
Proposal of an Exploitation-oriented Learning
Method on Multiple Rewards and Penalties

Environments and the Design Guideline
Kazuteru Miyazaki

Research Department, National Institution for Academic Degrees and University Evaluation, Tokyo
187-8587, Japan

Email: teru@niad.ac.jp

Abstract— Among machine-learning approaches, reinforce-
ment learning (RL) focuses most on goal-directed learning
from interaction. Despite important applications, RL is
difficult to design to fit real-world problems because, first,
interaction requires too many trial-and-error searches and,
second, no guidelines exist on how to design reward and
penalty signal values. We are interested in approaches
treating reward and penalty signals independently and
not assigning them values. We also want to reduce the
number of trial-and-error searches by strongly enhancing
successful experience — a process known as exploitation-
oriented learning (XoL). Though there are many XoL meth-
ods, they cannot apply to multiple rewards and penalties
environments adequately. In this paper, we propose a new
XoL method that can treat multiple rewards and penalties
effectively. We present simulation and experimental results
to show the effectiveness of our proposal. Furthermore, we
describe the design guideline about rewards and penalties
for the XoL methods.

Index Terms— reinforcement learning, exploitation-oriented
learning XoL, rewards and penalties, design guideline

I. INTRODUCTION

Among machine-learning approaches, reinforcement
learning (RL) focuses most on goal-directed learning
from interaction [1]. It is very attractive because it can
use dynamic programming (DP) to analyze behavior. RL
generally treats rewards and penalties as teaching signals
in learning. DP-based RL involves optimizing behavior
under rewards and penalties signals designed by RL users
on the Markov Decision Processes (MDPs).

Despite important applications [2]–[8], RL is difficult
to design to fit real-world problems because, first, in-
teraction requires too many trial-and-error searches and,
second, no guidelines exist on how to design reward
and penalty signal values. While these are essentially
neglected in theoretical researches, they become serious
issues in real-world applications, e.g., unexpected results
arise if inappropriate values are assigned to reward and
penalty signals [9].

We are interested in approaches treating reward and
penalty signals independently and not assigning them
values. We also want to reduce the number of trial-and-
error searches by strongly enhancing successful experi-
ence — a process known as exploitation-oriented learning

(XoL) [10]. In XoL, at the first, we aim to guarantee
the rationality by the number of trial-and-error searches
as small as possible rather than pursuing the optimality.
Second, we do not assign a value for the reward and
penalty, unless it is easily for us. We need however a
priority among them as a teaching signal. By introducing
these unique aspects, XoL has become a new framework
placed focus on application (Table I).

TABLE I.
APPROACHES FOR GOAL-DIRECTED LEARNING FROM INTERACTION

XoL RL

The number of interaction Less More
Rewards and penalties Priority among them Values for them
Optimality on MDPs By multi-start method Guaranteed
Beyond MDPs Strong (Bellman-free) Weak (DP-based)

Examples of XoL learning methods for a type of a
reward include profit sharing (PS) [11], the rational policy
making algorithm (RPM) [12], PS-r∗ [13], and PS-r# [10].
Furthermore we know the penalty avoiding rational policy
making algorithm (PARP) [9] that can treat a reward and
a penalty at the same time. Also RPM and PARP have
methods for discretizing states and actions using a basis
function [14], [15].

XoL has four features as summarized in Table I: (1)
XoL learns more quickly by strongly tracing successful
experiences. (2) XoL treats rewards and penalties as
independent signals, letting these signals be handled more
intuitively and easily than the handling of concrete values
[9]. (3) XoL does not pursue optimality efficiently, which
can be acquired by multi-start [12] resetting all memory
to get a better policy. (4) XoL is strong in the class that
exceeds MDPs because it is a Bellman-free [1] method.

On the other hand, in general, we have to do a more
careful response to types of rewards. Especially, it is
important to avoid the problem that is so called “if you
chase after two rabbits, you won’t catch either.” We know
two layers model [16]–[18] that has upper and lower
layers in order to solve this problem. The lower layer
learns a policy to acquire each reward independently and
the upper layer learns to switch an appropriate lower layer.

If we select the two layers model, in general, the upper
layer uses the learning results that have been learned in

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1683

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.7.1683-1690

the lower layer. The learning results in the lower layer,
however, do not include information about the need for
the reward. We therefore assume that we can observe a
desired level that represents the need of each reward. We
propose a new XoL method to resolve the problem in
which there are multiple rewards and penalties with the
desired level. The effectiveness of our proposed method
is shown by experimental results.

II. THE DOMAIN

A. Notations

Consider an agent in an unknown environment. After
perceiving sensory input from the environment, the agent
selects and executes an action. Time is discretized by one
input-action cycle. Input from the environment is called
a state. The pair consisting of the state and an action
selected in a state is called a rule. Rewards and penalties
based on a series of actions are provided from the environ-
ment, and a reward is given to a state or an action causing
transition to a state in which our purpose is achieved,
whereas a penalty given to a state or corresponding
action in which our purpose is not achieved. Rewards
and penalties are treated independently, eliminating the
need to design of their values in a sophisticated way,
unlike conventional DP-based RL systems that require the
sophisticated design.

A rule series that begins from a reward/penalty state
or an initial state and ends with the next reward/penalty
state is called an episode. For example, when the
agent selects S0A1, S0A0, S1A0, S2A0, S1A1, S0A0,
S2A0 and S1A1 in Fig. 1 a), there exist two episodes
(S0A1S0A0S1A0S2A0S1A1) and (S0A0S2A0S1A1) as
shown in Fig. 1 b). If an episode contains rules of the
same state but paired with different actions, the partial
series from one state to the next is called a detour.
For example, the episode (S0A1S0A0S1A0S2A0S1A1)
has two detours (S0A1) and (S1A0S2A0) as shown in
Fig. 1 b).

S0, S1, S2 ; state

A0, A1 ; action

S0A0 ; rule " if S0 then A0 "
; reward

S0

S0A1

A0

a detour

episode 1 episode 2

a detour

S0 S0S1 S1 S1S2 S2
A0 A0 A0 A0A1 A1 A1

S0A0 S1A0 S2A0 S1A1 S0A0 S2A0 S1A1

b)

a)

S0 S1

S2

A1

A1

A1

A0

A0A0

Figure 1. a) An environment consisting of three states and two actions.
b) An example of an episode and a detour

A rule always existing on a detour is called an irrational
rule, and otherwise called a rational rule. After obtaining
the episode 1 in Fig. 1 b), rule S0A1, S1A0 and S2A0 are
irrational rules and rule S0A0 and S1A1 are rational rules.

When the episode 2 is experienced furthermore, rule S 2A0

changes to a rational rule. A rule that directly receives a
penalty is called a penalty rule. If all selective rules for
a state are penalty or irrational rules, the state is called
a penalty state. If a destination resulting after selecting a
rule enters a penalty state, the rule is also classified as a
penalty rule.

A function that maps states to actions is called a policy.
The policy with a positive amount of reward acquisition
expectations is called a rational policy, whereas a rational
policy receiving no penalty is called a penalty avoiding
rational policy. PARP aims to learn a penalty avoiding
rational policy by using the Penalty Rule Decision pro-
cedure (PRD) [9] in Fig. 2. We can regard the marked
rule that is found by PRD as a penalty rule. The agent
with PARP selects an action from rule set where there is
no irrational and penalty rule. If the agent cannot select
any action in a state, it selects an action that has the less
probability to transit to a penalty state from the state.

procedure The Penalty Rule Decision procedure (PRD)
begin
In the experienced episode until now, the rule
which received a penalty directly is marked
do

The state in following condition is marked;
there is no rational rule or
there is no rule that can transit to non-marked state

The rule in following condition is marked;
there are marks in the states that can be transited by it

while at least one of the state is newly marked
end

Figure 2. The penalty rule decision procedure [9]

B. The two layers model and a desired level

In this paper, we treat multiple rewards that correspond
to each purpose. We use the two layers model in Fig. 3
that has an upper and lower layers in order to solve this
problem. The lower layer learns the policy to acquire each
reward independently and the upper layer learns to switch
an appropriate lower layer. We assume the situation that
has been finished the lower layer learning. It means that
the lower layer learning should be finished before starting
the upper layer learning. The problem when the upper and
lower layers learn at the same time is a future work.

Figure 3. The two layers model

We assume that we can observe a desired level that
represents the need of each reward. The higher the value

1684 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

of the desired level goes up, the more the emergency of
the reward rises. We can therefore know priority among
rewards by comparing the desired levels. Each value of a
desired level increases based on the unknown monotoni-
cally increasing function independently for each selecting
an action. The case that is not based on monotonically
function is a future work.

The upper layer can observe values of all desired levels
and aims to switch an appropriate lower layer based on the
values. We know Maximum desired level Priority Strategy
(MPS) as a simple and an effective upper layer where
the reward that has the highest value of a desired value
corresponds to the most emergent purpose. MPS will be
effective in many cases. However, for example, if the
amount of increase in the desired level B is a very faster
than the amount in the desired level A, there is a case that
we should select the desired level B even if the value of
the desired level B is lower than the value of the desired
level A at that time.

When at least one value of the desired level exceeds
threshold that is defined in advance, the agent receives
a penalty, If we do not distinguish the difference of the
desired levels whose values exceed threshold, the task
is the same as previous works [9], [14] that treat only
one type penalty. On the other hand, the agent acquires
a reward, when it moves to the state where the value
of a desired level can be recovered. We can therefore
make new problem on multiple rewards and penalties
environments by distinguishing desired levels.

III. MULTIPLE REWARDS AND PENALTIES IN A

PREVIOUS METHOD

We know a method of reference [19] that can treat
multiple rewards and penalties. The two layers model, that
is used in this paper, is proposed in the paper. In the two
layers mode, it is important to memorize the experience
correctly in the upper layer by reflecting an action that is
learned in the lower layer.

The method of reference [19] memorizes experience
by a basis function [14] in Appendix. Center vector of
the basis function is constructed by states that have been
sensed by the upper layer. In addition, each basis func-
tion memorizes the lower layer that was selected when
generating the basis function. When the agent acquires a
reward, the method memorizes all basis functions that are
used to until acquiring the reward.

There is no problem if the agent can acquire a reward
continuously by the basis functions. On the other hand,
when the agent receives a penalty, it should not select the
basis function that is related with the penalty. It is realized
by updating the value of f para that can control the size
of a basis function. If we increase the value of f para, the
size of the basis function will be small.

Considering the case that the agent receives a penalty
about the desired level B when it aims to acquire a reward
about the purpose A, that is, it selects an action based on
the lower layer corresponding to the purpose A. If the
desired level A is independent of the desired level B,

that is, the value of the desired level B is not influenced
by acquiring a reward about the purpose A, the basis
function that was selected in the previous state should
not be selected in that time, since we can consider that
the purpose was not need to select in the previous state.
In this case, we increase the value of f para in order not
to select the basis function. Otherwise, we increase the
value of f para in the basis function that was selected in
the past state where the purpose A did not aimed last in
order not to select the basis function in that time, since
we can consider that the purpose A should be selected at
the more earlier state.

In the upper layer, the agent selects a lower layer
memorized in the basis function that is closest to the
current state. The method of reference [19] can treat
multiple rewards and penalties through the above process.

IV. PROPOSAL OF A NEW XOL METHOD ON MULTIPLE

REWARDS AND PENALTIES ENVIRONMENTS

A. Ideas

In this paper, we use the two layers model described
in Section II-B. The lower layer learns the policy to
acquire a reward corresponding to each purpose by PARP
independently. The input to the lower layer is the current
state and the output of it is an action that should be
selected in the state.

The upper layer learns to switch an appropriate lower
layer based on three types information, that is, the current
state, the values of desired levels, and information given
from lower layers, such that, expected values and vari-
ances of the number of actions in order to acquire rewards
on lower layers. Though, in the upper layer learning, the
method of reference [19] uses the basis function that has
been proposed in references [14], we do not necessarily
need to use the basis function, since the purpose of the
learning by a desired level is to find a threshold that
defines a switching point of each purpose. We therefore
use an avoidance list that is the set of lower layers that
should not be selected in each state, instead of the basis
function in reference [19].

B. Reconstruction of the desired level

The purpose of the upper layer is to select an appro-
priate lower layer for problems that cannot be handled by
MPS. Among three types information described in section
IV-A, the values of desired level and information given
from lower layers are inputted to the upper layer only,
though the current state is inputted to both lower and
upper layers. In our avoidance list learning, we only use
the values of desired level and information given from
lower layers, since they are characteristic information in
the upper layer.

In this paper, we assume the situation that has been fin-
ished the lower layer learning. It means that information
given from lower layers had been fixed when the upper
layer starts the learning. We therefore reconstruct the
values of desired levels based on the results of comparison

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1685

© 2013 ACADEMY PUBLISHER

of the number of actions in order to acquire a reward in
each lower layer.

C. The learning based on an avoidance list

The agent, in the upper layer learning of the method
of reference [19], selects the lower layer memorized in
the basis function that has the best match with current
desired level. When the agent acquires a reward, basis
functions on the episode are stored. On the other hand,
the scope of the basis function is narrowed by a penalty.
Therefore, the main part of the learning lies in a reward,
and the learning of a penalty is regarded as sub function.
It means that the learning has been influenced strongly
by the first acquiring reward. Though it is desirable in
the point of fast learning, it is difficult to apply to the
environment that has a lot of uncertainty.

We therefore construct an avoidance list that is the set
of lower layers that should not be selected in each state
to put more emphasis on the learning by a penalty. The
avoidance list is used to select an appropriate lower layer,
and constructed by a penalty as follows;
When the agent receives a penalty, the following infor-
mation in which the agent had been received the previous
penalty is registered in the avoidance list.

• Type of purpose that have aimed to satisfy.
• Values of the desired level of the purpose that have

received the penalty.
• Values of the desired level of the purpose that have

aimed to satisfy.

This registration should be done by taking into account
the interaction between “the purpose that have aimed to
satisfy” and “the purpose that have received a penalty”
as same as the method on reference [19] in Section III.
When the agent, that aims to satisfy the desired level A,
receives the penalty about the desired level B and the
desired level A is included in the penalty, the avoidance
list is updated with the information at that time where the
purpose A was not aimed last. The avoidance list is also
updated when more wide range list has been constructed.

D. Decision making on the upper layer

The agent refers to the avoidance list when it selects a
lower layer in the upper layer learning. If an avoidance
list has been matched with the current state, the agent
selects the lower layer that aims to pursue the purpose
that is not memorized in the avoidance list.

In the case that all purposes cannot be selected due to
the avoidance list, taking into account of priority of the
penalty, a penalty that has the lowest priority is excluded.
In the worst case, there is a possibility that all purposes
will be excluded from the selection. In the case and there
are multiple lower layers to be selected, the agent selects
a lower layer based on assigning the same probabilities
among them.

V. DESIGN GUIDELINE OF REWARDS AND PENALTIES

When a task has multiple purposes, we can treat it
by introducing a deadline that is a time until achieving
each purpose. If a learning agent missed the deadline,
it receives a penalty. Furthermore, when the penalty is
assigned for each purpose, priority among them should
be given to the agent. It is treated by our XoL methods
through the following framework.

• We prepare lower layers for each purpose. An upper
layer is prepared in order to switch the lower layers.

• We give the agent desired levels and deadlines that
correspond to each purpose in the lower layer. The
desired levels are updated for each action indepen-
dently.

• When a purpose has been achieved, the lower layer
concerned with the purpose acquires a reward. On
the other hand, when the desired level about the
purpose exceeds threshold that is derived from the
deadline, a penalty is given to both the upper and
the lower layers concerned with the purpose.

The best policy is to acquire a reward without receiving
any penalty. If it cannot be learned, the lowest priority
penalty is excluded. That is, the upper layer selects the
lower layer at the view point of excluding the penalty.
It is, for example, equivalent to a human that selects the
next best thing.

In our XoL methods, rewards and penalties are de-
signed in terms of signals that are derived from deadlines
that correspond to each purpose. On the other hand, RL
requires the sophisticated design of rewards and penalties
values. It means that XoL is able to handle a wide variety
of application more directly and easily than RL.

VI. NUMERICAL EXPERIMENTS

A. Experimental Setting

We present simulation in order to show the effective-
ness of our proposed method. The environment used in
our simulation is shown in Fig. 4. The agent has 4 types
desired level (A, B, C, D). For each action, the values
of the desired level increase based on the amounts that
describes later. Though the agent can observe the desired
level correctly, it does not have priori knowledge about
the function that defines the increasing level.

When the agent reaches to a purpose that is shown at
triangle (A, B, C, D) in Fig. 4, it acquires a reward about
the corresponding the letter and the desired level about
the letter is recovered. On the other hand, if at least one
desired level exceeds threshold that is defined in advance,
the agent receives a penalty and is forced to return to the
initial state s0, and the values of all desired levels are
initialized.

In this situation, we consider the problem which pur-
pose should be selected in s0. The solution depends on
the amount of change of a desired level when the agent
selects an action and acquires a reward. The purpose of
the agent is to learn a penalty avoiding rational policy.

1686 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

A

D

C

B

a

a
a

a

a

a

b

a

b

a

b

a

b

a

b
a

b

a
b

a

b
a

b

a

b

a

b

a

b

a
b

a

b

a b

a

b

b
c

d

s35

s34s33

s32 s31

s25s24

s22

s21 s15

s14

s11

s5 s4

s3s2

s1

s0

s12

s13s23

Figure 4. The environment used in numerical experiments

We consider the case that the lower level learning that
aims to reach each purpose from each state (s0, s1, · · · ,
s35) by the shortest number of actions has been finished.
The values of the initial desired levels are 0, and the
increasing value of a desired level is assigned from 1, 3,
5 or 7 as follows; the values of A and B are 1, C changes
from 1 to 7, and D changes from the values of C to 7. The
threshold for a desired level is 100. The recovering value
of a desired level in case of acquiring a reward is 20, 40,
60, 80 or 100. Therefore, we have done (4+3+2+1) 54 =
6250 experiments.

In this problem, we know Maximum desired level
Priority Strategy (MPS) as simple and an effective upper
layer. Therefore, the agent tries to use MPS at the first,
then, if MPS is not function effectively, our proposed
method or the method of reference [19] is used.

B. Experimental Results and Discussion

Table II shows fail times of MPS and success times of
the method of reference [19] and our proposed method in
the fail times of MPS over 6250 experiments. The success
means that the agent does not receive a penalty over one
million actions. ST1 means that the shortest steps from
s1 to s3 changes to 1 or 3 with a probability of 50%. ST2
is obtained by adding the similar change in the shortest
steps from s11 to s13. ST3 and ST4 is the same as ST2.

TABLE II.
EXPERIMENTAL RESULTS

ST1 ST2 ST3 ST4

Fail times of MPS 4120 4165 4552 4805
Success times of the method of Ref. [19] 208 96 34 13
Success times of our proposed method 342 320 268 253

From Table II, our proposed method is able to handle
a wider change than MPS. It means that our proposed
method is robust uncertainty. Especially, it is robust to
uncertainty compared to the method of reference [19].
Reference [19]’s method is difficult to flexibly adapt to
the environment when the degree of uncertainty will be
more, since it is strongly affected by the first successful
experience. On the other hand, our proposed method has
focused on the penalty. Therefore, it is not affected by
the first successful experience than the reference [19]’s

method and it is robust to uncertainty, though both meth-
ods are XoL methods.

Furthermore, we have performed experiments that pri-
ority decreases in the order A, B, C, and D. If we cannot
get a policy that does not have any penalty, a penalty
that has the lowest priority is excluded. Table III shows
the result considering only 3 penalties (A, B, C) where
the penalty D is excluded. Though MPS does not have
such mechanism, we have counted as no failure when the
reward D was not acquired.

TABLE III.
EXPERIMENTAL RESULTS CONSIDERING ONLY 3 PENALTIES

ST1 ST2 ST3 ST4

Fail times of MPS 915 1015 1410 2524
Success times of our proposed method 915 1013 1051 1719

Our proposed method is successful in almost all cases
if uncertainty is low. In highly uncertain ST3 or ST4,
it has been successful in the order of 2/3 MPS fails.
Furthermore, in the case of considering only 2 penalties
(A, B), though MPS fails 9 patterns shown in Table IV,
our proposed method can success in all cases.

TABLE IV.
FAIL PATTERNS OF MPS IN THE CASE OF CONSIDERING ONLY 2

PENALTIES

increasing values recovering values
of desired levels of desired levels

by selecting an action by acquiring a reward
A B C D A B C D

No.1 1 1 1 1 60 20 20 20
No.2 1 1 1 1 40 20 20 20
No.3 1 1 1 1 20 60 20 20
No.4 1 1 1 1 20 40 20 20
No.5 1 1 1 1 20 20 60 20
No.6 1 1 1 1 20 20 40 20
No.7 1 1 1 1 20 20 20 60
No.8 1 1 1 1 20 20 20 40
No.9 1 1 1 1 20 20 20 20

Case that is difficult to resolve by MPS is that the
increasing value of a desired level is intense, or the recov-
ering value of a desired level is small when a reward has
been acquired. Our proposed method was able to extend
the case in this experiment. In addition, it was possible
to achieve a success at all combinations that cannot be
learned by MPS through taking into account of priority
among penalties. We can confirm the effectiveness of our
proposed method through this numerical experiments.

VII. APPLICATION TO THE LEGO ROBOTS

We apply our proposed method to the LEGO robots as
shown in Fig. 5, Fig. 7 and Fig. 8. We have performed 3 vs
1 Keepaway task [6] where three robots called keeper turn
the path of a ball each other. Each keeper robot located
at the apex of an equilateral triangle in Fig. 6. A taker
robot interferes the path of a ball among three keepers.
The instruction of the prototype model of the robot is
given in the reference [20].

We use HiTechnic Infrared Electronic Ball (IRB1005).
The taker robot in Fig. 7 is equipped with the same ball

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1687

© 2013 ACADEMY PUBLISHER

Figure 5. Application to the LEGO robots

Keeper-1

88cm

176cm

1

Keeper-0

Taker
2

3

Keeper-2Keeper-2

Figure 6. Configuration of each robot

at the highest position than a ball on the ground. Each
keeper robot in Fig. 8 has two HiTechnic IRSeekers V2
(NSK1042) to locate and provide the direction to their
balls. On the other hand, the taker robot has only one
IRSeeker to find a ball on the ground.

Each keeper robot is always fixed at the apex of the
triangle in Fig. 6. Therefore, the purpose of keeper robot
is to select the robot to pass a ball, that is, the action
is selected from “Pass a ball to the right keeper robot”,
“Pass a ball to the left keeper robot” and “Keep a ball”.
The keeper robot learns independently in case of keeping
a ball.

The initial position of the taker robot is the center of
gravity of the triangle. The taker robot does not learn
and moves randomly in a range of an equilateral triangle
whose length of the side is 88cm. When the taker robot
moves to the out of scope of this triangle, it is forced to
return to the initial position by hand.

We prepare three lower layers corresponding to the
three actions “Pass a ball to the right keeper robot”, “Pass

Figure 7. The Taker robot

Figure 8. The Keeper robot

a ball to the left keeper robot” and “Keep a ball”. The
upper layer learns the switching of the lower layers. The
learning in the lower layer has been finished in advance.
It means that the pass is always success unless there is no
taker robot. On the other hand, if there is the taker robot
in the position 1 in Fig. 6, the pass from Keeper-0 to
Keeper-1 fails. Furthermore, if there is the taker robot in
the position 2 in Fig.6, the pass from Keeper-0 to Keeper-
2 fails. The pass fails by the same condition in cases of
Keeper-1 or Keeper-2 is keeping a ball.

The desired level is designed by the following based
on the taker robot position; If Keeper-0 has a ball and the

1688 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

taker robot lies in the range of position 1 in Fig. 6, the
desired level about ”Keeper-0 passes a ball to Keeper-2”
is fired. On the other hand, if Keeper-0 has a ball and
the taker robot lies in the range of position 2 in Fig. 6,
the desired level about ”Keeper-0 passes a ball to Keeper-
1” is fired. Either of these two desired levels is fired at
random when the taker robot lies in the range of position
3 in Fig. 6. The desired level is designed by the same
condition in cases of Keeper-1 or Keeper-2 keeping a ball.

We have compared with our proposed method and
MPS. MPS always selects a lower layer corresponding
to the fired desired level.

Both our proposed method and MPS can always suc-
cess when the lower layer learning does not fail. On the
other hand, when the lower layer corresponding to “Pass
a ball to the right keeper robot” fails at some probability,
though our proposed method can always success, MPS
fails the learning. In this case, our proposed method can
exclude the selection of the lower layer corresponding to
“Pass a ball to the right keeper robot”, and always selects
the lower layer corresponding to “Pass a ball to the left
keeper robot”. We can confirm the effectiveness of our
proposed method in this experiment, too.

VIII. CONCLUSIONS

In this paper, we have proposed a new XoL method that
can treat multiple rewards and penalties effectively. We
have shown the effectiveness of our proposal by numerical
experiments and application to the LEGO robots.

In the future, we will apply our proposed method to real
world problem such that our biped walking robot [2], the
course classification support system on NIAD-UE [21],
and so on.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number 22500143.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. A Bradford Book, MIT Press, 1998.

[2] S. Kuroda, K. Miyazaki, and H. Kobayashi, “Introduction
of fixed mode states into online reinforcement learning
with penalty and reward and its application to waist
trajectory generation of biped robot,” J. of Advanced Com-
putational Intelligence and Intelligent Informatics, vol. 16,
no. 6, pp. 758–768, 2013.

[3] T. Matsui, T. Goto, and K. Izumi, “Acquiring a government
bond trading strategy using reinforcement learning,” J.
of Advanced Computational Intelligence and Intelligent
Informatics, vol. 13, no. 6, pp. 691–696, 2009.

[4] K. Merrick and M. L. Maher, “Motivated reinforcement
learning for adaptive characters in open-ended simulation
games,” in Proc. of the Int. Conf. on Advanced in Computer
Entertainment Technology, 2007, pp. 127–134.

[5] J. Randlφv and P. Alstrφm, “Learning to drive a bicycle
using reinforcement learning and shaping,” in Proc. of the
15th Int. Conf. on Machine Learning, 1998, pp. 463–471.

[6] P. Stone, R. S. Sutton, and G. Kuhlamann, “Reinforcement
learning toward robocup soccer keepaway,” Adaptive Be-
havior, vol. 13, no. 3, pp. 165–188, 2005.

[7] T. Watanabe, K. Miyazaki, and H. Kobayashi, “A new im-
proved penalty avoiding rational policy making algorithm
for keepaay with continuous state spaces,” J. of Advanced
Computational Intelligence and Intelligent Informatics,
vol. 13, no. 6, pp. 675–682, 2009.

[8] J. Yoshimoto, M. Nishimura, Y. Tokita, and S. Ishii,
“Acrobot control by learning the switching of multiple
controllers,” J. of Artificial Life and Robotics, vol. 9, no. 2,
pp. 67–71, 2005.

[9] K. Miyazaki and S. Kobayashi, “Reinforcement learning
for penalty avoiding policy making,” in Proc. of the 2000
IEEE Int. Conf. on Systems, Man and Cybernetics, 2000,
pp. 206–211.

[10] ——, “Exploitation-oriented learning ps-r#,” J. of Ad-
vanced Computational Intelligence and Intelligent Infor-
matics, vol. 13, no. 6, pp. 624–630, 2009.

[11] K. Miyazaki, M. Yamamura, and S. Kobayashi, “On the
rationality of profit sharing in reinforcement learning,” in
Proc. of the 3rd Int. Conf. on Fuzzy Logic, Neural Nets
and Soft Computing, 1994, pp. 285–288.

[12] K. Miyazaki and S. Kobayashi, “Learning determinis-
tic policies in partially observable markov decision pro-
cesses,” in Proc. of the 5th Int. Conf. on Intelligent
Autonomous System, 1998, pp. 250–257.

[13] ——, “An extension of profit sharing to partially observ-
able markov decision processes: Proposition of ps-r* and
its evaluation,” J. of the Japanese Society for Artificial
Intelligence, vol. 18, no. 5, pp. 285–296, 2003, in Japanese.

[14] ——, “A reinforcement learning system for penalty avoid-
ing in continuous state spaces,” J. of Advanced Compu-
tational Intelligence and Intelligent Informatics, vol. 11,
no. 6, pp. 668–676, 2007.

[15] K. Miyazaki, “Proposal of the continuous-valued penalty
avoiding rational policy making algorithm,” J. of Advanced
Computational Intelligence and Intelligent Informatics,
vol. 16, no. 2, pp. 183–190, 2012.

[16] N. Sprague and D. Ballard, “Multiple-goal reinforcement
learning with modular sarsa(0),” Tech. Rep., 798, The
University of Rochester, Computer Science Department,
2004.

[17] C. K. Tham and R. W. Prager, “A modular q-learning
architecture for manipulator task decomposition,” in Proc.
of 11th International Conference on Machine Learning,
1994, pp. 309–317.

[18] N. Ono and K. Fukumoto, “Multi-agent reinforcement
learning: A modular approach,” in Proc. of 2nd Interna-
tional Conference on Multiagent Systems, 1996, pp. 252–
258.

[19] K. Miyazaki, “Research of a decision making method
based on consciousness in multiple rewards environments,”
in Proc. of 39th SICE Symposium on Intelligent systems,
2012, pp. 95–98, in Japanese.

[20] D. Benedettelli, Creating Cool MINDSTORMS NXT
Robots. Apress, 2008.

[21] K. Miyazaki and M. Ida, “Proposal and evaluation
of the active course classification support system with
exploitation-oriented learning,” Lecture Notes in Computer
Science, vol. 7188, pp. 333–344, 2012.

Kazuteru Miyazaki received his B.S. degree in engineering
from Meiji University, Japan in March 1991 and his M.S. degree
and Ph.D. in engineering from Tokyo Institute of Technology,
Japan in March 1992 and 1996. He is currently Associate
Professor in National Institution for Academic Degrees and
University Evaluation. His current research interest includes
machine learning, especially, reinforcement learning.

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1689

© 2013 ACADEMY PUBLISHER

APPENDIX

Continuous State Space Discretization
To discretize continuous state space using basis func-

tions [14], let state (n-dimensional vector) at time t be
St, a selected action by St be at, and the resulting
transition destination be St+1, as shown in Fig. 9. A
basis function is created by an n-dimensional normal
distribution function with current state St at the center.
The principal axis direction of the function is defined
by St+1 − St, the d1 axis in Fig. 9. Directions of
other axes d2, . . . , dn are generated using Gram-Schmidt
orthonormalization from any linearly independent vectors
to mutually intersect at right angles, the d2, . . . , dn axes
in Fig. 9.

d1

d2 dn…

Up to here,
when f_para = e

Up to here, when f_para = 0.4

Up to here, when f_para = 0.7

St+1

S t

μ

axis axis

axis

- 9/2

Figure 9. The basis function in the reference [14]

Principal axis range extent σ1 is given by 3σ1 =
|St+1 − St|, and the extent of the range of other axes
σi is given by 3σi =

|St+1−St|√
n

(i = 2, 3, . . . , n). Because
a function biased in an experienced direction is obtained,
the range extent of other than the principal axis is multi-
plied by 1√

n
. 3σi covers 99% of samples.

Center St of the generated basis function is called
the basis function state, or μ. The action that generates
the basis function is memorized together with the basis
function and is used when an action is selected. The
basis function corresponds to a rule under discrete state
space. The basis function corresponding to the penalty
rule is called a penalty basis function, and the other
basis function is called a nonpenalty basis function. A
basis function is generated initially as an unlabeled basis
function. When a learning agent receives a penalty, we
can find a penalty basis function by using the Penalty
Basis Decision (PBD) procedure [14]. PBD is obtained by
replacing a rule within PRD [9] (Fig. 2) a basis function.
PARP in continuous state space [14] aims to acquire
a reward continuously by selecting a non-penalty basis
function.

If values of an observation at time t are given by y,
then the returned value is given as:

f(d) = exp

{
−1

2
(μ− y)TTΣT T (μ− y)

}
, (1)

T = [t1, t2, . . . , tn], Σ = diag(σ2
1, σ

2
2 , . . . , σ

2
n), and ti is

a unit vector along the di axis for i = 1, 2, . . . , n. Eq(1)
becomes 1.0 when y coincides with μ, and the farther y is
away from μ, the smaller the value of Eq(1). Calculating
the value of Eq(1) for each memorized basis function for
given observation y enables us to compare the closeness
of the observation to each basis function.

Each basis function scope is controlled by a threshold.
The control parameter is called f para (e−

9
2 ≤ f para

≤ 1.0) and attached to each basis function. If f para
becomes large, the scope of the function is narrowed and
if f para becomes 1.0, it coincides with center μ. f para
= e−

9
2 means that the basis function range is expanded

to transition destination St+1.

1690 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

