from the virtual depot can only 

be to the actual depots, then finish distribution task 
according to the requirements of the customers. This 
point is guaranteed by the following expressions,  

MnnnjiPk
ij +++=== ,...2,1,0,1 . 

(3) The vehicle finishing distribution task can go back 
to the virtual depot, but its terminal point is recorded as 
the actual depot which the vehicle starts from. 

(4) The vehicle can not service the other actual depot 
after it has serviced one actual depot. This point is 
guaranteed by the following expressions,     

MnnnjniPk
ij +++=== ,...2,1,,...,2,1,0 . 

The overall procedure of the Cellular Ant Algorithm 
for MDVRP is following. 

Step1: initialization: 
t=0, 0,const)0( =Δ= ijij ττ , The m ants is located 

in the virtual depot, NC=0, 0=kw , 0)min( =CA ; 
Step2: let s=1 
for (k=1; k<=m; k++) 
After k ant starts from the virtual depot to the first 

visiting cellular (the actual depot) according to 
probability k

ijP , the state of the first visiting cellular is to 
S-M and the cause of S-M is remembered as k ant; 

Step3: while (the state of all cellulars is not S-M) 
﹛ 
  s=s+1; 
  for (k=1; k<=m; k++) 
       ﹛ 
          According to probability k

ijP , the next 
destination (cellular or customer) is chosen. The k ant is 
moved to cellular j. Next the state of the cellular j is to S-
M and the cause of S-M is remembered as k ant. If 
cellular j is the other actual depot, the 
probability 0=k

ijP .If cellular j is the virtual depot, the 
finding route activity of the ant is stopped. 

﹜ 
﹜ 
 Step4: for(k=1; k<=m; k++) 
if  (the ant k returns to the virtual depot) 
﹛ 
The total path cost kW  of k ant is calculated; the 

minimum cost routes found are updated; the 
cost minCA which corresponds to the minimum cost route 
is recorded. 

﹜ 
For (k=1; k<=m; k++) 
The pheromone is updated; 
Step5: calculates all the )1( +tijτ  
   t=t+1; 
   NC=NC+1; 
   0=Δ ijτ ; 
Step6: if (NC<NC(MAX)) 
    ﹛ 
        all cellulars convert to the state of S _N; 
         back to step1;  
﹜ 
else back to step5 
Step7: The minimum cost routes found are updated; 

the cost minCG which corresponds to the minimum cost 
route is recorded. 

if ant k uses curve ij in its tour
otherwise 
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If (︱ )min()min( - CACG ︱< Given any small positive 
Numbers) 

The minimum cost routes are found and the whole 
program is terminated; 

Else 
Back to step2 

V.   THE SIMULATION EXPERIMENT 

The experimental data is following: coordinates and 
demand of 15 customers are shown in table 1. Vehicle 
number and coordinates of depots are shown in table 2. 

It is assumed that coordinates of the virtual depot are 
(50, 50). The Cellular Ant Algorithm for MDVRP is 
coded in C++ and executed 20 times on a PC. The 20 
results are obtained: 493.64, 488.01, 490.07, 489.35, 
489.94, 489.46, 490.90, 489.04, 489.42, 493.19, 490.86, 
484.23, 487.96, 492.94, 494.43, 490.93, 492.12, 492.04, 
492.50, 492.52. So the shortest distance, that is, the least 
cost is 484.23. The specific situation of the route is 
shown in table 3. 

TABLE I.    NUMBER, COORDINATES AND DEMAND OF CUSTOMERS 

customer 1 2 3 4 5 6 7 8 
X 
coordinate 19 33 73 49 70 27 10 39 

Y 
coordinate 0 3 85 73 94 44 69 25 

demand 1.0 1.8 1.1 0.6 1.9 1.4 1.2 0.2 
customer 9 10 11 12 13 14 15  
X 
coordinate 16 68 10 83 88 32 70  

Y 
coordinate 81 76 57 43 52 58 18  

demand 1.7 0.8 0.9 0.8 1.9 1.6 0.9  

TABLE II.   VEHICLE NUMBER AND COORDINATES OF DEPOTS 

depot A B C 
X coordinate 33 26 57 
Y coordinate 77 30 0 
Vehicle number 3 2 1 

TABLE III.  DISTRIBUTION DATA WITH CELLULAR ANT ALGORITHM 

 

 
 

VI.   CONCLUSIONS 

MDVRP is a typical NP hard problem. The above 
results lack of the optimal solution based on Method of 
Exhaustion to serve as reference, so the optimal solution 
of the paper is uncertain to be the global optimal solution. 
From the experiment process, calculation time that is 
executed on personal computer in each experiment is not 
more than 10 seconds. The short calculation time shows 
that the Cellular Ant Algorithm has a higher efficiency. 
The clarity and simplicity of the Cellular Ant Algorithm 
is of better performance than other methods. At least, it 
can be said that the optimal solution in the paper is global 
satisfied solution. The Cellular Ant Algorithm combines 
cellular automaton and ant colony optimization which 
cooperating together to optimize Multi-Depot Vehicle 
Routing Problem. The above experiment shows that the 
Cellular Ant Algorithm is feasible and effective for the 
MDVRP. 
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origin 
depot 

distribution 
route 

weight 
distribution

distribution 
mileage 

Total 
distribution 
mileage 

A A→9→7→1
1→A 3. 8 73. 76 

484.23 

A A→5→3→1
0→A 3. 8 95. 52 

A A→4→13→
12→A 3. 3 131. 54 

B B→8→2→1
→B 3. 0 81. 86 

B B→6→14→
B 3. 0 57. 55 

C C→15→C 0. 9 44. 40 
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