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Abstract— Software architecture simulators are indispens-
able tools in modern processor design. According to the
granularity of simulation, they can be classified into thefast
functional simulation and the slow detailed one. The detailed
simulator takes far longer time than the functional simulator
when simulating the same workload. Based on the duration
difference of them, we propose a Workload Segmented
Parallel Simulation (WSPS) methodology to accelerate the
detailed simulation by simulating different segments of the
workload concurrently. The results on SPEC2Kint bench-
marks show that, when programs are divided into 64
segments, the speedup is about 11.5, with the relative error
of CPI and L1 cache hit-rate remaining lower than 1.5% and
0.01%, respectively. Also, the analysis indicates that WSPS-
based simulation can achieve even much higher speedup
when using more complicated simulation models, and its
duration can approach that of the functional simulation with
the accuracy remaining acceptable if the workload size is
large enough.

Index Terms— parallel simulation, detailed simulation, func-
tional simulation, acceleration, segment

I. I NTRODUCTION

SOFTWARE architecture simulators are indispensable
in the design of modern processors and computer-

s. According to the granularity of simulation, software
simulators are generally categorized into: 1) functional
simulators, which run to reproduce the functional actions
of the real hardware; 2) detailed simulators, which run
mainly to mimic the inner behaviour of specific compo-
nents such as pipeline and cache hierarchies. The latter is
often used to measure performance metrics such as cache
access statistics at the runtime. Compared with the real
hardware, software simulators run much slower due to
using hundreds of thousands of host instructions to mimic
a single hardware operation. Moreover, all components in
the real hardware run concurrently and collaborate to car-
ry out some tasks. Unfortunately, the software simulators
are often designed as serial programs, and even as parallel
ones, the overhead brought in by the synchronization
among different components is often intolerable, which
even pay off the benefits of the parallel simulation.
As declared by some researches, the fastest functional
simulators are several orders of magnitude slower than
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the direct execution of the hardware, and the detailed
performance simulators are even one or more orders of
magnitude slower than the functional ones. Increasing
enhancement of processors’ computation ability in the
past decade does not improve the situation, while the ever
increasing complexity of the applications makes it even
worse, which makes accelerating the simulation process
an inevitable problem for researchers. On the other hand,
the behaviour of the simulator should match that of the
target hardware system in certain degree. Therefore, the
aim of the study of simulation acceleration is to minimize
the duration and maintain the accuracy of the simulation
at the same time.

To reduce the simulation time, researchers have pro-
posed a wealth of acceleration approaches. Some of them
[1]–[4] use sampling technology to reduce the instructions
to be simulated, and some others parallel the simulation
tasks on parallel platforms, such as FastMP [5] and
WWT II [6]. All these efforts have achieved success
in some degree, but are far from perfect. The first one
demands sophisticated sampling mechanisms and com-
pensation methods to avoid sampling bias, which make it
too cumbersome. And the latter one needs to coordinate
all the components of the system which leads to a
complicated implementation. Its practical performance is
often dramatically pulled down by the synchronization
overhead. furthermore, parallel simulation benefits serial
workloads poorly.

In this paper, we propose a novel Workload Segmented
Parallel Simulation (WSPS) methodology to accelerate
the detailed simulation. The approach speeds up the
detailed simulation by dividing the task into segments and
carrying them out concurrently. In the methodology, the
workload is firstly segmented evenly into N parts (termed
as simulation segment), and thenN simulation instances
are initialized to carry out the detailed simulation with one
for each simulation segment. When all the instances have
completed their simulations, the measurements collected
by all instances are synthesized together to generate the
measurements for the whole workload. This approach can
provide an impressive speedup with a low error rate even
when no further compensation is adopted.

In general, the contributions of the paper are twofold:
1) a novel easy-to-deploy simulation methodology is
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presented to accelerate the detailed simulation, which
provides good performance and accuracy; 2) detailed
measurements and discussions are given for both speedup
and accuracy, and some opinions presented in previous
researches are explained and conformed.

The rest of this paper is organized as follows. Section
II discusses the related work. Section III describes the
approach and gives a quantitative analysis of the speedup
and accuracy. In Section IV, we present the experiments,
and provide the simulation results and analysis. The paper
concludes in section V with a summary of our work and
future directions.

II. RELATED WORKS

Researchers have focus on accelerating detailed simu-
lation for a long time. And a wealth of simulation ac-
celeration technologies are proposed, in which simulation
sampling and parallel simulation are the two typical ones.

A. Simulation Sampling

To shorten the duration of the detailed simulation,
researchers [7] [8] use abbreviated instruction execution
streams of benchmarks as representative workloads. In
this approach, the first few hundred million instructions
are ”fast-forwarded” to avoid the impact of the initial-
ization phase, and then the following several hundred
million or a billion instructions are simulated in detail.
This approach only works when the selected instruction
stream can represent the characteristics of the complete
benchmark. In the first few years of this century, many
researchers presented performance results got from ab-
breviated runs. However, researches like [9]–[14] have
concluded that the results obtained from this approach
may be inaccurate or even misleading design decision
since the behaviour of the abbreviated run may fail to
capture the global variations of the benchmark.

Another approach runs the simulation with smaller
input sets (as in SPEC2K, test or train sets rather than
reference sets are used) to reduce the simulation time. But
its drawback is obvious: the behaviour of the benchmarks
varies with the input sets. Researches [14] [15] have
concluded that the behaviour of the programs varies
significantly between test, train and reference sets for
most programs in SPEC2K benchmarks.

Researchers propose statistical simulation sampling
methodologies to obtain results from complete bench-
marks and input sets, the idea behind which is to speculate
the benchmarks’ behaviour through simulating selected
sections(calledsampling units). In [9], Thomas M. Conte
et al. presented a fast and accurate method for statistical
trace sampling which is termed as state-reduction method.
SMARTS [4] described a sound procedure to construct
minimal sampling sets from full-length benchmarks to
enable fast and accurate performance measurements. In
the method, functional fast-forwarding and warming-up
procedures are used to keep the correct program states.
Although functional warming-up enables accurate per-
formance estimation, it limits SMARTS’s speed. The

checkpoint technique is often used as an alternative to
avoid the slowdown, which yet needs too much space to
keep the program states. To overcome this, Wenisch et al.
[16] proposed live-points as a replacement for functional
warming to reduce simulation turnaround time without
sacrificing accuracy and too much storage space. Ref. [17]
proposed SimPoint, which uses off-line sampling method.
It intelligently chooses the simulation points with a given
performance weight by hot-spot analysis and generates the
performance results by calculating the simulation points
with weight.

The sampling set is large and scattered at all phases
of the program execution; it thus usually represents the
characteristics of the benchmarks closely. Compared with
the abbreviated run, statistical simulation sampling can
provide better accuracy; nonetheless, it requires more
efforts, including program characteristics analysis and
sampling ahead of the deployment (for static sampling)
or just-in-time (for dynamic sampling). Furthermore, it
needs after-treatment to produce accuracy results.

B. Parallel Simulation

As multi-core and multi-processor platforms become
commonplace, parallel simulation have made a big
progress. According to parallel simulation, components or
simulation tasks are simulated concurrently by exploiting
the inherent parallelism of the platforms [18]. Mukherjee
et al. [6] identified key simulator operations and tried to
minimize their dependence on the host. They proposed
a portable, parallel, discrete-event, and direct-execution
simulator–WWT II. Matthew C. Chidister and Alan D.
George [19] presented a distributed simulator for target
CMP platforms based on the Message Passing Interface
(MPI). Barr et al. [20] modified the ASIM infrastructure
to parallel it. Penry et al. [21] discussed how to automate
simulation parallelization and integrate the hardware into
CMP models. In FastMP [5], a novel multi-core simula-
tion method was presented, whose speedup is achieved
by exploiting the characteristics of the homogeneous
multi-processor workloads such as SPECRate. FastMP
simulated a subset of cores in detail and the others
functionally to reduce the simulation workload. It is clear
that, parallel simulation is to accelerate the parts of the
simulation which can run concurrently by exploiting the
parallelism of the host machine, with serial simulation
tasks parallelized (if possible) in certain way.

III. WSPS METHODOLOGY

A. Methodology Proposal

Generally speaking, detailed (or timing) simulation is
at least one order of magnitude slower than the functional
one, and the performance gap can rise up to three or
more orders of magnitude. Simulators used by hardware
vendors such as Intel Corp. for architecture design are
often much slower when the RTL level details are sim-
ulated. Fig. 1 presents the detailed and the functional
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Figure 1. Simulation time: functional vs detailed

simulation time for some typical benchmarks when us-
ing Simplescalar [1] toolkit. In the measurements,sim-
outorder are used for detailed simulation, andsim-fast
and fast-fwd for functional simulation. Thefast-fwd is
the functionalfast-forwarding model insim-outorder and
is slightly more complex thansim-fast since it includes
an additional simulation loop. In Fig. 1, the upper curve
depicts the ratios between the durations ofsim-outorder
andsim-fast for the tested benchmarks, which are almost
all above 20, with the highest one being 27.84. Similarly,
the lower curve depicts the ratios between the durations
of sim-outorder and fast-fwd, which are bigger than 13.
Obviously, the detailed simulations last at least one order
of magnitude longer than the corresponding functional
simulation. Moreover, as our measurements are extraordi-
narily conservative, the ratio can be reach several hundred
when using more detailed timing models.SMARTS [4]
argued that the ratio was 60.

As we know, the measurements of performance metrics
and the time spent on detailed simulation are scattered
through the program execution; therefore the simulation
time can be shortened if the simulation loads are di-
vided into segments, which are measured concurrently
and finally synthesized to generate the measurements of
the whole program. To maintain the accuracy of the
measurements at the same time, the programmer-visible
architectural components must be in the correct states
when each segment’s simulation begins. As in simulation
based on sampling, these states can be maintained with
functionalfast-forwarding or checkpoint. As the duration
ratio between the functional and the detailed simulation
is usually large as indicated above, the time spent on
the functionalfast-forwarding before the measurements
is negligible, and speedup is thus expectable. Moreover,
the approach can provide good and manageable accuracy
as the bias only exists in thecold-start phase in the mea-
surements of each segment. According to this, we propose
the Workload Segmented Parallel Simulation (WSPS)
methodology to accelerate the detailed simulation. The
procedure to deploy the WSPS methodology is as follows:

1) Before the simulation, evenly divide the workload
into N segments (0, 1, 2,..., N-1), with each segment
including almost the same number of dynamic

instructions to simulate in detail.
2) Concurrently initializeN simulation instances num-

bered [0,1,2,...,N-1], and each is assigned one seg-
ment of measurements. Only the instructions in
the segment are simulated in detail with perfor-
mance metrics measured, and all instructions before
the segment in the execution stream are simulated
functionally to keep the correct programmer-visible
architectural states. For instance, in simulation in-
stance [i], segment [i] is simulated in detail and all
the dynamic instructions in segment [0,...,i-1] are
simulated functionally) (see Fig. 2 ).

3) Synthesize the statistics of allN instances to gen-
erate the measurements of the whole program. Dif-
ferent performance metrics are handled in different
ways. For example, the duration of the simulation
equals the maximum of the durations of theN
instances, and the total simulation cycles, the cache
accesses and hits equal the sum of the correspond-
ing counts in allN instances, respectively.

B. Speedup Analysis of WSPS

We give a quantitative analysis of the speedup char-
acteristics of the WSPS methodology for homogeneous
simulation loads. To make it clear, we assume that the
duration of the functional simulation equals1 while the
detailed simulation isT (i.e., the ratio of the duration
between the two simulations isT). According to Fig. 2,
the duration of WSPS-based simulation (termed asTs)
equals the maximum of the durations of allN segments.
And the duration of the segment [i] equals the time spent
on the ’fast-forwarding’ of the segment [0,...,i-1] plus that
spent on the detailed simulation of segment [i], where
i ∈ [0, N). As the program is homogeneous, the time
cost by the detailed and the functional simulation for
each segment isT/N and1/N , respectively. The instance
numberedN − 1 thus has the largest duration as it needs
to ’fast-forward’N −1 segments of instructions and then
simulate the last segment in detail. Moreover, We can
then conclude thatTs = TN−1 = (N − 1 + T )/N . The
speedup (termed as S) is defined as the ratio between the
duration of the normal detailed simulation (T) and that of
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Figure 2. Procedure of WSPS-based simulation
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WSPS-based simulation (Ts), that is,

S =
T

Ts

=
N × T

N − 1 + T
(1)

Equation (1) reveals that the speedup of WSPS-based
simulation is determined by the duration ratioT and the
segment numberN, and the speedupS approachesT asN
approaches+∞. Fig. 3 depicts the relationship between
N andS whenT equals 16 and 32, respectively. And the
following conclusions can be drawn:

1) Given aT, the speedupS grows with the increase
of the segment numberN;

2) Given aN, the speedupS grows with the increase of
T, and a biggerN leads to more significant influence
on S whenT varies.

Given a program, quantity of instructions in each
segment decreases when the segment numberN increases.
Moreover, whenN is above the threshold determined by
the accuracy, the segment is too small and the effect of
the cold-start becomes non-negligible which introduces
a significant error. In a word, the maximum segment
number available to deploy the simulation for a workload
is determined by the accuracy required, and a higher
accuracy results in a lower segment number, and vice
versa.

C. Accuracy Analysis of WSPS

Compared with the statistical sampling simulation,
WSPS-based simulation introduces onlycold-start bias
without any sampling bias mentioned in [9]. Now we
take the hit-rate of L1 data cache (termed as dL1) as an
example to quantitatively analyse the bias introduced by
the cold-start phase of each segment.

The error of the measurement of the dL1 hit-rate is
expressed with relative error (RE), which is defined as

RE(Hr) =
Hr −Hr

′

Hr
(2)

where Hr is the real hit-rate of the program’s dL1
access andHr

′

is the hit-rate measured with the WSPS
methodology. Accompanied with the fact the bias of the
total accesses to the dL1 introduced bycold-start is below
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Figure 3. The relationship betweenS and N whenT = 16, 32

1% and the definition of hit-rate, the relative error of the
hit-rate of dL1 access is represented as the ratio between
the total hits measured and the real ones, that is,

RE(Hr) ≈
∆(Nh)

Nh

(3)

whereNh is the real total hits of dL1, and∆(Nh) is the
bias of the measurement ofNh, which equals the total
bias introduced by measurements of allN segments.

For homogeneous loads, hit-rates of all segments are
identical, and the frequency of load/store instructions
(termed asF) is constant, which means there is one
load/store in everyF dynamic instructions. Therefore,
the total hits of dL1 access in each segment equals
Ns × Hr/F , whereNs is the number of instructions
included in each segment. Then (3) is transformed as
follows,

RE(Hr) =

∑n−1
i=0 ∆(N i

h)× F

n×Ns ×Hr
(4)

And the relative error of the hit-rate can be further
expressed as follows,

RE(Hr) =
1

n

n−1∑
i=0

RE(Hr
′

i)

≤ max(Hr
′

0, Hr
′

1, ..., Hr
′

n−1)

(5)

As indicated by (5), the relative error of the program’s
hit-rate is no more than the maximum of those of the
segments. Therefore, if the relative error of the mea-
surement in each segment satisfies the desired accuracy,
the accuracy of the complete measurement will also be
satisfied.

With a given accuracy, the bigger the bias introduced by
thecold-start is, the larger the segment size is demanded.
The largest bias arises when, in the normal running, all
blocks in all sets of the cache are at least accessed once
in current segment and contain valid data at the moment
when the measurement of current segment begins. In this
case, the deviation of hits isS × A, whereS is the set
count of the cache ,andA is the association.

Based on the analysis above, the hit-rate of the dL1
access for segment numberedi equals the ratio of the
variation and the real hits of this segment, that is,

RE(Hri) =
S ×A

Ns ×Hr/F
(6)

And from (6) , the minimal size of the segment
numberedi satisfying a given accuracy is defined as

Ns =
F × S ×A

RE(Hri)×Hr
(7)

When F, S, A and RE(Hri) are set to be 5, 128,
8 and 10−5 respectively, andHr is no less than 99%,
which is a reasonable assumption for L1 Cache for most
applications, (7) indicates thatNs is about5∗108. For L1
instruction cache(termed as iL1), it is accessed every time
the instruction fetch occurs, thusF = 1. And it is clear
from (7) that, for identical accuracy, dL1 demands a big-
ger segment size and determines the minimal segment size
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available. As told by some researches [15], the average
dynamic instruction size of the programs in SPEC92int,
SPEC95int and SPEC2Kint is 1.3, 64 and several hundred
billion, respectively. Therefore, if WSPS-based simulation
is performed on these benchmarks, the segment number
available is 260 and above with an error rate of10−3. If
T equals 16, the speedup of WSPS-base simulation above
the tranditional deployment will be impressively no less
than 15. Moreover, we can see from (1), with a givenT,
the promotion of speedup becomes non-significant when
the segment numberN is big enough, which implies that
WSPS-based simulaton can achieve a good speedup with
a reasonable segment number.

D. Effectiveness of WSPS for Real Programs

Our discussions on speedup and accuracy of WSPS
above are based on the assumption that the load is
homogeneous in both execution time and distributions
of performance metrics. In the real world, absolutely
homogeneous programs are rare if ever exist; therefore,
the measurements sometimes deviate from the ideal ones.
As shown above, the duration of WSPS-based simulation
mostly equals the duration of the last simulation instance.
Therefore, if the running time of the benchmark is mostly
spent at the tail of the execution, the speedup of WSPS-
based simulation will not be so significant. Fortunately,
as claimed by the former proposal [22], most programs
in the real world spend their execution time mostly on
the execution of the tasks, which lies in the middle of
the program execution. Hence, when the WSPS method-
ology is deployed on these programs, the simulation
of the instance determining the duration of the whole
program overlaps with other instances’ functional ’fast-
forwarding’, and thus the total simulation time decreases.
That means, the WSPS methodology can benefit most
programs. Discussions presented in Sect. III B can be used
to predict to what degree the timing simulation can be
speeded up and to what degree we can trust the prediction
is explained in Sect. III C.

It is noted that, if we treatNs andHr in (7) as the
size and hit-rate respectively of a specific segment under
consideration, it also holds. Also, theF value is usually
nearly unchanged even for heterogeneous program, so
for a given accuracy, that is,RE(Hri) can be viewed
as a constant, onlyHr affectsNs in (7). In this case,
multiplying a factor (for example 10) to the numerator of
(7) will be enough to cover almost all possible changes
of Hr in heterogeneous programs. And with the fact that
programs in reality are usually large enough, it is easy
to draw the conclusion that a much (may be hundred or
thousand times) larger segment size than that deduced
by (7) is usually available to achieve a given speedup
and maintain sufficient accuracy. Therefore, WSPS can be
viewed as an perfect choice to speedup timing simulation
of both large homogeneous and heterogeneous programs.

IV. EVALUATION

To verify the practicability of the methodology and
measure the actual speedup of WSPS-based simulation,
we deploy the WSPS methodology on plenty of bench-
marks and then measure the typical performance metrics.

A. Hardware and Software Environment

We evaluate the WSPS methodology in the context of a
multi-issue out-of-order simulator called SegAcc, which
includes a functional ’fast-forwarding’ model and is de-
veloped based on thesim-outorder model in SimpleScalar
3.0 [1]. The hardware and software used in the experiment
are listed in Table I . It is noted that when the segment
numberN exceeds the cores on the host (Nh), at mostNh

instances are initialized to simulate concurrently at a time,
termed as a warp, and segments are simulated warp after
warp until all of them are completed. This deployment
avoids the limitations of the hardware, which implies that
the WSPS methodology can be easily deployed on a wide
range of platforms, from low-end PCs to clusters.

The detailed simulation model used here is based on
sim-outorder with some modifications as show in Table
II.

As indicated by (1), the speedup of WSPS-based simu-
lation depends on the time ratio, which is determined by
the complexity of the timing model. In our deployment,
however, we do not complicate deliberately the time
model to achieve a better speedup. Therefore, the speedup
we display here is quite conservative, and the actual
speedup can be more striking with a more detailed timing
model.

B. Benchmarks

In the measurements, we use SPEC2Kint and Core-
mark benchmarks to evaluate our WSPS methodology.

TABLE I.
HARDWARE AND SOFTWARE CONFIGURATION

Hardware Software
processor: Intel Quad Q6600, 2.4GHz OS: Ubuntu 8.10
(i/d)L1 Cache: 64KB, 8-way the Kernel: 2.6.28
uL2 Cache: 8MB, 8 way Compiler: Gcc-4.3
Memory: 4G DDR2 Compile Option: -O0

TABLE II.
CONFIGURATIONS OF THE DETAILED SIMULATION MODE

Target ISA simulated PISA (MIPS-like ISA)
The pipeline 6 stages(fetch, dispatch, issue, refresh,

writeback, commit)
branch predictor Bimodal predictor with 2048 entries
Cache(dL1/iL1) 128-set, 8-way, 32-byte block, LRU,

Write-back
Cache(uL2) 2048-set, 8-way, 32-byte block, LRU,

Write-back
Memory latencies 18 cycles for the first chunk and 2 cycles

between remaining chunks
Other configurations default values provided bysim-outorder,

for example, fetch/decode/retire width is
4 and size of register update unit (RUU)
is 16
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As the cross compiler is too old, several programs from
SPEC2Kint do not run correctly on SegAcc, so we leave
them to our future improvement and just skip them in
current measurements. To evaluate the effect of program
size on accuracy, we choose Coremark [23], which is
an open source benchmark to measure the performance
of CPU used in embedded systems. The reason why we
chose it instead of programs from SPEC2Kint is that its
program size is easy to scale with different iterations and
it is homogeneous in program behaviour. Table III shows
some useful program attributes in our measurements. All
the programs listed in the table are deployed on SegAcc
and the CPI, hit-rates of the (i/d)L1/(u)L2 caches and
iTLB/DTLB of each program are measured. To reduce
the durations of the measurements, we fed the SPEC2Kint
benchmarks withtest input set, instead oftrain or ref-
erence set. From the following discussions, we will see
that, when thetrain or reference input set is used, the
methodology can provide even higher accuracy.

C. Speedup Evaluation

As indicated in (1), the ideal speedupS grows with
the increase of the segment numberN, and approaches
T when N is big enough. Fig. 4 depicts the speedup
when programs are divided into 2, 4, 8, 16, 32 and 64
segments, respectively. As shown, the speedup measured
matches the trend of the ideal one whenN varies, which
can be concluded when comparing the left curves with
their counterparts on the right side. When considering the
values ofT in Table III and the speedups revealed in Fig.
4, it is easy to conclude that with a givenN, a biggerT
can produce a bigger speedup (S) as revealed by (1). For
example,175.gcc and 197.parser have biggerT (15.66
and 16.10, respectively) than the other five benchmarks,
so their speedups (S) are also bigger.

Our measurements also show that the duration of
WSPS-based simulation equals that of the instance num-
beredN-1 in almost all cases, and the detailed simulation
is in fact at least one order of magnitude slower than the
functional one. We can then conclude that the detailed
simulation of the last segment can often determine the
duration and the assumption we made for (1) is hence
reasonable in most cases.

TABLE III.
ATTRIBUTES OF THEBENCHMARKS

Program name Instruction size T
164.gzip 4351546993 14.92
175.vpr 3227211462 13.80
176.gcc 2410588278 15.66
181.mcf 405724024 13.12
197.parser 387542103 16.10
255.vortex 12491133639 13.09
256.bzip2 23661497915 13.44
Coremark From 1546523446(1K-ieration)

to 5154877237(10k-iteration)
approximate
9
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Figure 4. speedup vsN : Measured(left) and theoretical(right)

D. Accuracy Evaluation

We have just discussed the speedup of WSPS-based
simulation, and we will go further to discuss the relation-
ship between accuracy and segment number, segment size
and program size, respectively.

The accuracy of the measurement of metricV is eval-
uated quantitatively withrelative error (RE(V )), which
can be defined as:

RE(V ) =
V − Vt

V
(8)

whereV is the real value, andVt is the one measured.
Accuracy vs Segment Number.Fig. 5 depicts theREs of
CPI and hit-rates of dL1, iL1, uL2, iTLB when different
segment numbers are used. In all measurements, they are
no more than1.4%, 6.38∗10−5, 0.02%, 28.7%, 2.1∗10−6

and 1.52 ∗ 10−5, respectively. It also reveals that, for a
given metric such as the CPI, the relative error grows with
the increase of the segment numberN. Two factors can
account for this. Firstly, in WSPS-based simulation, errors
are only brought in by thecold-start phase of the detailed
simulation of every segment, and thecold-start bias grows
when the segment numberN increases, as a biggerN
leads to a smaller segment size and thus fewer instructions
amortize thecold-start effect in each segment. Secondly, a
bigger segment number means that morecold-start phases
are included in the final measurements, and the accuracy
is thus decreased as indicted in (4).

Fig. 5 also tells that the patterns of the uL2 access
and hit vary greatly for different benchmarks. The relative
error rates of uL2 hit-rate for most programs are no more
than 6%, expect for 197.parser, which is 28.8%. The
difference in the pattern of L2 cache access accounts for
this. Accesses to uL2 in197.parser are rarer, about one
in every 341 instructions and the hit-rate of uL2 cache
is also low, about68%. For programs like197.parser,
the significant error of the uL2 measurements comes
from: 1) the cold-start bias of the access to uL2 cache
in detailed simulation of every segment, which is not
compensated by further accesses in the same segment,
either because the segment is too small or the access
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Figure 5. Relative Error vs Segment Num

frequency is too low; 2) the low hit-rate, which enlarges
the relative error as indicated by (6). Our studies also
show that, with functional warming during functional fast-
forwarding and compensation strategies such as treating
the first access to uL2 cache as hit, the bias of L2 cache
related measurements can be decreased significantly when
the error is already large.

The reasons why the error of the uL2 measurements is
much more significant than other measurements such as
CPI and hit-rates of the L1 cache are explained as follows:

1) Based on intuitive judgments, as the L2 cache is
accessed much rarer than the L1 cache, which is
only about one in every 100 iL1 cache accesses,
its hit-rate will be more sensitive to the variation
of the total hits than the L1 cache as indicated by
the definition of hit-rate. And we confirm this in
(6), which indicates that a much larger set sizeS
(usually ten times larger than dL1 cache), a higher
access frequencyF (more than 100 times larger than

iL1 access) and a lower hit-rate of L2 cache can
lead to a lower accuracy with the identical segment
numberN.

2) In the cache model used in the measurements, every
miss and write-back of the L1 cache causes a
L2 cache access. In WSPS-based simulation, every
miss of the L1 cache access in thecold-start phase
of the detailed simulation of every segment leads to
a L2 cache miss which may be avoidable in the tra-
ditional simulation as the L1 access hits. And biases
of both iL1 and dL1 measurements are brought into
the uL2 measurements as separated L1 and unified
L2 cache are adopted in our deployment. Moreover,
the access of L2 cache is much rarer than that of
L1 cache. Therefore, the segment numberN affects
the hit-rate more significantly.

From our measurements and analyses, it can be con-
cluded that WSPS-based simulation shows excellent per-
formance in both speedup and accuracy. And our study
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also shows that, for programs with few L2 cache accesses
and hits, further compensations are required to get more
accurate L2 cache measurements.
Accuracy vs Segment Size.We now discuss the relation-
ship between accuracy and segment size. As revealed in
(6), the accuracy grows with the increase of the segment
size. Our measurements also follow the trend, as shown
in Fig. 6. We also compare the results with the theoretical
values calculated by (6), and it shows that the practical
error rate is always below the corresponding ideal value,
and the error rate decreases with the growth of the
segment size. Therefore, we can draw the conclusion that
the error in our measurements is controllable, and can be
limited according to the value as calculated by (6).

It is noted that, the results of CPI, hit-rates of dL1, uL2
and dTLB of 164.gzip seem anomalous in Fig. 6. This
can be explained as follows: when the segment number
is fixed to be 16 and the segment size is small, only a
small piece of code is simulated. For164.gzip, this piece
of code may only include the initialization phase, which
acts quite differently in the way to access the data cache
and data TLB, so the dL1 and dTLB measurements are
not consistent. Moreover, the pattern of the dL1 access
affects the uL2 cache and the simulation cycles, which
leads to abnormal results in the measurements of the
hit-rate of uL2 and CPI. However, the iL1 and iTLB
measurements are not quite affected by the program’s data
access pattern, so they follow the trend. We believe that,
when the segment size is big enough to cover sufficient
code other than the initialization phase, the measurements
will also follow the trend. We conform this by extra
measurements as shown in Fig.7. It is clear that, when the
segment size is bigger than 0.5 million, all measurements
of 164.gzip also follow the trend.
Accuracy vs Program Size.Fig. 8 pictures the accuracy
trend ofCoremark when the program size grows and the
segment number equals8. Some curves at the bottom are
enlarged on the top right for clarity. We do not give the
datum of uL2 as the access is too rare and the hit-rate is
almost 0. The relative error rates of the measurements
decrease when the program size increases. It can be
explained as follows: when the segment number is fixed
and the program size grows, the segment size grows in
proportion, and the effect of thecold-start bias in the
measurements decreases, which accounts for a lower error
rate.

Combined with the aforementioned discussions of the
relationship between accuracy and segment number and
size, Fig. 8 also implies that for a given accuracy, when
the program size grows, the segment number available
for methodology deployment grows, and thus the speedup
increases. Now we can say, the WSPS methodology has
a very good scalability.
Impact of large cache on accuracy.According to the
discussions above, it is clear that the error brought in
by WSPS mainly lies in thecold-start of the detailed
simulation phase. In the measurements above, we assume
a 512K unified L2 cache, which may be too conservative

for mainstream machines used today in reality and lead
to an underestimation of the errors brought in by the
warming-up of a bigger cache. To make the results
more convincing and representative, we also deployed the
WSPS methodology on a platform with larger LLC, where
the unified L2 cache is set to 2-Mbyte. According to the
discussions above, the error of the WSPS methodology
grows when the segment number becomes larger. So we
only run the experiments withN being 64 and the results
are listed in Table IV, in which the results with small L2
cache (512K) are also presented. We here only show the
results of the two benchmarks (255.vortex and256.bzip2).
It is clear that the errors of CPI and uL2 hit-rates become
more significant when a larger L2 cache is used. This is
due to the fact that more instructions are needed to warm
up the cache and fewer instructions left in the detailed
simulation phase to offset the bias brought in by the
warming-up. Even though the error grows, it is acceptable,
and the relative error of CPI and uL2 hit-rates are no more
than 0.2% and 3.5%, respectively.

Moreover, with the fact that the accuracy of WSPS
grows with the increase of the program size and the
benchmarks we use here are relative small, the accuracy
can be much higher when WSPS is deployed on real
programs or benchmarks with larger input sets, such as
reference input set of SPEC2K.

To sum up, the WSPS mechanism can indeed accelerate
the detailed simulation of large benchmarks and provide
accurate simulation results in modern processor design
and evaluation.

E. Comparison with Existing Work

In [4], the author claims that the functional simulation
model they used is about 60 times faster than the detailed
simulation, under which Smarts provides a speedup of
about 35 over detailed simulation for 8-way out-of-order
processors and the average error of CPI is about 0.64%.
[17] puts focus mostly on explaining how to selectrepre-
sentative simulation points off-line to make the results of
the sample simulation more believable and the experiment
results show that the average error of CPI is about 2.1%
when multiple simulation points are used.

According to the discussions in Sect. III, with the same
functional and detailed simulation models, i.e.,T = 60,
the ideal speedup provided by the WSPS methodology can
be as high as 31.2 whenN equals 64. Although we do
not carry out the simulation on the same models as used
in [4] and [17] due to lack of information to represent,

TABLE IV.
ERRORS BROUGHT IN BY SMALL AND LARGEL2 CACHE

Relative Error 255.vortex (512K/2M) 256.bzip2 (512K/2M)
CPI 5.96E-4 / 1.39E-3 2.00E-4 / 9.90E-4
iL1 1.55E-6 / 1.58E-6 4.38E-7 / 4.38E-7
dL1 3.14E-6 / 3.13E-6 9.97E-7 / 1.05E-6
uL2 2.26E-3 / 6.03E-3 8.44E-3 / 3.40E-2
iTLB 3.82E-7 / 6.04E-7 1.62E-8 / 1.62E-8
dTLB 6.12E-7 / 6.12E-7 2.13E-7 / 2.13E-7
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Figure 6. Relative Error vs Segment size whenN equals 16

it is reasonable to claim WSPS can provide comparable
speedup to Smarts and Simpoint due to the fact that
the real speedups match the ideal ones, as shown in
Figure 4. Meanwhile, the WSPS mechanism can provide
at least as accurate results as sampling-based methods,
such as Smarts and Simpoint, due to the fact that it only
incurs cold-start bias while the sample-based methods
also include sampling errors.

Compared to detailed simulation acceleration technolo-
gies existing, the WSPS methodology has several main
advantages, apart from high speedup and accuracy. Firstly,
it is intuitive and simple to deploy. No efforts are needed
to design the sampling algorithm and select therepre-
sentative samples. Secondly, it is easier to analyse the
accuracy of the simulation due to the fact that onlycold-
start bias exists in the simulation. Thirdly, it is possible to
get the statistics (for example CPI or cache performance)
of a certain period of the simulation, which is usually not
possible in sampling-base simulations unless the period
is selected as asample. Lastly, the performance of our

mechanism scales perfectly with the size of the program,
and thus it is particularly suitable to be deployed on large
programs which tend to cost a long time to simulate.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.1 0.5 1 5 10

R
el

at
iv

e 
E

rr
or

Segment Size in million

cpi_bias il1_bias dl1_bias

ul2_bias itlb_bias dtlb_bias

Figure 7. Accuracy vs Segment Size for 164.gzip
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F. Brief Summary

With the above discussions, some conclusions are
drawn. Firstly, WSPS-based simulation can provide a
good speedup, which depends on the segment number and
the detailed-functional simulation time ratio. Secondly,
the actual speedup does not exactly equal the ideal one
but follows its trend. Thirdly, for most benchmarks, the
methodology can provide sufficient accuracy, and for
loads like197.parser, it provides good measurements for
most performance metrics except the L2 cache related
ones, which can be remedied by other technologies such
as componentwarming-up. Lastly, the accuracy of the
measurements decreases as the segment number increases
for a given load, and increases as the program size grows
for the same load with a given segment number.

V. CONCLUSION

In this paper, we propose a novel methodology for
detailed simulation to reduce the simulation duration.
As shown in our measurements, the WSPS methodology
can provide a sound speedup while maintain acceptable
accuracy at the same time. Compared with traditional
acceleration methods, the WSPS methodology is suitable
to accelerate detailed simulation due to the following ad-
vantages: 1) high accuracy, as the complete measurements
are synthesized by complete execution of the benchmark
with a number of simulation instances, and nosampling
bias thus exists; 2) good scalability of speedup, the
speedup grows with segment number, which can be bigger
with the increase of benchmark’s program size for a given
accuracy, and the execution time can approach that of
the functional simulation when the segment number is
big enough; 3) excellent support to highly detailed time
simulation, as the more detailed the time model is, the
higher speedup is predictable; 4) convenience to deploy
the methodology on a variety of hosts, ranging from clus-
ters to PCs, as the methodology imposes no assumption
on the hosts where the methodology is deployed.

The future work includes: 1) developing approaches to
accelerate the functionalfast-forwarding, so as to enlarge
the time ratioT and thus produce better improvement; 2)
introducingwarming-up phase before the measurements
of the performance metrics to enhance accuracy; 3) com-
bining the WSPS methodology with other acceleration

technologies such as SMARTS [4] and live-points [16];
4) giving quantitative analysis of real-world programs’
speedup and accuracy; 5) considering the possibility to
deploy the WSPS methodology on parallel workloads.
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