JOURNAL OF COMPUTERS, VOL. 8§, NO. 7, JULY 2013

1691

Bare Metal Provisioning to OpenStack Using
xCAT

Jun Xie
Network Information Center, BUPT, Beijing, China
Email: jeffreycohobupt@gmail.com

Yujie Su, Zhaowen Lin, Yan Ma and Junxue Liang
Network Information Center, BUPT, Beijing, China
Email: {suyj, linzw, mayan, liangjx} @bupt.edu.cn

Abstracte—Cloud computing relies heavily on virtualization
technologies. This also applies to OpenStack, which is
currently the most popular IaaS platform; it mainly
provides virtual machines to cloud end users. However,
virtualization unavoidably brings some performance
penalty, contrasted with bare metal provisioning. In this
paper, we present our approach for extending OpenStack to
support bare metal provisioning through xCAT(Extreme
Cloud Administration Toolkit). As a result, the cloud
platform could be deployed to provide both virtual
machines and bare metal machines. This paper firstly
introduces why bare metal machines are desirable in a cloud
platform, then it describes OpenStack briefly and also the
xCAT driver, which makes xCAT work with the rest of the
OpenStack platform in order to provision bare metal
machines to cloud end users. At the end, it presents a
performance comparison between a virtualized and bare-
metal environment

Index Terms—cloud computing, IaaS, OpenStack, xCAT,
bare metal provisioning

I. BACKGROUND AND MOTIVATION

A. Background

OpenStack [1] is an Infrastructure as a Service(IaaS)
cloud computing project started by Rackspace Cloud and
NASA in 2010. Currently more than 200 companies have

joined this project,including Intel, IBM, Dell and Red Hat.

It is free open source software released under the Apache
2.0 license. It is included and released in both the Ubuntu
and Red Hat Linux distributions. The OpenStack project
aims to deliver solutions for all types of clouds by being
simple to implement, massively scalable, and feature rich.
It delivers various components for a cloud infrastructure
solution, which makes it a somewhat open sourced
Amazon Web Services(AWS), which is the most
successful cloud computing platform at present.

In OpenStack, cloud providers most basically offer
virtual machines. The virtual machines are run as guests
by a hypervisor, such as Xen or KVM. Management of
pools of hypervisors by the cloud operational support
system leads to the ability to scale to support a large
number of virtual machines. In this sense, OpenStack is

©2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.7.1691-1695

mainly built on virtualization technologies (Xen, KVM,
etc.).

B Motivation

The adoption of virtualization in cloud environment
has resulted in great benefits, however, this has not been
without attendant problems,such as unresponsive
virtualized systems, crashed virtualized servers, mis-
configured virtual hosting platforms, performance tuning
and erratic performance metrics, among others.
Consequently, we might want to run the compute jobs on
"bare metal”: without a virtualization layer, Consider the
following cases:

Case 1: Your OpenStack cloud environment contains
boards with Tilera processors (non-X86), and Tilera does
not currently support virtualization technologies like
KVM. Obviously, a Tilera board cannot be provisioned to
an end user using traditional virtualization technologies.
Thus, we need to add a bare-metal provisioning driver in
OpenStack in order to provision a Tilera board or other
non-virtualizable boards in an OpenStack environment.

Case 2: You want to achieve higher performance in the
cloud platform, as virtualization obviously brings some
performance penalty.

Case 3: You have a lot of relatively old and low-
performance machines (e.g. 1 CPU, 1G memory) in the
data center. In this case, if you still use virtualization
technologies and then provide virtual machines to end
users, the performance penalty brought by virtualization
is obviously too much for the machine. Bare metal
provisioning is optimal in this scenario.

From these cases among others, we can conclude it
would be great for OpenStack if it could support bare-
metal provisioning, in addition to the traditional
virtualization. This is because it can now offer to cloud
end users a hybrid IaaS cloud platform with both choices
of virtual machines and bare metal machines.

The intention is obviously to ultimately support
different provisioning back-ends in order to support
different bare-metal architectures. Several provisioning
tools are available, such as Dell's crowbar [2], as an
extension of opscode's Chef system [3], Argonne
National Lab’s Heckle [4], XxCAT [5], Perceus [6],

http://en.wikipedia.org/wiki/Hypervisor
http://en.wikipedia.org/wiki/Xen
http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

1692

OSCAR [7], and ROCKS [8]. These tools provide
different bare-metal provisioning, deployment, resource
management, and authentication methods for different
architectures. These tools use standard interfaces such as
PXE (Preboot Execution Environment) [9] boot and IPMI
(Intelligent Platform Management Interface) [10] power
cycle management module. For boards that do not
support PXE and IPMI, such as the TILEmpower board,
specific back-ends must be written.

In this paper, we use XCAT to extend OpenStack, the
most popular IaaS platform at present. XCAT (Extreme
Cloud Administration Toolkit) is an open-sourced and
distributed computing management tool. It is a wonderful
tool to remotely control the machines and can also be
used to network-install a machine, automated and
unattended. xCAT supports many usual operating
systems, including SLES, OpenSUSE, RHEL, CentOS,
Windows, etc. As for the hardware, it supports X86,
iDataplex, IBM's system X, system P, and most IPMI-
based machines.

To support bare metal provisioning in OpenStack
through xCAT, we implemented an xCAT driver.

II. OPENSTACK

OpenStack is a collection of open-sourced software
components designed for building public and private
clouds. OpenStack provides similar functionality to other
open-source cloud projects such as Eucalyptus [11],
OpenNebula [12], and Nimbus [13]. The main
components include OpenStack Compute (codenamed
Nova), OpenStack Image Service (codenamed Glance),
and OpenStack Object Storage (codenamed Swift).

OpenStack is implemented as a set of Python services
that communicate with each other via message queue and
database. Fig. 1 shows a conceptual overview of the
OpenStack architecture, with the OpenStack Compute
components bolded and OpenStack Glance components
(which stores and manages all the images) shown in a
lighter color.

4
hitp
i

€62/OpenStack APL

EDashhoard)

EC2/Admin APL

nhova
database

N
nova-volume

OpenStack Architecture. Credit: Ken Pepple [14]

—
volume
storage

N
nova-schedule
__J (isCst, ete)

Figure 1.

The nova-api service is responsible for fielding
resource requests from wusers. Currently, OpenStack
implements two APIs: the Amazon Elastic Compute

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

Cloud (EC2) API [15], as well as its own (OpenStack)
API.

The nova-schedule service is mainly responsible for
scheduling compute resource requests on the available
compute nodes.

The nova-compute service is responsible for starting
and stopping all the compute instances.

The nova-network service is responsible for managing
IP addresses and virtual LANs for the instances.

The nova-volume service is responsible for managing
network drives that can be mounted to running instances.

The queue is a message queue implemented on top of
RabbitMQ [16] which is used to implement remote
procedure calls as a communication mechanism among
the services.

The dashboard implements a web-based user interface.

The database is a traditional relational database such as
MySQL that is used to store persistent data that is shared
across the components.

II. XCAT

xCAT (Extreme Cloud Administration Toolkit) is an
open source scalable distributed computing management
and provisioning tool that provides a unified interface for
hardware control, discovery, and OS diskful/diskfree
deployment. This robust toolkit can be used for the
deployment and administration of huge clusters.

xCAT is a typical client/server architecture. The heart
of its architecture is the XCAT daemon (xcatd) on the
management node. This receives requests from the client,
validates the requests, and then invokes the operation.
The xcatd daemon also receives status and inventory
information from the nodes as they are being discovered
and installed/booted. Thus, the xcatd is the worker that
really manages all the nodes in the cluster.

\ T /X'ML/SSL
A
Mgmt Node -\m (optional) —
s
sy
t t (e [Sen
Coban | [puan SRR
- | [t |
B - g ==
\ \ // y
A =
Node Node Node Node Node Node

Figure 2. xCAT Architecture. Credit: xCAT[17]

IV. XCAT INTEGRATION INTO OPENSTACK

To support bare metal provisioning to OpenStack
through xCAT, we implemented the XCAT driver, which
receives requests from OpenStack Nova, deals with the
messages and finally transfers the requests to xCAT.

JOURNAL OF COMPUTERS, VOL. 8§, NO. 7, JULY 2013

A. The Logical Architecture

In OpenStack, it uses libvirt library to manage different
virtualization technologies. For bare metal provisioning,
we need a bare-metal driver, as an alternative to the
libvirt driver. For a compute node with bare metal driver,
we set compute driver to
nova.virt.baremetal.driver.BareMetalDriver in its nova
configuration file (/etc/nova/nova.conf by default). As
depicted in Fig. 3,when an end user requests a bare-metal
machine (e.g.,a System X machine),a scheduler chooses a
nova compute node,whose compute driver is
nova.virt.baremetal.driver.BareMetalDriver and at the
same time baremetal driver is xcat. And then the xCAT
bare-metal driver will take care of everything and finally
start the system with the specified operating system. If
what the user requested is a Tilera machine, then the
scheduler will choose a nova compute node who manages
Tilera boards.

ﬂa,
—libvirt/

— driver.py
—baremetal

nova-compute with bare-
metal driver

LibVirtDriver (X)
M

it \étal driver. i]

—driver.py
—xcat.py
—tilera.py -—s
' '
Il 1 H [compute_drit
£ A
PN XCAT TILERA
! 2 ! baremetal_driver= i i il
\ j {xcat | tilera }

}l } é_ \: power_manager= XCAT_PM PDU
(S {xcat_pm| pdu}
[x86,X86_64, ppc, Z, ...] [tilera_64 /]

Figure 3. Logical Architecture

B. The Physical Architecture and Our Solution

As depicted in Fig. 4, In our environment, we have a
compute node with XxCAT driver in SERVERI.Besides
nova-compute, XCAT client is also installed in it. We
installed Glance (the Image Service) and xCAT server in
SERVER2.In addition, a cluster of bare metal machines
(in our case, System x3650) are also available.

Other OpenStack components like nova-scheduler and
keystone (Identity Service) are not shown in the figure;
they can just be in any machine if they are configured
correctly according to OpenStack Installation procedure.

As shown in Fig. 4, when a request comes asking for a
bare metal machine (if not for tilera), nova-compute will
invoke XCAT driver, who will later communicates with
xCAT client. And xCAT client will communicates with
xCAT server to finally complete the request
(start/reboot/shutdown/terminate the instance).

As for the virtual machines, there is a data base for the
bare metal machines. This is mainly to record all the
information about the registered bare-metal machines,
with the mac address and BMC address (In our case,

©2013 ACADEMY PUBLISHER

1693

IMM address) being some of the most important
information.

Requests

l 1
Manage & Schedule BM Cluster
SERVER1

nova-compute \

2 BM1

l 3 SERVER2
BM 2
—

[|
ssL Deploy BMn

5 6 - IMM .

Figure 4. Physical Architecture

C. The Test Workflow

(1) we used devstack to install all the nova services in
SERVERI, which runs an ubuntul2.04 operating system.
Of course, we have to put our XCAT driver in this nova
compute node. Also, the XCAT client is installed in this
node, to be invoked by our XxCAT driver. Make sure you
have set XCATHOST environment variable to mgmt:
3001 in /etc/profile.d/xcat.sh, where mgmt is the IP
address of xCAT server.

(2) The Image Service is installed in SERVER2 along
with XCAT server. This is to avoid having to copy the
image from the Glance node to the xCAT server, if we
put them in different places. In this step, we need to make
all the necessary configurations for both Glance and
xcatd.

(3) Create the database for the bare metal machines
and register them. We wrote a python script bm_db_sync
to create the database tables. Of course, add one line to
point to this database in the nova.conf file. For example,
add“baremetal _sql_connection=mysql://nova_bm:passwd
@127.0.0.1/nova_bm” to the nova.conf file. After this,
we register the available bare metal machines into the
nova bm database. We have another python script
bm_node create to accomplish the registration job. Now
Nova knows you have these machines and when a request
comes, it will choose the one which is the best candidate.

(4) As for the virtual machines, we need instance types
(or flavor) for bare metal machines. We use nova-manage
to create a new instance type.

$ nova-manage instance type create --name=bm.small --
cpu=4 --memory=4096 --root gb=20 --ephemeral gb=30
--flavor=6 --swap=1024 --rxtx_factor=1

Then we set bare metal extra_spec to the instance type:

$ nova-manage instance type set key --name=bm.small
--key cpu_arch --value 'x86_64'

In this example, we have an instance type bm.small
and its id is 6.This adds a record to instance type table in
nova database. In fact, we now can use the following

1694

command to see if we have added the instance type
successfully.

$ nova-manage instance_type list

(5) Now we start all the necessary services (nova,
glance, keystone, xcatd) and launch a bare metal instance.

)6 root@jefF-ThinkPad-T60p: ~

(67-1334-4622-82dc-278
405¢-746c-48dd-afb1-bds

oot@jeff-Thinkpad-Té

nova boot --image da6£405c-740c-48dd-afb1-
bd5088c0298f --flavor 6 instance jeff

In this example, we use the nova command line to start
the new instance instance jeff. As we can see, sles11.1 is
used here and the flavor is 6, which is the bare-metal
instance type we added before.

Sometime later, we can use "nova list" command to list
all the active instances and you will find the new instance
is available. And if you use the username/password
provided by xCAT, you can login to your new system and
do your job. As an administrator, you can also use XCAT
to monitor all these bare metal nodes and use xCAT's
other monitoring and management functions to ease your
admin work.

V. PERFORMANCE EVALUATIONS

Last,we evaluate the performance of the Oracle
database both in a virtualized and bare metal environment.
We present the experimental results here to show the
different performances in the two testing environments so
that the cloud administrators and end users could make
better choices in the OpenStack platform,when faced with
the choices between virtualization technologies and bare
metal provisioning.

A. 7Test Environment

The same physical computer is used in both
environments. For the bare-metal part,we installed
Redhat5.5 as the operating system,and Oracle Database
11g Enterprise Edition Release 11.2.0.1.0 as the testing
application.For the virtualized environment,we used
VMware vSphere as the hypervisor,on which we created
a virtual machine. Here,we installed the same set of
software in the virtual machine and bare-metal machine.

B. Test Description and Experiment Results

we use Swingbench v2.3 in this simple experiment to
measure the maximum database transactions per
minute(tpm) in a bare-metal machine and virtual machine,

©2013 ACADEMY PUBLISHER

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

with the work load set to 30 active users.Table I shows
the database maximum transaction rates and the standard
deviation values.The standard deviation values show a
12.42% performance gains by the bare-metal machine,
compared to the virtual machine.The results lead us to a
conclusion that the bare-metal machines could avoid
some performance penalty,thus prove the usefulness of
the bare-metal machines provisioning in the cloud
platform.

TABLE L
DATABASE MAXIMUM TRANSACTION RATE FOR 30 USERS:

Bare-metal machine Virtual machine
6088 5640
6007 5662
5746 5573
6020 5345
5966 5386
5701 5360
Standard Standard
deviation:158.28/min deviation:140.79/min

VI. CONCLUSION

Cloud computing is quickly becoming a dominant
model for cloud end-users to access centrally managed
computational resources. OpenStack, as well as other
laaS platforms, should provide cloud end users both
choices of virtual machines and bare metal machines.
Through our work in extending OpenStack, we used
xCAT to accomplish the capacity of bare metal support.

The initial work to date has finished the basics of the
XCAT driver. In the next phase, we will run more tests
and also re-factor the code to finally contribute the code
back to the OpenStack community. Moreover, we will
focus more on the scheduling algorithm when it tries to
pick up a nova compute node or a bare metal machine as
the best candidate for an instance request from cloud end-
users.

ACKNOWLEDGMENT

This paper was supported by the National High
Technology Research and Development Program of
China(No. 2011AA010704), the Fundamental Research
Funds for the Central Universities (No. 2011RC0508)
and IBM Shared University Research Project
(JSA_CDL _BUPT 201207). The authors wish to thank
all those people from BUPTNIC for their longtime help
and support.

REFERENCES

[1] http://en.wikipedia.org/wiki/OpenStack 9/1/2012
[2] https://blueprints.launchpad.net/openstack-
common/+spec/installer-crowbar. 9/3/2012

http://en.wikipedia.org/wiki/OpenStack

JOURNAL OF COMPUTERS, VOL. 8§, NO. 7, JULY 2013

[3] http://www.opscode.com/ 9/3/2012

[4] http://trac.mcs.anl.gov/projects/Heckle/ 9/3/2012

[5] http://xcat.sourceforge.net/ 9/5/2012

[6] http://www.perceus.org/ 9/3/2012

[71 M. . Brim, T. G. Mattson, and S. L. Scott, “OSCAR: open
source cluster application resources,” Proceedings of the
3rd Annual Linux Symposium, 2001

[8] P. M. Papadopoulos, M. J. Katz, and G. Bruno, “NPACI
rocks: tools and techniques for easily deploying

manageable linux clusters,” Concurrency and Computation:

Practice and Experience, vol.15, no.7-8, pp.707-725, 2003

[9] http://en.wikipedia.org/wiki/PrebootExecutionEnvironment
9/1/2012

[10] http://en.wikipedia.org/wiki/IPMI 9/1/2012

[11] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov, “The
Eucalyptus open-source cloud-computing system, ” in
Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, ser.
CCGRID ’09. Washington, DC, USA: IEEE Computer
Society, pp. 124-131,2009.

[12] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
“Capacity leasing in cloud systems using the OpenNebula
engine,” in Proceedings of the 2008 Workshop on Cloud
Computing and its Applications (CCA0S), October 2008

[13] K. Keahey and T. Freeman, “Contextualization: Providing
one-click virtual clusters,” in eScience, 2008. eScience ’08.
IEEE Fourth International Conference on, pp. 301-308,
Dec. 2008.

[14] http://ken.pepple.info/openstack/2011/04/22/openstack-
nova-architecture 9/1/2012

[15] http://aws.amazon.com/ec2/ 9/1/2012

©2013 ACADEMY PUBLISHER

1695

[16] http://www.rabbitmq.com/ 9/1/2012
[17] http://sourceforge.net/apps/mediawiki/xcat/index.php?title
=XCAT_2 Architecture 9/1/2012

Jun Xie Hunan province,China,1987. Bachelor of Science,
School of Software Engineering,Beijing University of Posts and
Telecommunications,Beijing,China,2010; Master of Science,
Institute of Network Technology, Beijing University of Posts
and Telecommunications,Beijing,China,2013.

He will graduate from BUPT in March,2013.During the past
few years,he was intern at the department of ICTO-DS at T-
System P.R.China Ltd in 2010.Then in the year 2012,he was an
intern of the Extreme Blue Program at International Business
Machine(IBM).

Yujie Su Engineer at Network Information Center, Beijing
University of Posts and Telecommunications.

Zhaowen Lin Associate Professor at Beijing University of
Posts and Telecommunications.

Yan Ma Professor and director of the Network Information
Center of Beijing University of Posts and Telecommunications,
he is an Executive Committee member of APNIC, Executive
Committee member of China Education and Research Network
(CERNET) since 1994, convenor of APEC TEL HRDSG
(Human Resource Development Steering Group) and DSG (ICT
Development SG).

Junxue Liang Ph. D. Candidate at Network Information Center,
Beijing University of Posts and Telecommunications

