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Abstract—The extreme learning machine (ELM) is a newly 

emerging supervised learning method. In order to use the 

information provided by unlabeled samples and improve the 

performance of the ELM, we deformed the kernel in the 

ELM by modeling the marginal distribution with the graph 

Laplacian, which is built with both labeled and unlabeled 

samples. We further approximated the deformed kernel by 

means of random feature mapping. The experimental 

results showed that the proposed semi-supervised extreme 

learning machine tends to achieve outstanding 

generalization performance at a relatively faster learning 

speed than traditional semi-supervised learning algorithms. 

  

Index Terms—extreme learning machine (ELM); random 

feature mapping; semi-supervised learning; Reproducing 

Kernel Hilbert Spaces (RKHS). 

 

I.  INTRODUCTION 

Lately, extreme learning machine ELM has been 

attracting a lot of attention from an increasing number of 

researchers [1]-[5]. It was originally developed for the 

single-hidden layer feedforward neural networks (SLFN) 

[6]-[8], which was extended to the “generalized” SLFNs, 

i.e., may not be neuron alike [9, 10]. ELM has three main 

learning features: (1) ELM was originally proposed to 

apply random computational nodes in the hidden layer. 

Thus, the hidden layer of the ELM does not need be 

tuned. (2) ELM incorporates the smallest training error 

and the norm of output weights into the objective 

function. Hence, it controls the complexity of decision 

functions by means of regularization. (3) Unlike LS-SVM 

and SVM that only provide one type of computational 

need, ELM provides a unified solution to different 

practical applications (e.g., regression, binary, and 

multiclass classifications). 

ELM is a supervised learning method. In many 

applications, however, there are little labeled data and a 

large amount of unlabeled data available. Semi-

Supervised Learning (SSL) methods are proposed to 

solve this problem. ELM can be naturally extended to the 

unsupervised scenario, where the “cluster” and “manifold” 

assumptions are used to learn input-output mapping 

functions. The “cluster” assumption refers to that points 

in a data cluster have similar labels. The “manifold” 

assumption corresponds to high-dimensional data 

distributed on a low-dimensional manifold and the 

samples in each local region have similar labels. There 

are many approaches based on the “cluster” assumption, 

which uses techniques such as local combinatorial 

searches[12], branch-and-bound algorithms[13,14], 

gradient descent[15], semi-definite programming [16-19], 

continuation techniques[20], non-differentiable 

methods[21], concave-convex procedures[22,23], and 

deterministic annealing[24]. However, the time 

complexity of these methods scales at least quadratically 

with the dataset size, which makes them inapplicable to 

large-scale datasets. In [25], a cutting plane semi-

supervised support vector machine algorithm (CutS3VM) 

was proposed to reduce the number of iterations, but it 

still takes time O(sn) to converge with guaranteed 

accuracy in the linear case, where n is the total number of 

samples in the dataset and s is the average number of 

non-zero features. Sindhwani et al.[26] proposed two 

kinds of large-scale semi-supervised linear SVMs: the 

transductive modified finite newton linear L2-SVM (L2-

TSVM-MFN) and the deterministic annealing L2-SVM-

MFN method (DA L2-SVM-MFN). L2-TSVM-MFN is 

converged after having been switched many times and 

DA L2-SVM-MFN needs a number of iterations to 

compute the corresponding parameters of unlabeled data. 

Besides the “cluster” assumption, many regularization 

frameworks based on the “manifold” assumption have 

been designed by adding a manifold regularization term. 

In [27], Belkin et al. proposed a general Manifold 

Regularization (MR) framework for a full range of 

learning problems from unsupervised and semi-

supervised, to supervised. The MR framework adds an 

additional penalty term to the traditional regularization, 

from which the Laplacian Regularization Least Square 

Classification (LapRLSC) and the Laplacian SVM 

(LapSVM) methods are derived and have been shown to 

be efficient in semi-supervised learning problems. 

Additionally, the Discriminatively Regularization Least 

Square Classification (DRLSC) method and the Sparse 

Regularized Least Square Classification (S-RLSC) 

algorithm[29] were proposed, which improves the MR 

framework further. Although these frameworks can 

handle semi-supervised learning problems and the 

analytic solutions can also be derived, they still involve 
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expensive computation when training large-scale data 

sets. 

To improve the performance of the ELM, it is essential 

to use the information provided by both labeled and 

unlabeled samples. We construct the deformed kernel for 

the ELM, which is adapted to the geometry of the 

underlying distribution. Based on the deformed kernel, 

we propose a deformed kernel-based extreme learning 

machine (DKELM) to provide a unified solution for 

regression, binary, and multiclass classifications (like 

ELM). To address large-scale data training, we 

approximate the deformed kernel by random feature 

mapping, so that the proposed DKELM does not need 

parameter tuning and has less computational complexity, 

as well as a natural out-of-sample extension for novel 

examples. We demonstrate the relationship between the 

traditional kernel-based learning approach and ELM, and 

our approach can be used by other kernel-based methods 

and a sequence of fast learning algorithms can be derived.  

The rest of this paper is organized as follows. Some 

previous works are introduced in Section II. The method 

of constructing and approximating the deformed kernel is 

discussed in Section III. In Section IV, we first 

demonstrate the relationship between the traditional 

kernel-based learning approach and ELM, and propose 

the deformed kernel based extreme learning machine. 

The experiments using benchmark real-world data sets 

are reported in Section V. Finally, we conclude this paper 

in Section VI. 

II. BRIEF OF THE EXTREME LEARNING MACHINE 

The output function of ELM for generalized SLFNs in 

the case of one output node case is 

                     
                       (1)                 

where              
  is the vector of the weights 

between a hidden layer of L nodes and the output node. 

Note that                       is the output (row) 

vector of the hidden layer with respect to the input x. In 

fact,      maps the data from the d-dimensional input 

space to the L-dimensional hidden-layer feature space 

(ELM feature space) H. Different from traditional 

learning algorithms [11], ELM is meant to minimize the 

training error as well as the norm of the output weights [7]  

Minimize:        and                          (2) 

where H is the hidden-layer output matrix, which is 

denoted by 

   

     

     
 

     

   

                 

                 
                      

                 

 .       (3)                                          

As with SVM for the binary classification, to minimize 

the norm of the output weights     is actually used to 

maximize the distance of the separating margins of the 

two different classes in the ELM feature space:     . 

The norm controls the complexity of the function in the 

ambient space, which will be elaborated later. 

If a feature mapping h(x) is unknown to users, the 

output function of ELM classifier is 

            
 

 
     

  

  

                    
 

 
   

  

          (4) 

where      ,               and         is a 

kernel function. 

If a feature mapping h(x) is known, we have  

                                                (5) 

where          is a nonlinear piecewise continuous 

function satisfying ELM universal approximation 

capability theorems [7],[30] and             
  are 

randomly generated according to any continuous 

probability distribution. The output function of ELM 

classifier is 

                  
 

 
     

  

 ,        (6) 

or 

                
 

 
     

  

   ,        (7) 

where    

           
           
                   
         

  and m is the number of 

classes. 

III. DEFORMING THE KERNEL BY WARPING AN RKHS 

For a Mercer kernel K: X  X  , there is an 

associated RKHS    of functions X  with the 

corresponding norm    . Given a set of l labeled 

examples            
 and a set of u unlabeled examples 

         

   
, where       and          , the classical 

kernel-based learning approach is based on solving the 

regularization problem given by  

                 
  

 

 
                  

  
   ,    (8) 

where V is some loss function, such as the squared loss 

          
  for RLS and the hinge loss function 

                 for SVM;     
  is the norm of the 

classification function   in the reproducing kernel Hilbert 

space   , and    controls the complexity of  function   . 

The Representer Theorem [27] states that a solution can 

be found in the form                
 
   . In order to 

avoid confusion, we list main notations of this paper in 

Table I. 

TABLE I.   

NOTATIONS 

Notation Explanation 

   The input d-dimensional Euclidean space 

                                is the 

training data matrix.       
  are labeled points, 

and         
    are unlabeled points. 

m The number of classes that the samples belong 

to 

                   is the 0-1 label matrix. 

      is the label vector of   , and all 

components of    are   s except one being  . 

                           is the discriminative 

vector function. The index of the class which x 
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belongs to is that of the component with the 

maximum value. 

       Kernel function of variables   and   

  Kernel matrix 

                                  

                 . Its columns are the 

coefficients of the kernel function to represent 

the discriminative function     . 
    Norm in the Hilbert space    

    Inner product in the Hilbert space    

tr(M) The trace of the matrix M , that is, the sum of 

the diagonal elements of the matrix M. 

span{          } subspace expanded by        

 

In the implementation of this kernel-based learning 

approach, we often use the Radial Basis Function or 

Gaussian (RBF) as kernel, and the kernel k defines a 

unique RKHS. Since the Gaussian kernel is isotropic, it 

has a spherical symmetry.  That is, it generally does not 

conform to the particular geometry of the underlying 

classes. In other words, the underlying data structure is 

obviated. Finally, it is unable to provide an accurate 

decision surface. To address these limitations, it is crucial 

to define a new kernel that is adapted to the geometry of 

the data distribution well. 

Instead of solving (8) like a traditional kernel-based 

learning approach, we modify (or deform) the original 

kernel   in order to adapt it to the underlying distribution 

geometry. Defining a new deformed kernel   , the new 

problem to be solved becomes 

               
  

 

 
                   

  
  , (9) 

(8) and (9) solved with different kernels, and thus in 

different     .  

The solution of (9) is 

                               
 
   ,                    (10)                                                           

that should be appropriate for real setting.  

To “deform” the original kernel and adapt it to the 

geometry of the underlying distribution, let    be a linear 

space with positive semi-definite inner product, and let 

           be a bounded linear operator. Defining     

to be the space with the same functions as    and its 

inner product defines 

                                 ,             (11)                                          

It is proved in [27] that     is a valid     . In this 

specific problem, it is required that    and   should 

depend on the data. Therefore, let   be     , and define 

   as the evaluation map        
                .Using a symmetric positive semi-

definite matrix  , the semi-norm on      can be written 

as      
      . With such a norm, the regularization 

problem in (9) becomes 

               
  

 

 
                   

  
  

                                                                (12)   

where     includes  both  labeled  and  unlabeled  data  

and  the matrix   encodes smoothness w.r.t. the graph or 

manifold.  

Let           and substitute it into (12), we have  

                  
  

 

 
                  

  
  

   
          (13) 

where               is a free parameter that controls 

the “deformation” of the original kernel. Thus, Equation 

(13), in fact, is a graph-based semi-supervised learning 

problem based on the manifold assumption; it can be 

indirectly set out using (12) and solved using (10).  

To utilize the geometry information of the data 

distribution, a graph   can be constructed using labeled 

and unlabeled pixels. The graph Laplacian of   is a 

matrix defined as           , where  is the 

adjacency matrix. The elements     are measures of the 

similarity between pixels     and    , and the diagonal 

matrix D is given by         
   
   . The graph 

Laplacian L measures the variation of the function   

along the graph built upon all labeled and unlabeled 

samples. By fixing        , the original (undeformed) 

kernel is obtained.  

Next, we discuss the computation of the deformed 

kernel   . In [27], the resulting new kernel was computed 

explicitly in terms of labeled and unlabeled data. It is 

proved that  

                                                          
(14) 

and 

                 

   
                 

             (15) 

Thus, the two spans are same and we have 

                                             (16)                                       

where the coefficients    depend on x, let      

               
 . 

We can compute         at x: 

   
                        

                     

 

              

                                   

   

        (17) 

Where    
                       

  and g is the 

vector given by components             
               . Therefore, it can be derived from (17) 

that 

              (I+MK)                               (18) 

where K is the kernel matrix                

       ,   =                    
  and    is the 

identity matrix. Finally, we obtain the following explicit 

form for     

                 
                     (19) 

where           . It satisfies the Mercer’s 

conditions, being a valid kernel. If        , the 

deformed kernel is degenerated into the original 
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(undeformed) kernel. When   is singular, one adds a 

small ridge term to   and uses a continuity argument. 

IV.  ELM BASED ON DEFORMED KERNEL  

In regularization problem (8), if yi is an m-dimensional 

label vector with the elements 0 or 1, where m is the 

number of classes, and xi belongs to the k-th class, then 

the k-th component of yi takes the value 1 and the rest 

components take the value 0. The corresponding vector 

function is defined as                      . Then 

the extended regularization problem estimates an 

unknown vector function by minimizing  

                
 

 
                  

  
       (20) 

where.                               
                                      

In (20), if we introduce a deformed kernel   , the 

problem to be solved becomes 

                   
 

 
                     

  
       

(21) 

where                                
               ,                        . 

The solution of (21) is                  
 
   , where 

                  
  

Based on what is introduced above, the regularization 

problem for DKELM with multioutput nodes can be 

formulated as  

                 
  

 

 
            

 
 

 

 
    

  

  
      

(22) 

The solution of the optimization problem (22) is given 

by 

     
 

 
      , 

where   is the identity matrix.      
 

 
    

  

  . 

Let                           
 

 and       
 

  
     

           
             

       , so          

and      
 

 
            

,where                     is the deformed kernel 

matrix over labeled points. 

If the number of labeled samples is not huge, the 

output function is  

                                  
 

 
     , (23) 

if the number of labeled samples is huge, according to 

the Sherman-Morrison-Woodbury(SMW) formula for 

matrix inversion, we have 

             
 

 
              ,              (24) 

where                    is the label matrix 

with elements   or , and    (      ) is an m-

dimensional label vector with the elements 0 or 1. In a 

semi-supervised case, the number of labeled samples is 

small, so (40) should be used to compute the output 

function.  

Next, we discuss the computation of the deformed 

kernel   , according to  

                 
                 , 

where                           is the kernel 

matrix over labeled and unlabeled samples, we have to 

compute a matrix inversion of size            . 

Note that this inversion scales exponentially with the 

number of samples. If the number of labeled and 

unlabeled samples is huge, it is difficult to compute. So 

we further approximate the kernel matrix K, letting 

                        
  and       

 

  
    

          
            

       , then      , 

  
         and          , so we achieve 

                 
                 

                                  

 
                

                                  
          

                                  
                            

                             ,          (25) 

where       ,                . 

Correspondingly, in a semi-supervised case, the output 

function of DKELM with a single output is  

                     
 

 
                      (26) 

where    is an l dimensional label vector given by: 

            .  

The formula (25) and (26) all involve the inversion of 

a matrix of order    , as long as L is large enough, the 

generalization performance of DKELM is not sensitive to 

the dimensionality of the feature space (L) and good 

performance can be reached, which will be verified later 

in Section 5. The DKELM algorithm is summarized in 

the Table II.  

TABLE II.  

THE DESCRIPTION OF DKELM ALGORITHM BASED ON DEFORMED 

KERNEL 

DKELM Algorithm based on deformed kernel 

Input:  l labeled examples            
 , u unlabeled examples          

   
. 

Output:  Estimated function          
         

         
      . 

Step 1:  Construct data adjacency graph with (l+u) nodes using k nearest 
neighbors or a graph kernel. Choose edge weights Wij, for 

example, for binary weights or heat kernel weights     

          
 

   . 

Step 2: Compute graph Laplacian matrix:       , where   is a 
diagonal matrix given by 

         
   
   . 

Step 3: Choose a kernel function       . Choose   , C and L (the 

number of sample points), randomly generate             
 .  

Step 4: if the number of the training data sets is very large        , 

compute                          
 ,        

 

  
    

          
            

       , select (25) for 

computing the deformed kernel; Otherwise, use (19) . 

Step 5: Select (23) for computing the output function       of DKELM 
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with multioutputs or select (26) for computing the output 

function       of DKELM with single output (m=1). 

Step 6:  Output            
         

         
      . 

                                    

Like ELM, DKELM has the unified solutions for 

regression, binary and multiclass classification. But we 

mainly discuss DKELM for the classification problems in 

this paper.     

A DKELM classifier with a single-output node (m = 1): 

For multiclass problems, among all the multiclass labels, 

the predicted class label of a given testing sample is 

closest to the output of a DKELM classifier. The decision 

function of the DKELM classifier is  

                     
 

 
      .             (27) 

For the binary classification, the decision function of 

DKELM classifier is 

                          
 

 
       .        (28) 

A DKELM classifier with multioutput nodes (m > 1) is: 

For multiclass cases, the predicted class label of a given 

testing sample is the index number of the output node, 

which has the highest output value for the given testing 

sample. The decision function of the DKELM classifier is 

                      
 

 
     .              (29) 

The predicted class label of sample x is  

     

*

{1,..., }
( ) arg max ( )i

i m
label x f x




.                (30)                    

The deformed kernel in both cases is computed by  

                 
              , 

which is applied to moderate scale training samples, or 

                                    ,     

(31)                                 

which is applied to large scale training samples, where 

      ,          . 

V. EXPERIMENTS 

In this section, we will validate the performance of the 

proposed DKELM algorithm on a number of real-world 

data sets. In particular, we studied the sensitivity of 

DKELM to the number of labeled samples. All the 

experiments are performed with MATLAB 7.0.1 

environment on a 3.10GHZ Intel CoreTM i5-2400 with 

3-GB RAM. 

A. Data Sets 

We used different scale data sets from the UCI 

machine learning repository (satellite, Ionosphere), and 

another benchmark repository (Extended Yale B, USPS). 

For the satellite data sets, there are multiple class labels; 

we used their first two classes only. For USPS, we 

randomly selected 250 data points from each class for our 

experiments. The basic information about these data sets 

is summarized in Table III.  

TABLE III. 

DESCRIPTION OF THE DATA SETS 

Data Size (n) Feature (d) Class 

SatelliteC1-C2 2236 36 2 

Ionosphere 351 34 2 
Extended Yale B 2114 1024 38 

USPS 2500 256 10 

 

B. Parameter selection and experimental settings 

Comparisons are made with four important 

classification methods: CutS
3
VM[25], L2-TSVM- 

MFN[26], DA L2-SVM-MFN[26] and S-RLSC 

algorithm[29]. In our experiments, binary edge weights 

are chosen and the neighborhood size k is set to be 12 for 

all the data sets. DKELM algorithm needs to choose the 

feature mapping, the cost parameter C and the number of 

hidden nodes L, since ELM algorithm achieves good 

generalization performance as long as L and C are large 

enough[30]. Thus we let C =500. The regularization 

parameters    and    are split into the ratio 1:9, and we 

let       ,                       , which is 

set in the same way as in [27]. We select Gaussian 

functions as the hidden-node output functions.  

We test L2-TSVM-MFN with multiple switchings and 

DA L2-SVM-MFN with parameter         and      

on all datasets. We also test CutS3VM with parameters 

       , and set   in the balancing constraint to the 

true ratio of the positive points in the unlabeled set. The 

S-RLSC methods also have regularization parameters    

and   . Let       ,              , and also use the 

Gaussian kernel function. In our experiments, we also set 

CA=0.005, CI=0.01 and       for all data sets, which 

is set in the same way as in [29]. 

For each data set  , 15% of the data points are left for 

out-of-sample extension experiment. We denote by    the 

rest data points of the data set  . In each class of   , we 

randomly label l data points to train every algorithm. For 

DKELM, S-RLSC, L2-TSVM-MFN, DA L2-SVM-MFN 

and CutS
3
VM, the training set consists of the whole   , 

including the labeled and the unlabeled data points. For 

L2-TSVM-MFN, DA L2-SVM-MFN and CutS
3
VM, 

multiclass datasets are learned using a one-versus-rest 

approach. 

C. Experimental results 

For simplicity, we used DKELM with a single output 

and 800 hidden nodes; the recognition result of all the 

algorithms is shown in Table 4–6, respectively. For each 

dataset, classification accuracy and training time 

averaged over 20 independent trials. The number of l (in 

each class) of the labeled data points varies from 5 to 250 

for the Satellite data set, from 5 to 150 for the Ionosphere 

and from 5 to 40 for the Extended Yale B data set.  

In Tables 4–6, for several values of m, the best 

classification results are in boldface for each fixed value 

of m. As can be seen from the tables, the classification 

accuracy is lower for all algorithms when l is small. With 

the increase of labeled data, the discriminative ability of 

the DKELM algorithm is much better than the other 

algorithms, since it utilizes the manifold structure of 

labeled and unlabeled samples. The recognition result of 

the S-RLSC algorithm is very close to that of the 
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DKELM algorithm, but it runs much slower than our 

algorithm. For the Satellite and Ionosphere data sets, the 

performance of the DKELM algorithm is worse than that 

of Extended Yale B data set, since the manifold structure 

is less salient than that of face images. As can be seen 

from Table 6, the recognition accuracy of the L2-TSVM-

MFN, DA L2-SVM-MFN and CutS3VM classifiers 

decreases with the increase of the number of classes, 

since these classifiers are constructed with a one-versus-

rest approach, which has a great influence on the 

accuracy. Moreover, this kind of multiclass classification 

approach also increases the running time of these 

algorithms. With the increase of the number of the feature 

dimensions of data sets, the running time of the 

CutS3VM increases dramatically, since its time 

complexity depends on the average number of non-zero 

features. In contrast, as can be seen from Table IVandVI, 

the speed of the DKELM algorithm is not sensitive to the 

number of classes and the feature dimensions of data sets. 

It can perform well by means of the intrinsic geometry of 

data distribution. 

                                                                                      

TABLE IV.  

PERFORMANCE COMPARISON OF ALL T HE ALGORITHMS FOR THE 

SATELLITE DATA SET 

Numb
er of 
labele
d 
data 
points 
l 

DKELM 
Accuracy
(%) 

S-RLSC 
Accurac 
y(%) 

L2-TSVM-
MFN 
Accuracy 
(%) 

DA L2-
SVM-
MFN 
Accuracy
(%) 

CutS3VM 
Accuracy
(%) 

 l =5 57.62 62.78 56.48 61.02 73.59 

l =10 78.45 79.79 69.83 70.73 74.46 

l =50 85.68 83.47 71.95 75.28 82.85 

l =250 89.21 87.86 75.82 76.29 84.46 

Numb
er of 
labele
d 
data 
points 
l 

DKELM 
Training 
Time(s) 

S-RLSC 
Training
Time(s) 

L2-TSVM-
MFN 
Training 
Time(s) 

DA L2-
SVM-
MFN 
Training 
Time(s) 

CutS3VM 
Training 
Time(s) 

 l =5 52.782 328.579 3.782 12.652 1.190 

l =10 55.273 328.647 3.894 11.676 0.976 

l =50 54.374 330.152 2.957 10.016 0.620 

l =250 52.962 322.674 2.365 5.625 0.569 
                                                     

TABLEV.  

PERFORMANCE COMPARISON OF ALL THE ALGORITHMS FOR THE 

IONOSPHERE DATA SET 

Numb
er of 
labele
d 
data 
points 
l 

DKELM 
Accuracy
(%) 

S-RLSC 
Accurac 
y(%) 

L2-TSVM-
MFN 
Accuracy 
(%) 

DA L2-
SVM-
MFN 
Accuracy
(%) 

CutS3VM 
Accuracy
(%) 

 l =5 57.62 72.78 66.52 60.81 73.89 

l =10 74.79 73.45 69.42 71.67 74.56 

l =50 87.68 83.47 81.14 77.21 85.25 

l =250 90.21 87.86 85.73 86.39 86.43 

Numb
er of 
labele
d 
data 
points 
l 

DKELM 
Training 
Time(s) 

S-RLSC 
Training
Time(s) 

L2-TSVM-
MFN 
Training 
Time(s) 

DA L2-
SVM-
MFN 
Training 
Time(s) 

CutS3VM 
Training 
Time(s) 

l =5 21.704 168.579 0.618 5.724 0.554 

l =10 25.753 168.647 0.772 5.676 0.377 

l =50 23.176 170.152 0.252 4.534 0.324 

l =250 22.802 162.674 0.246 3.165 0.232 

 
TABLEVI 

 PERFORMANCE COMPARISON OF ALL THE ALGORITHMS FOR THE 

EXTENDED YALE B DATA SET 

Number 
of 
labeled 
data 
points l 

DKELM 
Accura
cy(%) 

S-RLSC 
Accurac 
y(%) 

L2-TSVM-
MFN 
Accuracy 
(%) 

DA L2-
SVM-
MFN 
Accuracy
(%) 

CutS3VM 
Accuracy
(%) 

 l =5 61.25 64.41 55.17 38.47 63.93 

l =10 82.05 83.18 62.76 58.71 69.82 

l =20 94.52 93.10 67.72 68.49 75.91 

l =30 95.42 95.24 71.35 73.59 79.56 

l =40 97.44 97.12 75.25 76.84 80.13 

Number 
of 
labeled 
data 
points l 

DKELM 
Trainin
g 
Time(s) 

S-RLSC 
TrainingTi
me(s) 

L2-TSVM-
MFN 
Training 
Time(s) 

DA L2-
SVM-
MFN 
Training 
Time(s) 

CutS3VM 
Training 
Time(s) 

 l =5 87.589 452.644 60.427 361.928 75.249 

l =10 88.670 455.972 58.958 273.536 69.162 

l =20 86.465 452.177 49.514 247.923 65.368 

l =30 87.259 454.921 42.943 190.380 58.532 

l =40 89.694 452.228 35.519 163.476 54.348 

                                                   

The out-of-sample extension result of the algorithms 

on larger USPS data sets is shown in Fig. 1. We perform 

the DKELM algorithm using 500 hidden nodes. As can 

be seen from Fig.1, the DKELM algorithm has best 

recognition results over any other algorithm. So our 

proposed DKELM algorithm tends to have better 

scalability and achieve best generalization performance at 

a relatively faster learning speed. 

 

Figure 1.  Out-of-sample extension classification results on the USPS 
data set 
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In this paper, we first extended the traditional kernel-

based learning problem to multiclass cases in an Extreme 

Learning Machine context. To enhance the performance 

of ELM, a deformed kernel was proposed, which can 

make use of underlying information from both labeled 

and unlabeled samples. To speed up our algorithm, we 

further approximated the deformed kernel by means of 

random feature mapping. Our algorithm does not need 

kernel parameter tuning. The experimental results have 

shown that the DKELM algorithm achieves better 

generalization performance at a relatively faster learning 

speed than traditional semi-supervised classification 

algorithms. In the future, we will further optimize our 

proposed framework and study the sparse regularization 

problems in our framework. 
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