
 A Centralized State Repository Approach to
Highly Scalable and High-Availability

Parallel Firewall

Kasom Koht-arsa
Kasetsart University, Bangkok, Thailand

Email: Kasom.K@ku.ac.th

Surasak Sanguanpong
Kasetsart University, Bangkok, Thailand

Email: Surasak.S@ku.ac.th

Abstract—Conventional high-availability stateful parallel
firewall suffers from low scalability due to two overlapping
requirements: workload distribution and redundancy. To
achieve high throughput, load-distribution with complex
algorithm is conventionally employed, consuming a lot of
resources and making the system susceptible to state-related
attacks such as SYN-flooding. On the other hand, making
the system redundant usually implies N-to-N cross-
replication of connection-state data among firewall nodes.
These make the scaling effort very difficult at best.
This paper presents the novel design and implementation of
a highly scalable, high-availability, stateful parallel firewall
with centralized state repository intending for high-speed
connection environment. The system consists of fault sensor
unit(s), fully redundant load manager units, fully redundant
central state repository unit(s), and an array of Linux-based
machines acting as firewall nodes under the data parallel
scheme. Adding more units into the system can scale every
component up. Consistent Disjoint-subset Hashing and
Stateless Load balancing algorithms, chosen for their
superior computing overhead, provide high performance,
flexibility and scalability. Centralized State Repository
further enhances reliability and scalability.
Actual deployment statistics confirm that the combination
of centralized state repository and on-demand state
restoration largely reduces the number of state
synchronization transactions when the number of firewall
nodes fluctuates. Therefore, the high-scalability and load
balancing are gained with minimal state replications.

Index Terms: firewall, stateful firewall, parallel firewall,
high availability, fault-tolerant, fully redundant, scalable,
state replication

I. INTRODUCTION

Firewalls are widely deployed as security mechanism
to provide access control at the border of networks. While
network connection is rapidly evolving toward high-
bandwidth capability in scale of terabit per second,
firewall performance is a major concern. A single firewall
tends to be a system bottleneck due to packet inspection
process and complex rule sets matching.

Typically, a single firewall cannot accommodate a
large volume of packets generated from high-speed
connection. Parallelism is an approach to build high
performance firewall that offers scalability and high
availability to network services. A parallel firewall
consists of array firewall nodes that operate
independently and concurrently in parallel fashion. Load
balancing is required to distribute traffic through
firewalls, so that each firewall fits the whole or part of
packet filtering policy.

 Node array also offers enhanced redundancy and
availability. When a node in the array fails, the remaining
nodes can take over the jobs assigned to the failed node,
under predefined automatic fail-over mechanism.

State synchronization is an underlying mechanism to
provide redundancy. Parallel firewalls use automatic fail-
over mechanism to replicate TCP connection states from
a failed node to a redundant node. A node in stateful
parallel firewall [7] generally relies on active-active mode
where any change in connection states must be replicated
to the rest of nodes [9][10][11][17][18]. This is to ensure
that at least one of candidate nodes will take over the
connection states of a failed node and continuously
operate transparently and seamlessly to users. However,
this synchronization often induces large amount of traffic
because of unavoidable state replication among nodes.
Thus, high performance and true scalability cannot
actually be achieved in conventional firewall.

Results from analysis and measurements show that
both load balancing gain and scalability can be
accomplished with minimal state replications. The paper
is structured as follows: Section II presents related works.
Sections III and IV describe the proposed methodology
and system architecture, respectively. Section V describes
designs of load manager, a component for manage traffic
flow. Section VI explains the implementation and
evaluation. Section VII provides discussion and future
work, and Section VIII concludes the paper.

II. RELATED WORKS

Ongoing research related to parallel firewall [9]
focuses on transparent and seamless continuation of

1664 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jcp.8.7.1664-1676

services despite individual node failure. Redundancy
protocols such as CARP [8], VRRP [15] and HSRP [16]
may be adopted as high availability mechanisms for
parallel firewall with only a small number of nodes.
These protocols are designed so that when only one node
is active, the remaining nodes are left idle. Hence, it is
ineffective for parallel firewall where all nodes in the
arrays are required to be active. Furthermore, the
“heartbeat” technique can only validate the availability of
nodes, but not the availability of interconnections. This
technique also lacks mechanisms to reconfigure the
system when a node fails, as required in parallel firewall.

Prior works mostly focus on analysis of state-
replication effect and explore methods to compromise
between performance and high availability. Goddard et
al. [14] analyzed the unavailability of firewall sandwich
configuration and suggested a detection message method
to identify node availability. A detection message is
specially crafted packet containing information to
identify a failed node and to reconfigure system
corresponding to current available nodes. This method is
more reliable than the heartbeat technique used in
redundancy protocol technique [8][15][16].

A stateful firewall has to keep track of TCP states [7]
for every connection. The ongoing established connection
is called “active connection.” To preserve the active
connection in high availability stateful firewalls, the state
replication is required. Different operating systems offer
different state replication techniques, e.g., pfsync [13] in
OpenBSD, and ct_sync [4] with conntrackd [10] in
Linux. Neira [10] also showed performance measurement
of state replication in primary and backup firewall, and in
multi-primary firewall [11]. Feng[17][18] evaluated the
TCP state replication methods and showed that relaxing
or delaying the state replication requires a much lower
overhead and only small percentage of the traffic is lost.

One of major concerns in existing methods
[1][4][10][17][18] is that every node in the array needs to
hold the whole connection state table within itself. Any
changes in number of nodes in parallel firewall, through
failures, expansion, or administrative actions, will affect
the state connection and require state resynchronization.
Typically, state synchronization between multiple parties
generates high volume traffic. This circumstance leads to
performance degradation and inhibits scalability of
parallel firewall.

The firewall sandwich methods [1] employ a simple
hashing scheme. Its major weakness is that adding or
removing a node severely changes hash results. The
consistent hashing algorithm [2] proposed to solve the
similar problem on the URL of web caching seems to be
a good candidate. However, the URL hashing on web
cache takes smaller fraction of both time and storage
compared to the other operations of web cache, e.g.,
fetching data through the network, disk storage. Directly
applying consistent hashing is not generally suitable for
parallel firewall; hence, minor modification of consistent
hashing is adopted for balancing traffic. This
modification will be described in Section VI.

Balancing workload is crucial to determine the
performance of parallel firewall. In multi-primary hash-
based method, it requires almost 50% more nodes to
justify the load balancing overhead. Multi-primary
sandwich relies on load balancer, and it must be stateful
and scalable according to the number of nodes in the
array.

The primary-backup or active-standby uses only one
active firewall node, and the rest of nodes are idle. The
utilization of this method is not optimal because some
resources are unused. Using more firewall nodes does not
improve the performance. On the other hand, the multi-
primary multipath utilizes all firewall nodes. Nonetheless,
due to the nondeterministic route of traffic, a complex
and high overhead connection state exchange method
must be employed.

In multi-primary hash-based, every firewall node
receives identical packets and filters out all irrelevant
packets (packets that should be processed by the other
firewall nodes). To implement high availability, every
firewall node must exchange their connection states with
the other nodes. This increases overhead and impedes the
ability to scale.

The multi-primary sandwich requires complex stateful
load balancers, demanding high storage and processing
resources. The redundant load balancers are needed
because the load balancers themselves are stateful.

Obviously, performance for stateful parallel firewall
considerably relies on the effective manipulation of
global connection states on all firewall nodes. As
previously mentioned, adding more firewall nodes does
not reduce the number of connection states kept in each
node. In contrast, more additional nodes induce the
number of state exchanges between them. To reduce or
remove computation overhead of nodes from load
balancing function, we propose a simple stateless load
management. Furthermore, fully direct state
synchronization can be avoided with a centralized state
repository. On-demand state restoration with centralized
state repository substantially reduces number of state
exchanges between nodes. However, this scheme still
needs both state updates in a normal operation and state
restoration in a fault situation. Compared to the previous
works, our analysis shows that an on-demand state
restoration with the centralized state repository result to
smaller number of state updates and state restoration
time.

 This paper extends our previous work that originally
appeared in [6] by 1) propose design and models of load
manager, 2) describe details of modified consistent
hashing, 3) add the recovery time analysis and 4) results
from real workload are added.

III. DESIGN PHILOSOPHY AND ARCHITECTURE

High availability firewall should be able to tolerate to
any failure of system components, both internal and
external. Redundancy is a key to high availability.
Conventional redundancy architecture like active-standby
lacks in resource utilization, while active-active in
stateful firewall suffers from synchronization overhead.

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1665

© 2013 ACADEMY PUBLISHER

Furthermore, the conventional firewall sandwich methods
are not scalable due to connection state exchanges. This
section presents design of parallel firewall system
architecture that is high availability, efficient and
scalable.

To achieve high availability, the proposed method is
designed to support redundancy of every component in
the system. The fault sensor and an active path detection
algorithm ensure that the system can detect fault in every
component and adapt the system to maximize utilization
of available resource.

To minimize synchronization between components and
gain scalability, we propose a centralized state repository
to store the system’s backup copy of connection states.
This scheme replaces a conventional N-to-N firewall state
exchange that causes a large amount of overhead. The
state restoration of any failed node is on-demand that also
reduces system workload.

A. System Architecture

The proposed parallel firewall is classified as data
parallel model [9]. For this model, each node in the array
is configured with identical rule sets for packet filtering,
where packets (data) are distributed across nodes in the
array.

At least three main issues must be considered to design
parallel firewall. The first issue is how to perfectly
balance the load of firewall array nodes with optimum
resource consumption. The second is how to quickly
detect and recover the fault with minimum packet loss,
and the last is how to minimize the state exchanges
between nodes. These issues can be solved by a
combination of automatic fail-over detection with fault

sensor, and dynamic reconfigurable stateless load
manager with a centralized state repository approach.

Figure 1 shows the simple model of underlying system
architecture. There are four main components in our
proposed architecture: 1) Hash-based Load Manager, 2)
Firewall nodes, 3) Fault Sensor, and 4) State Repository.

The load manager is responsible for packet flow
management. It has one network interface connected to
the external environment, and multiple network interfaces
connected to each firewall nodes. Packets enter the load
manager and are distributed among firewall nodes using
hash function. Two load managers are placed in a
sandwich-style. They act as packet distributor and packet
aggregator depending on the direction of arriving packets.

Each firewall nodes will process different packets
simultaneously based on hashing scheme from the load
manager. In data parallel model, each node provides
access control and auditing based on a security policy
defined by identical rule sets.

The centralized state repository (CSR) is an active
machine used to keep track of all connection state. The
CSR approach is more efficient compared to the
independently internal state bank in each node.
Offloading unrelated connection states to the state
repository results to lower overhead processing and less
resource used in each firewall node.

The fault sensor has two special network connections
(dash line) to the load managers on the upper and lower
sides. As a result, the fault sensor can send and receive
packets through the main external interface of parallel
firewall.

Functional details of each component will be described
in Section IV.

Figure 1. System architecture (minimum model).

B. Fully Redundant Model

Every component in the system architecture shown in
Figure 1 except firewall nodes is potentially a single point
of failure. To provide the fully redundant system, we
append a copy of each component as shown in Figure 2.

The load managers on both upper and lower parts are
stateless by nature. Each group of load managers will
have identical hash parameters and connect to the same
set of firewall nodes.

Traffic Data

Management/
State Replication Data

Fault Detection
Fault

Sensor

Parallel Firewall

Load Manager

External network

Internal network

Load Manager

State
Repository

Firewall

FW2

Firewall

FW3

Firewall

FW2

Firewall

FWn

1666 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

A firewall node has four interfaces, instead of two in
order to forward packets configured as two bridge groups,
with two network interfaces on each group. Each two-
bridge group shares the same connection state table.

An example of a deployment for the full redundant
model in real network environment is shown in Figure 3.

IV. SYSTEM COMPONENTS

This section describes the four key components in the
proposed models: 1) load manager, 2) firewall node, 3)
fault sensor and 4) state repository.

A. Load Manager

A load manager is a crucial component used to
distribute and aggregate packets to and from firewall
nodes. Naturally, each firewall node will handle disjoint
subset of traffic assigned by the load manager and
maintain its own set of connection states. Conventional
load balancer may not be suitable for applying as load
manager for parallel firewall due to its stateful
characteristics. Connection tracking for stateful load
balancer requires high computing power resulting to
limited throughput and high latency. From this scenario,
we design the load manager as stateless component and
incorporate hashing scheme to deterministically assign
traffics to firewall nodes. An ASIC or FPGA chip can be
used to implement wire-speed stateless load manager to
gain high performance with low packet forwarding
latency.

The hash function on the load manager plays an
important role in balancing the workload and increases
the efficiency of connection state exchange and
restoration. As mention previously in Section II, output
from typical hash function will be drastically changed
when the number of nodes has been changed. This leads
to tremendous state exchange between firewall nodes.

 Figure 3. Typical system deployment.

Load Manager

Fault
Sensor2

State
Repository2

Parallel
Firewall

FW1 FW2 FW3 FWn

Load ManagerFault
Sensor1

State
Repository1

Router

E2
Router

E1

ISP1 ISP2

Enterprise Network

Load Manager Load Manager

Router

I1
Router

I2

Figure 2. System architecture (fully-redundant model).

Load ManagerLoad Manager

Fault
Sensor1

Fault
Sensor2

Firewall

FW1

Firewall

FW2

Firewall

FWn

Firewall

FW3

Parallel Firewall

External network1

Internal network1

External network2

Internal network2

Load ManagerLoad Manager

State
Repository2

State
Repository1

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1667

© 2013 ACADEMY PUBLISHER

Applying modified consistent helps reduction of state
exchange traffics.

Consistent hashing algorithm uses a regular hash
function h(x) (such as MD5, SHA) to determine a point
on the edge of a circle. It also maintains a list of random
points that determine the final hash result. The list grows
proportionally to the number of nodes and the hash
results cannot be lookup directly. We replace the list of
random points with a fixed size array of 2m entries. Each
entry stores the desired firewall node ID. The output of
h(x) is trimmed using modulo function to match the array
size. The trimmed result can then be used to lookup on
the array. The modified algorithm is illustrated in Figure
4.

The advantages of using lookup table instead of list of

random points are:

1. The lookup has much lower latency than searching

in a list.
2. If implemented in hardware, it does not require

processing unit or any state machine.
3. It can be extend to support load balancing by

adding a usage counter into every entry. This
information is necessary for readjust the workload
of firewall nodes.

To let every stateful firewall node operate

independently without state synchronization, the load
manager must ensure that traffic belonging to any two
addresses always pass through the same firewall node.
This constraint can be achieved by using source and
destination addresses as the input of hash function. For
example, if a packet is an outgoing packet, the source IP
is used. Otherwise, the destination IP is used.

The load manager can be designed and implemented in
many configurations. The models of how to implement
the load manager are discussed in Section V.

B. Firewall Node

The CSR method requires at least two of firewall
nodes running in bridging mode. Ideally, each node
should have identical machine characteristics. Otherwise,
the design of load balancing scheme must be complex to
handle node inequity.

Each firewall node has two additional functions needed
to interact with the CSR: 1) send connection state change
events to the repository and 2) import connection state
from the repository when the number of nodes is
changed.

Let Nf be the number of firewall nodes and T(f) be the
throughput of node f. The CSR model can withstand a
failure of Nf-1 firewall nodes with total achievable
throughput Ttotal as shown in (1).

(1)

C. Fault Sensor

The heartbeat-type methods employed in many
redundant firewalls are not suitable to parallel firewall
because they detect only the availability of the firewall
management interface. The availability of this interface
does not imply the availability of the data-forwarding
engine of the firewall or the network connections.
Instead, this work uses fault sensor to detect fault on any
path of data flow. Moreover, this fault sensor
injects/receives packet into/from internal/external
network interfaces, using many test patterns to identify
each path’s availability.

For example, in fully redundant model with two
firewall nodes, there will be four paths of data flow; each
is bi-directional, as shown in Figure 5. The task of fault
sensor is to apply the hash function to the load manager
to create packets. These packets will traverse through
each path to verify the path availability. In this case, eight
packets are sent to verify four paths in two directions.
When faults are detected, the fault sensors will adjust the
hash function of load managers to adapt to the remaining
available paths

.

The fault sensor itself runs indefinitely. Its role is to

detect the availability of every path and notify the other
components when change is detected. The algorithm of
the fault sensor is show in Algorithm 1.

 
 fN

ftotal fTT
1

)(

Figure 5. Example of four network paths in fully redundant model.

Load Manager

Firewall

FW1

Firewall

FW2

1 2 3 4

Load Manager

Load ManagerLoad Manager

Figure 4. Modified consistent hashing.

FW1

FW2

FW3

3
1
1
2
1
2
3
3

2m entries n firewalls

mod(h(x),2m)

1668 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

D. Central State Repository

Synchronizing connection states is a limiting factor in
scalability of conventional parallel firewall, because the
conventional methods attempt to make copies of
connection states on every firewall node. The larger
number of nodes, the more states exchange workload.
Instead of using state exchange, our method uses a state
repository to store global connection state, as shown in
Figure 6. These global connection states will be used only
when the number of firewall nodes changes. Hence, our
CSR method is more scalable than the conventional
method because adding more firewall nodes does not
increase workload on existing firewalls. The state
repository has two main functions: 1) update state, called
from every firewall node to update the global connection
state, and 2) update hash, called from the fault sensor to
change hashing parameters. The update hash function
also notifies and sends connection state updates to the
firewall nodes.

The difference between conventional methods and

CSR approach is a methodology to manage connection
states. In the conventional methods, every node has to
keep track of all connection states in the system, so that it
can recover when a node fault occurs. On the other hand,
the CSR method keeps only relevant connection states at
each node. A separate state repository is used to store the
global connection states of the system.

In CSR method, when a node fails, the state repository
will distribute portion of states previously belonging to
the failed node to the remaining nodes. This mechanism
is on-demand based. As shown in Figure 7, connection
states from the failed FW2 are transfer to FW1 and FW3.

When adding a new node to the system in conventional
method, all current connection states must be imported to
the new node. Either one node sends the whole copy or
all of the former nodes partially send their copies to the
new node. This export and transfer of states reduce the
performance of the former nodes. In CSR, the state
repository partially sends only states that belong to the
new node. There is no overhead in the former nodes. This
difference is illustrated in Figure 8.

Figure 6. Comparison of state exchange between

(a) conventional and (b) CSR method.

Firewall

FW1

Firewall

FW2

Firewall

FW3

Send connection state updates

State Repository

Firewall

FW1

Firewall

FW2

Firewall

FW3

Exchange connection states

(a) Conventional Method

(b) CSR Method

Algorithm 1. Active path detection
active_paths 
while (true) do
 paths  config file
 pkt_send
 for all path paths do
 add genpkt(path) to pkt_send
 add genpkt(reverse(path)) to pkt_send
 end for

 sendpkt(pkt_send)

 pkt_recv  recvpkt(timeout_value)

 new_active_paths
 for all packet  pkt_recv do
 if reverse_direction(packet)pkt_recv then
 add path_of(packet) to new_active_path
 remove reverse_direction(packet) from pkt_recv
 end if
 end for

 if active_pathsnew_active_paths then
 update_hash()
 state-repository.update_hash()
 load-manager.reconfigure()
 active_pathsnew_active_paths
 end if

 wait for next interval

end while

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1669

© 2013 ACADEMY PUBLISHER

Recall from Section IV 4 that Ns be is the number of all
connection states in any given time. On average, each
firewall node in the CSR method handles 1/Nf of the
connections. Therefore, the average number of
connection states on each node Nsp can be expressed as:

(2)

Nsp becomes smaller as the number of nodes increases.

Figure 9 illustrates the percentage of connection states

reduction, in respect to the number of nodes from
experimental. Note that in the conventional method,
every firewall node holds all connection states, the
number of connection states on each node of the
conventional method is always equal to Ns and shown as
100% value.

The CSR method sends one copy of connection state to

the state repository. From (2), the average number of
states sent from each node is

(3)

Therefore, the accumulative number of states sent from

every node is

(4)

On the other hand, the conventional method will have

to send the connection states to all other nodes. Because
each node in the conventional method handles traffic
from Ns/Nf connections, the average number of states sent
from each node from the conventional method is

(5)

And the accumulative number of states sent from every

node is

 (6)

In CSR method, when one of Nf firewall nodes fails,
remaining firewall nodes must import the state of the
failed node. Let Nsip be a average number of state
imported to each remaining node and can be expressed
as:

f

s
sp N

N
N 

f

s
ssp N

N
N 

sf
f

s
fsspssap NN

N

N
NNN 

)1( f
f

s
ssc N

N

N
N

)1( fsfsscssac NNNNN

Figure 9. Comparison of percentage of states stored on
each firewall. type.

2 3 4 5 6 7 8 9 10

CSR Meth. 50. 33. 25. 20. 16. 14. 12. 11. 10.

Conv. Meth. 100 100 100 100 100 100 100 100 100

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

P
er

ce
nt

ag
e

of
 s

ta
te

 s
to

re
d

Number of Firewall

Figure 8. Comparison of state restoration in (a) conventional method

and (b) CSR method. FW4 is new node.

FW1-FW3 send their partial connection states
to the new FW4 node

FW1, FW2 or FW3 send their full connection states
to the new FW4 node

All existing states are transferred/
imported to the new node

Only related states from the
repository are transferred and
imported to the new node

or

Firewall
FW2

Firewall
FW3

Firewall
FW4

Firewall
FW1

Firewall
FW2

Firewall
FW3

Firewall
FW4

Firewall
FW1

Firewall
FW2

Firewall
FW3

Firewall
FW4

Firewall
FW1

(b) CSR Method

(a) Conventional Method

State
Repository

Figure 7. State restore from the repository. FW2 is failed node.

State Repository

Restore connection state of
the failed FW2 into FW1

and FW3

Fault Sensor

Firewall

FW1

Firewall

FW2

Firewall

FW3

1670 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

(7)

The conventional method always imports states from

the other nodes. The number of state import is equal to
the number of connection states that are not passed
through that firewall node itself. Therefore, the average
number of state import on each firewall node in the
conventional method is

(8)

Figure 10 illustrates the percent of states imported on
each type of firewall from (8) and (9).

Because the on-demand state restoration occurs after

the failure, there is some time gap between failure and
full recovery. The total time required to fully recover
(Trcvy) from a fault depends on 1) the time to detect and
find a fault (Tdf), 2) the time to reconfigure load manager
(Treconf), and 3) the time to restore connection state (Trest).
Trest depends on two parameters: time to transfer
connection states from the state repository to a node
(Txfer) and time to commit the connection states into
kernel’s connection tracking table (Tcom). Hence, the total
recovery time can be expressed in (10) and (11).

 (9)

 (10)

Conventional method has no Trest because connection

states are always up-to-date. In both the CSR and
conventional methods, Tdf and Treconf are non-zero
numbers; therefore, there will always be packet loss in
both systems. The amount of packet loss will depend on
Trcvy.

Tdf depends on polling interval, which is generally in
scale of seconds. With a large number of firewall nodes,
Trest of the CSR method is very small (In an experiment, it
is a fraction of seconds) because few states have to be

restored. Treconf and Trest processing can be run
simultaneously; thus, the value of Trest is insignificant
because it is far less than Treconf. This makes recovery
time of the CSR method similar to the conventional
method.

V. LOAD MANAGER DESIGN CRITERIA

While the load manager is simple enough to be
designed from the ground up, adapting commodity
hardware may have more economic advantage. In this
section, we propose two designs of the load manager. The
first design adopts data access switches and the second
one adopts commodity 802.1Q VLAN switch with
additional simple FPGA hardware.

A. Data Access Switch Type

A Data access switch is typically used in IDS or traffic
monitoring purposes. It provides several functionalities
such as traffic aggregating from multiple links, traffic
distributing to multiple ports, and traffic directing
according to one-to-one and many-to-many port
mappings. This section explains two schemes to apply
data access switches for use as load managers.

Firstly, a data access switch with a full duplex feature
(or receiving and sending function simultaneously within
the same port) can be directly used for load balancing by
setting aggregation and distribution rules according to the
existing ports and the number of firewalls. This full
duplex scheme requires two data access switches to cover
the firewall array in a sandwich style as shown in Figure
11.

Secondly, a data access switch without a full duplex

feature requires additional wiring connections. This
scheme requires that all connections are optical fibers,
with split TX and RX core [5]. Figure 12 illustrates the
wiring connections with transmitting and receiving paths
in details. The data access switches are configured to
distribute and aggregate packets in pair. The dash line
indicates that that link does not contribute to forwarding
data, but may need to be connected if the data access
switch cannot manually force the interface’s status to
active state.

ff

s

f

sp
sip

NN

N

N

N
N







21

f

f
ssic N

N
NN

1


restreconfdfrcvy TTTT 

comxferrest TTT 

Figure 11. Using full duplex data access switch as load manager.

Data Access Switch

Data Access Switch

FW1 FW2 FW3

Distribute

Aggregate

Aggregate

Distribute

Figure 10. Comparison of percentage of state import on

firewall nodes.

2 3 4 5 6 7 8 9 10

CSR Meth. 50. 16. 8.3 5.0 3.3 2.3 1.7 1.3 1.1

Conv. Meth. 50. 66. 75. 80. 83. 85. 87. 88. 90.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

P
er

ce
nt

ag
e

of
 s

ta
te

 i
m

po
rt

ed

Number of Firewall

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1671

© 2013 ACADEMY PUBLISHER

B. VLAN Switch Type

Virtual LAN (VLAN) is a mechanism that partition
single physical switch into multiple logical switches.
Commodity VLAN enabled switches are economical and
almost all of them are capable of forwarding packets at
wire-speed for each port. The concept behind making
load manager from commodity VLAN switch is that the
complexity and the cost of load manager is reduced by
using the existing switch’s packet buffer and forwarding
fabric. An external component that control how the
packets are forwarded is added to commodity switch to
form a load manager. This method looks very similar to
“router on a stick” configuration that a packet from one
VLAN gets routed to another VLAN by a router, but it
differs in how the destination VLAN is chosen.

To build the load manager, we propose a device called
“VLAN Changer”. The VLAN Changer is an FPGA with
two Ethernet ports. Two VLAN Changers have to be
placed in sandwich to the switches, as shown in Figure
13. To simplify the design of VLAN Changer, both ports
of the VLAN Changer must be trunk ports. With this
configuration, the incoming and outgoing packet will
differ only in the VID and FCS (frame check sequence)
field.

The VLAN Changer’s control logic is a simple state
machine that only determines the designated VID of any
input packet and then changes the VID field of that
packet accordingly. This part is easy to implement in
FPGA. The complex parts such as crossbar switch or
packet buffer are not needed because these parts are
assigned to commodity switches.

VI. IMPLEMENTATION AND EVALUATION

We deploy the testbed on Kasetsart University’s
network (NontriNet). The NontriNet connects to two
Internet Service Providers (ISPs); the first ISP has three
of Gigabit Ethernet links while other has one Gigabit
Ethernet link, as shown in Figure 14. The internal
connections are 10 Gigabit Ethernet. To test on our
deployed network without disturbing normal operation,
we create the main parallel firewall similar to [5] and
duplicate traffic flow feeding into the test firewall nodes.
Such topology is shown in Figure 15.

The testbed has totally six firewall nodes. Four of them
are used to forward traffics, while the other two are test
nodes. All nodes have identical hardware specification:
Dual-core Xeon® X5270, 4GB RAM, 140 GB SAS hard
disk , and four gigabit Ethernet interfaces. The software is
Linux kernel 2.6.29.1’s with built-in Netfilter. The fault
sensor and state repository have identical hardware, each
which two dual-core OpteronTM 2200 with 4 GB RAM
and four gigabit Ethernet interfaces.

While the external links have total of 4 Gbps in and out
bandwidth, the actual average network usage is 1.2 Gbps
in and 511 Mbps out. The peak usage is 2.6 Gbps in and
1.4 Gbps out.

Figure 13. Connection diagram of VLAN Changer.

802.1Q VLAN
Enabled Switch

802.1Q VLAN
Enabled Switch

FW1 FW2 FW3

VLAN Changer

VLAN Changer

802.1Q Tagged

802.1Q Tagged

Untagged,
Different VIDs

Figure 12 Connection diagram for data access switches that do not

support full duplex operation.

Firewall
FW2

Firewall
FW1

Parallel Firewall

RX

RX

RX

RX

TX

TX

TX

TX

TX

TX

RX

TX RX

TX RXRX RX TX

TX RXRX TX

RX TX

RX TX

Data Acccess Switch
(Configured to

distribute packets)

Data Access Switch
(Configured to

aggregate packets)

RX TX

Data Acccess Switch
(Configured to

distribute packets)

Data Access Switch
(Configured to

aggregate packets)

1672 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

We adapt two data access switches model GigaVUE-

MPs from Gigamon [3] as load managers. Because the
GigaVUE-MPs do not directly support custom hash
function, we create rules to simulate the effect of custom

hash functions. The load managers are configured to
duplicate traffic of FW3 and/or FW4 into FWx and/or
FWy, depending on the test criteria. While the input
packets are duplicated, the output from FWx and FWy are
discarded.

In the first experiment, we measure the overhead of
kernel state change export mechanism. The same set of
traffic from FW4 is fed to FWx and FWy. FWx has
conntrackd run in NOTRACK mode while FWy does not.
Using cyclesoak (a utility for measure CPU utilization)
the measured load average on FWx is approximately 12%
larger than FWy.

In the second experiment, we measure the overhead of
exporting connection states to the other nodes, compared
to full connection state exchange. The measured load
average of full connection state exchange is about 14%
larger than of export state only. The conntrackd has an
external cache to store the connection state in memory
without committing directly into kernel. If the external
cache is enabled, the overhead is reduced to 5%.
Nonetheless, it takes time to commit these connections
later when needed.

In the third experiment, we measure the time to
commit connection state into kernel space (Tcom). It takes
1.2 second to commit 128,248 state entries into
connection tracking table. The commit time grows
linearly with the number of state entries. The time used to
burst transfer 150,000 states from the state repository to a
firewall node (Txfer) is less than 5 milliseconds.

The real workload on each firewall is shown in Figure
16. The data point is five-minute average each, taken on
2012/09/25. Figure 17 shows the number of states on
each firewall node. From those figures, the hash function
distributes balanced workload to the firewall nodes. The
bandwidth and number of states of each firewall node are
different. Due to the nature of network usage, some
clients may use more or less bandwidth than the others,

and some clients may burst transfer traffic from time to
time. The relatively light usage during hours 3:00AM to
8:30AM makes the difference in percentage standout.
The imbalance of bandwidth and number of states during
light load period is not important because firewall nodes
also have plenty of processing resources left.

Figure 15. Configuration under test.

10 Gbps link
1 Gbps link

Fault
Sensor

Parallel Firewall

External network

Internal network

Load Manager

State Repository

Firewall
FW2

Firewall
FW3

Firewall
FW2

Firewall
FW4

Firewall
FWx

Firewall
FWy

Load Manager

Figure 14 NontriNet testbed.

Parallel Firewall

Border
Router

ISP1 ISP2

Core
Router

1 G Eth.3 x 1 G Eth.

10 G Eth.

NontriNet

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1673

© 2013 ACADEMY PUBLISHER

Figure 17. Number of state on FW1 -FW4.

250

270

290

310

330

350

370

390

410

430

450

0:
00

:0
0

2:
00

:0
0

4:
00

:0
0

6:
00

:0
0

8:
00

:0
0

10
:0

0:
00

12
:0

0:
00

14
:0

0:
00

16
:0

0:
00

18
:0

0:
00

20
:0

0:
00

22
:0

0:
00

Number of state
x 1000

Hour

FW1
FW2
FW3
FW4

Figure 16. Throughput of FW1 -FW4.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0:
00

:0
0

2:
00

:0
0

4:
00

:0
0

6:
00

:0
0

8:
00

:0
0

10
:0

0:
00

12
:0

0:
00

14
:0

0:
00

16
:0

0:
00

18
:0

0:
00

20
:0

0:
00

22
:0

0:
00

Throughput (Mbps)

Hour

FW1
FW2
FW3
FW4

1674 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

VII. DISCUSSIONS

The proposed CSR method is more efficient and
scalable than the multi-primary hash-based. In multi-
primary hash-based, every node receives all packets
before most of them are dropped later after the hash filter.
Adding more firewall nodes does not increase the
receiving and hashing input packets. This results to
diminishing return.

While the multi-primary sandwich does not have the
same receive-then-hash overhead as the multi-primary
hash-based, the load balancer itself is the bottleneck.
Because the load balancer is stateful, it is not trivial to
implement a wire-speed load balancer. Redundant load
balancer is also difficult to design due to the demand of
high-speed state exchange.

The CSR method replaces the stateful load balancer
with a lightweight and much simpler stateless load
manager. The redundant stateless load manager does not
need state exchange.

The CSR method is more scalable than the
conventional method. From (2), adding more firewall
nodes does not cause more states stored on each firewall
node. This results to lower resource usage in both space
and processing power. Furthermore, comparing between
(3)(4) and (5)(6), the CSR method send less number of
states. In addition, (7) and (8) show that: 1) the state
restoration occurs after the failure and causes no
overhead during normal operation, and 2) the number of
imported states is reduced because of the larger number
of nodes.

In normal operation, the CSR method has 14% lower
overhead than the conventional method. From (7) and (8),
the more difference in overhead can be predicted when
increasing the number of nodes.

The CSR method is more immune to state-related
attack, such as SYN-flood. In conventional method, there
are two major weaknesses from such attack, i.e., 1) the
SYN-flood states will degrade the whole system
performance due to a large number of state exchange
between nodes, and 2) connection-state table in the load
balancer will be rapidly exhausted, and cause a denial of
service of the whole system. The design of CSR solves
the above two weaknesses where 1) the flooded states
will only be sent to the state repository without effect on
other firewall nodes 2) the load manager simply ignores
these states because of its stateless characteristic.

Future research includes improve the hash algorithm to
support automatic workload balancing, design and
optimization of VLAN Changer.

VIII. CONCLUSIONS

This paper describes stateful parallel firewall models
that have high availability, high throughput, low latency,
high efficiency and high scalability. The high availability
is achieved by the ability to add redundant components to
every part in the system. The added redundant
components are all active and contribute to share the
workload.

The proposed CSR method, which replaces the N-to-N
state replication, reduces the system’s overhead on
normal operation and offers more system scalability.
Moreover, the CSR method reduces the overhead and
scalability problem of state replication by using on-
demand state restoration and centralized state repository.
The on-demand state restoration off-loads the overhead of
state synchronization in normal operation. The
centralized state repository makes the replication
straightforward and has lower overhead than directly
exchange connection states between firewall nodes.

ACKNOWLEDGMENT

This work was partially funded by a research grant
from the Computer Engineering Graduate Program,
Department of Computer Engineering, Faculty of
Engineering, Kasetsart University.

The authors wish to thank Dr. Supaporn Erjongmanee
and Asst. Prof. Dr. Pirawat Watanapongse for their
valuable comments and suggestions.

REFERENCES

[1] C. Benecke, A Parallel Packet Screen for High Speed
Networks. Proceeding of the 15th Annual Computer
Security Applications Conference, 1999.
doi:10.1109/CSAC.1999.816014.

[2] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin, Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving HotSpots on the World Wide Web.
Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC’97), 1997. doi:10.1145
/258533.258660.

[3] Gigamon, http://www.gigamon.com. Retrieved
2012/11/12.

[4] H. Welte, ct_sync: state replication of ip_conntrack.
Linux Symposium, 2004.
http://www.linuxsymposium.org/archives/OLS/Repri
nts-2004/Reprint-Welte-OLS2004.pdf. Retrieved
2012/09/30.

[5] K. Koht-arsa and S. Sanguanpong, A Practical
Approach for Building a Parallel Firewall for Ten
Gigabit Ethernet Backbone, the 42nd Annual IEEE
International Carnahan Conference on Security
Technology, 2008. doi:10.1109/CSST.2008.4751324.

[6] K. Koht-arsa and S. Sanguanpong, High Availability
and Scalable Parallel Stateful Firewall Design,
International Conference on Internet Studies, 2012.

[7] M. G. Gouda and A. X. Liu, A Model of Stateful
Firewalls and Its Properties, Proceedings of the 2005
International Conference on Dependable Systems
and Networks, 2005. doi:10.1109/DSN.2005.9.

[8] OpenBSD, The Common Address Redundancy
Protocol (CARP), http://www.openbsd.org/faq/
faq6.html#CARP. Retrieved 2012/09/30.

[9] P. Neira, R. M. Gasca, and L. Lefèvre, Demystifying
Cluster-Based Fault-Tolerant Firewalls. IEEE
Internet Computing, 13(6):31-38, December 2009.
doi:10.1109/MIC.2009.128.

JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013 1675

© 2013 ACADEMY PUBLISHER

[10] P. Neira
Efficient
Stateful
micro C
Network
DC, USA

[11] P. Neira
Support
Firewall
doi:10.1

[12] P. Neir
Availabi
Network
'06: Th
Availabi
Austria,

[13] R. McB
CARP,
carp/. Re

[14] S. Godd
Unavaila
Configu
doi:10.1

[15] S. Nad
Redunda
2010.

[16] T. Li, B
Protocol

[17] Y. Feng
Huan W
for State
of IEEE

[18] Y. Fen
Evaluati
High-Av
IEEE
GLOCO

Internet Sec
Networking.

Engineering, K
Applied Netw

a, R. M. Ga
t Connection

Firewalls. P
Conference
k-Based Proce
A, 2008. doi:1

a, R. M. Gasca
for the Availa

ls Using
007/978-3-54

ra, L. Lefèvr
ility Support
king Equipme
he First I
ility, Reliab
2006. doi:10.

Bride, Firewa
http://www

etrieved 2012/
dard, R. Kie
ability Anal

urations. IE
109/HASE.20

das and Ed
ancy Protoco

B. Cole et a
l (HSRP), RFC

g, Nen-Fu Hu
Wu, Flow Dige

eful High Av
ICC2007, 20
g, Nen-Fu H
ion of TCP S
vailability Fir
GLOBECOM

OM.2008.ECP

Kasom
of E
Engin
engine
Bangk
respec

He
the F
Unive

curity, Embed

Suras
Bache
Engin
engin
Bangk
respec

He
Profes
Comp

Kasetsart Unive
work Research

asca, and L.
n Failover
Proceedings o
on Parallel,

essing (PDP 2
10.1109/PDP.
a, and L. Lefè
ability of Clus

FT-FW.ES
40-88313-5_1.
re, and R.
t for the De
ents. IEEE p
International
ility and S
.1109/ARES.2
all Failover
w.countersieg
/09/30.

eckhafer, and
lysis of Fir
EEE HASE
011.966815.
d. Ericsson,
l (VRRP), R

al. Cisco Ho
C 2281, Marc
ang, Rong-Ti

est: A State R
vailability Clu
07. doi:10.110
Huang, an
State Replica
rewall Cluster

M 2008, 20
.389.

m Koht-arsa re
Engineering
eering degre
eering from K
kok, Thailand,
ctively.

is currently a N
Faculty of Eng
ersity. His resea
dded System

sak Sanguanp
elor of Enginee
neering degre
eering from K
kok, Thailand,
ctively.
e is current
ssor at the
puter Enginee
ersity. He is als

h Laboratory (

Lefèvre, FT-
in Cluster-b

of the 16th E
Distributed

008). Washin
2008.87.

èvre, Multipri
ster-Based Sta
SORICS 2
.
M. Gasea,
esign of Sta
proceeding A

Conference
Security, Vie
2006.71.
with pfsync
e.com/doc/pfs

d Y. Zhang,
rewall Sand

E ‘01, 2

Virtual R
RFC 5798, M

t Standby R
h 1998.
ie Liu, and M

Replication Sch
uster. Proceed
09/ICC.2007.2

nd Yen-Min
ation Method
rs, Proceeding

008. doi:10.1

eceived the Bac
and Master

ees in com
Kasetsart Unive

in 1999 and

Network Engin
gineering, Kas
arch interests in

and High-

pong received
ering and Mast
ees in elec

Kasetsart Unive
in 1985 and

tly an Asso
e Department
ering, Faculty
so the Director o
(ANRES), Kas

-FW:
based
Euro-

and
ngton,

mary
ateful
2008.

High
ateful

ARES
on

enna,

and
sync-

 An
dwich
2001.

outer
March

outer

Meng-
heme
dings
219.
Wu,

s for
gs of
1109/

chelor
of

mputer
ersity,
2003,

neer at
setsart
nclude
speed

d the
ter of
ctrical
ersity,
1987,

ociate
t of
y of
of the
setsart

Univ
Man

A

versity. His res
nagement, Intern
Assoc. Prof. San

searches focus
net Security and

nguanpong is a m

 on Network
d High-speed N
member of IEE

Operation and
Networking.
EE and ACM.

d

1676 JOURNAL OF COMPUTERS, VOL. 8, NO. 7, JULY 2013

© 2013 ACADEMY PUBLISHER

