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Abstract—To take full advantage of global features of source 
images, we propose an image fusion method based on 
adaptive unit-linking pulse coupled neural networks 
(ULPCNNs) in the contourlet domain. Considering that 
each high-frequency subband after the contourlet 
decomposition has rich directional information, we employ 
directional contrast of each coefficient as the external 
stimulus to inspire each neuron. Linking range is also 
related to the contrast in order to adaptively improve the 
global coupling characteristics of ULPCNNs. In this way, 
biological activity of human visual systems to detailed 
information of images can be simulated by the output pulses 
of the ULPCNNs. The first firing time of each neuron is 
utilized to determine the fusion rule for corresponding 
detailed coefficients. Experimental results indicate the 
superiority of our proposed algorithm, for multifocus 
images, remote sensing images, and infrared and visible 
images, in terms of visual effects and objective evaluations.  
 
Index Terms—Image fusion, contourlet transform, unit-
linking pulse coupled neural network 
 

I.  INTRODUCTION 

Owing to widespread use of multisensor systems, 
much research has been invested to develop the 
technology of image fusion. Ordinarily, 2-D image fusion 
is to merge complementary information from multiple 
images of the same scene, and obtain one single image of 
better quality [1]-[4]. This promotes its increasingly 
extensive application in digital camera imaging, 
battlefield surveillance and remote sensing. As a major 
class of image fusion methods, the ones based on 
multiscale decomposition (MSD) take into account the 
sensitivity of human visual system (HVS) to detailed 

information, and hence receive better fusion results than 
other methods [5][6]. To improve the performance, MSD 
transforms and fusion rules have become the main focus 
in the fusion methods based on MSD [7]-[9]. 

Typically, MSD transforms include: pyramid 
transform, wavelet transform, curvelet transform, etc. 
With further development of MSD theory, a superior two-
dimensional representation, contourlet transform was 
exploited to overcome limitations of traditional MSD 
transforms [10]. Its characteristics of multidirection and 
anisotropy make it sensitive to directions and sparse 
while representing objects with edges. Especially, 
contourlet transform allows for different and flexible 
number of directions at each scale, and hence can capture 
detailed information in any arbitrary direction. These 
advantages make the contourlet transform quite attractive 
to image fusion [11]-[14]. In most contourlet-based 
fusion methods, researchers adopt fusion rules to choose 
more salient high-frequency information, for example, 
[12] and [13] respectively chose the coefficient with the 
maximum region energy and the maximum edge 
information. 

However, the traditional fusion rules could not make 
good use of global features of images, for they were most 
based on features of a single pixel or local regions. In our 
study, we present a bio-inspired salience measure based 
on unit-linking pulse coupled neural networks 
(ULPCNNs), and capture the global features of source 
images by using the global coupling properties of the 
ULPCNNs. PCNN originated from the experimental 
observations of synchronous pulse bursts in cat visual 
cortex [15], and is capable to simulate biological activity 
of HVS; ULPCNN is a simplified version of the basic 
PCNN with fewer parameters [16]. When motivated by 
external stimuli from images, ULPCNNs can generate 
series of binary pulses containing much information of 
features such as edges, textures, etc. 
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In this paper, we propose an image fusion method 
based on directional contrast-stimulated ULPCNNs with 
adaptive linking range in the contourlet domain (CT-
ULPCNN). ULPCNN neurons are inspired by directional 
contrast revealing the prominence of each directional 
subband, and such a ULPCNN is expected to possess 
good sensitivity to directional information of objects in 
images. The linking range is also determined by 
corresponding directional contrast. In this way, the global 
coupling character of the ULPCNN is better represented 
than that with constant linking range, especially for the 
strong stimulus. In our fusion rules, the first firing time of 
each neuron is chosen as the salience measure. 
Experimental results suggested that CT-ULPCNN has 
better fusion results for multifocus images, remote 
sensing images, and infrared and visible images, which 
actually proves the advantages of the proposed method 
capturing the prominent directional features of each 
subband in the contourlet domain. 

The outline of the rest of the paper is as follows. 
Contourlet transform is briefly introduced in Section II. 
In Section Ⅲ, we describe the theories of basic PCNN 
and ULPCNN, respectively. Detailed procedure of CT-
ULPCNN algorithm is proposed in Section Ⅳ, and its 
effectiveness is certified and analyzed in Section Ⅴ . 
Finally, conclusion is drawn in Section Ⅵ. 

II.  CONTOURLET TRANSFORM 

Contourlet transform is a multi-scale and multi-
directional transform. It was initially developed in 
discrete domain, and hence easy for digital 
implementation. Contourlet transform combines 
Laplacian Pyramid (LP) and Directional Filter Bank 
(DFB) into a double filter bank structure, so it is also 
called Pyramidal Direction Filter Bank (PDFB). In 
essence, LP is first executed to capture the point 
discontinuities, and then followed by DFB to link point 
discontinuities into linear structures. Fig. 1 shows the 
contourlet decomposition in the frequency domain, where 
shaded parts denote the support regions of corresponding 
filters. During the contourlet decomposition, an image is 
first decomposed by LP into a low-frequency subband 
and mutiple high-frequency subbands, and then each 
high-frequency subband is fed into DFB to generate 
multiple directional subbands. 

 
Figure 1.  Frame of contourlet decomposition in the frequency domain. 

In the contourlet transform, the number of directional 

subbands in each scale is usually 2 ( )n n N∈  and quite 

flexible when n  is set differently. Therefore, the 
contourlet transform is able to provide detailed 
information in any arbitrary direction, which is its major 
advantage over the other MSD transforms. Meanwhile, 
after the contourlet decomposition, majority of the 
contourlet coefficients of an image are close to zero, 
concentrating the most information and energy, which 
indicates the sparsity of the contourlet transform. 

Ⅲ.  PCNN AND ULPCNN 

A.  Basic PCNN 

PCNN is a feedback network in a single layer with 
neurons laterally interconnected, which can imitate the 
biological characteristics of HVS. Basically, each neuron 
consists of a receptive field, a modulation product and a 
pulse generator. For the neuron located at ( , )i j  in a 

PCNN, the receptive field involves a linking input 
ij

L  

and a feeding input 
ij

F ; The modulation product 

combines 
ij

F  with the biased 
ij

L  to form a total internal 

activity 
ij

U ; The generator 
ij

Y  will produce a pulse (i.e. 

firing) if 
ij

U  exceeds the dynamic threshold 
ij
θ . When 

inspired by external stimulus 
ij

S  and influenced by 

signals from neighboring neurons { }
kl

Y , the discrete 

mathematical equations for 
ij

F , 
ij

L , 
ij

U , 
ij

Y  and 
ij
θ  can 

be described as follows. 

 ( ) ( 1) ( 1)F

ij ij F ijkl kl ij

kl

F n e F n V M Y n S−α= − + − +∑ , (1) 

 ( ) ( 1) ( 1)L

ij ij L ijkl kl

kl

L n e L n V W Y n−α= − + −∑ , (2) 

 ( ) ( ) (1 ( ))
ij ij ij

U n F n L n= ⋅ + β , (3) 

 
1 , ( ) ( 1) ,

( )
0 , otherwise ,

 

  
ij ij

ij

U n n
Y n

> θ −
=
⎧
⎨
⎩

 (4) 

 ( ) ( 1) ( )
ij ij ij

n e n V Y nθ−α

θ
θ = θ − + . (5) 

Fig. 2 illustrates the basic model for a single neuron 
located at ( , )i j  in a PCNN. Output pulses of neurons in 

the k l×  neighborhood centered at ( , )i j  enter into the 

neuron at ( , )i j  and then influence its next output, where 

k l×  is called linking range. 
ij

L  receives pulses from 

surrounding neurons ((2)), and 
ij

F  receives not only the 

neighboring signals but also the external stimulus 
ij

S  
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Figure 2.  Basic model for a single PCNN neuron. 

((1)). 
ij

U  is obtained by multiplying 
ij

F  with the biased 

ij
L  ((3)). If 

ij
U  is above the neuromime threshold 

ij
θ , 

ij
Y  

will generate a pulse ((4)), and simultaneously 
ij
θ  will 

increase enormously ((5)) to block another pulse in the 

next iteration. Without an output pulse, 
ij
θ  would decay 

exponentially ((5)), until it drops below the internal 
activity and at that time a pulse will be outputted again. 
In this way, these processes run over and over again. In 

(1)-(5), n  denotes the iteration times; 
F

α ,
L

α ,
θ

α and 

F
V ,

L
V , V

θ
are attenuation time constants and inherent 

voltage potential of 
ij

F ,
ij

L and 
ij
θ , respectively; 

ijkl
M and 

ijkl
W  signify synaptic weight strength for 

ij
F  and 

ij
L ; 

β indicates linking strength determining contribution of 

the linking input to the internal activity.  

B.  ULPCNN 

PCNN is qualified to imitate the biological features of 
HSV and hence apply to image processing [17]-[19]; 
however, so many parameters in the model should be set 
during use. So far, the relation between model parameters 
and network outputs is still ambiguous, and it is really 
difficult to determine the proper PCNN parameters. 
Therefore, ULPCNN is presented to simplify the PCNN 
by means of decreasing parameters and making the 
linking inputs of ULPCNN neurons uniform [16]. Fig. 3 
displays the simplified model for a single ULPCNN 
neuron. The processes of a single ULPCNN neuron are 
displayed as 

 ( )
ij ij

F n S= , (6) 

 
1 , ( 1) 0 ,

( )
0 , otherwise ,

  

  

kl

kl
ij

Y n
L n

− >
=
⎧⎪
⎨
⎪⎩

∑
 (7) 

 ( ) ( ) (1 ( ))
ij ij ij

U n F n L n= ⋅ + β , (8) 

 
Figure 3.  Simplified model for a single ULPCNN neuron. 

 
1 , ( ) ( 1) ,

( )
0 , otherwise ,

 

  
ij ij

ij

U n n
Y n

> θ −
=
⎧
⎨
⎩

 (9) 

 ( ) ( 1) ( )
ij ij ij

n e n V Y nθ−α

θ
θ = θ − + . (10) 

According to (7), if any neuron in the k l×  

neighborhood fires, 
ij

L  will have a unity input, and then 

the centered neuron will be encouraged to fire. Obviously, 
impulse expanding behavior is much clearer and more 
controllable with much fewer parameters than the basic 
PCNN. 

IV.  THE PROPOSED IMAGE FUSION METHOD 

Considering that HVS is very sensitive to detailed 
information, researchers commonly employ fusion rules 
to choose more significant information in high-frequency 
subbands. In our study, we provide a new image fusion 
method based on directional contrast-inspired ULPCNN 
in the contourlet domain. Directional features are fed into 
ULPCNN to imitate the biological activity of HSV, and 
then transmitted in the form of pulses. The linking range 
for each neuron is adaptive to corresponding directional 
contrast. The first firing time of each neuron is used to 
determine the decision in fusion rules. Because of the 
global coupling characters of the ULPCNNs, global 
features of images can be made good use of during fusion 
in our proposed method. 

Fig. 4 shows the flowsheet of our proposed method. 
Detailed procedure of the CT-ULPCNN method is given 
as follows. 

• Source images A and B are decomposed by the 

contourlet transform to coefficients 
,

{ , }A A

R r p
a d  and 

,
{ , }B B

R r p
a d , respectively. Denote the coefficients of 

the fused image F by 
,

{ , }F F

R r p
a d . Here, R is the 

decomposition level, X

R
a  (X=A,B,F) denotes the 

coefficients in the low-frequency subband of 

image X ,  and 
,

X

r p
d  (X=A ,B ,F)  denotes the 
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Figure 4.  Flowsheet of our proposed method. 

coefficients in the pth directional subband at the 
rth (1 )r R≤ ≤  scale of image X. 

• In each directional subband, directional contrast at 
location ( , )i j  can be calculated as 

 
, ,

( , ) ( , ) ( , )X X X

r p r p r
Ctr i j d i j a u v= . (11) 

where X

r
a indicates the low-frequency subband at 

the rth scale of image X, and the coarse 
coefficient at location ( , )u v corresponds to the 

same region as 
,

( , )X

r p
d i j  does. Then 

,
( , )X

r p
Ctr i j  

is imported as the external stimulus 
ij

S  into the 

ULPCNN neuron located at ( , )i j . Its linking 

range is fixed according to 

 , ,
5, ( , ) max( ) 2 ,

3, otherwise.

X X

r p r p

ij ij

Ctr i j Ctr
or lk

≥
=
⎧
⎨
⎩

 (12) 

The ULPCNN operates iteratively as (6)-(10), 
until all neurons are fired at least once. The first 
firing time of the neuron at location ( , )i j in the 

pth directional subband at the rth scale of image X 

should be recorded as 
,

( , )X

r p
T i j  (X=A,B). 

• 
,

{ , }F F

R r p
a d  are obtained by the following rules. 

For the low-frequency, 

 ( )( , ) ( , ) ( , ) 2F A B

R R R
a i j a i j a i j= + , (13) 

For the high-frequency, 

 
, , ,

,

,

( , ), ( , ) ( , ),
( , )

( , ), otherwise.

A A B

r p r p r pF

r p B

r p

d i j T i j T i j
d i j

d i j

<
=
⎧
⎨
⎩

 (14) 

• The fused image F is finally achieved via 

contourlet reconstruction from 
,

{ , }F F

R r p
a d . 

V.  EXPERIMENTAL RESULTS 

To certify the effectiveness of our proposed method, 
we have performed the CT-ULPCNN method on many 
pairs of images. Considering limitation of space, we take 

three pairs of images (shown in Fig. 5) as examples to 
provide the experimental results. Fig. 5(a) is a pair of 
multifocus images focusing on different objects of the 
same scene, Fig. 5(b) displays a pair of remote sensing 
images taken from different wavebands, and Fig. 5(c) is 
a pair of infrared and visible images.  

In this section, following two sets of tests are designed 
to prove the validity of our proposed method. In Test 1, 
we highlight the advantage of the adaptive ULPCNNs 
model in our proposed method by comparing its behavior 
to three existing contourlet-based image fusion 
algorithms, including CT-Miao [12], CT-Zheng [13], and 
CT-Yang [14]. Test 2 demonstrates the prominence of 
the CT-ULPCNN method by its comparison with some 
typical MSD-based image fusion methods, namely, the 
gradient pyramid-based method (Gradient) [20], the 
conventional discrete wavelet transform-based method 
(DWT) [21], the curvelet transform-based method 
(Curvelet) [22], and the nonsubsampled contourlet 
transform-based method (NSCT) [23]. 

In our experiments, images were all decomposed into 
four levels in use of the above MSD-based fusion 
methods. Especially, for the contourlet-based image 
fusion methods, the decomposed four scales were 
divided into 4, 4, 8, and 16 directional subbands from 
coarse to fine scales, respectively. Furthermore, in our 

proposed method, parameters were set as 0.5
θ

α = , 

20V
θ
=  and 3β = .  

A.  Test 1 

Fig. 6-Fig. 8, respectively, provide the fusion results 
of pepsi, remote and camp using the CT-ULPCNN, CT-
Miao, CT-Zheng, and CT-Yang methods. To show more 
clearly, we select a section of each result to enlarge.  

As can be seen from Fig. 6, for multifocus images, the 
CT-Miao, CT-Zheng, and CT-Yang methods all have the 
problem of ring artifacts in their fusion results, and the 
partial result of the CT-Zheng has the severest ghost 
image even with a post-processing of consistency 
verification (CV) to intentionally reduce the ringing 
artifacts; whereas our proposed method possesses a result 
with the fewest ringing artifacts, highest contrast and 
finest details without the CV.  

As seen from Fig. 7, the CT-ULPCNN method still 
has the best performance with the smoothest surface in 
the flat regions. However, the result of the CT-Yang 
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(a)                                                            (b)                                                                    (c)                                           

Figure 5.  Three pairs of test images: (a) pepsi, (b) remote and (c) camp. 

 
(a)                                                (b)                                                (c)                                                (d)                           

 
(e)                                                (f)                                                (g)                                                (h)                           

Figure 6.  Fusion results of pepsi: (a) our method, (b) CT-Miao, (c) CT-Zheng, (d) CT-Yang,  

and (e)-(h) are partial enlargements of (a)-(d), respectively. 

method is visually unsatisfactory. This is because the 
fusion rule of the CT-Yang method for the low-
frequency subband is to choose the low-frequency 
coefficient with the maximum region variance, and such 
a rule makes the fused approximated image unsmooth 
when applying to source images with distinct basic 
illuminations, such as remote sensing images in different 
wavebands. 

Likewise, for the pair of infrared and visible images, 
the CT-Yang method generates the worst fusion result; 
whereas the hot target (i.e. the man) is the most 
distinguishable in the result of our proposed method (Fig. 
8(a)).  

Obviously, the CT-ULPCNN achieves superior visual 
quality over the other three contourlet-based fusion 
methods.
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(a)                                                (b)                                                (c)                                                (d)                           

       
(e)                                                (f)                                                (g)                                                (h)                           

Figure 7.  Fusion results of remote: (a) our method, (b) CT-Miao, (c) CT-Zheng, (d) CT-Yang,  

and (e)-(h) are partial enlargements of (a)-(d), respectively. 

 
(a)                                                (b)                                                (c)                                                (d)                           

       
(e)                                                (f)                                                (g)                                                (h)                           

Figure 8.  Fusion results of camp: (a) our method, (b) CT-Miao, (c) CT-Zheng, (d) CT-Yang,  

and (e)-(h) are partial enlargements of (a)-(d), respectively. 

To evaluate the fusion effects more objectively, we 
introduce average gradient (AG), spatial frequency (SF), 
mutual information (MI), QAB/F [24] and a universal 
image quality index (UIQI) [25] as fusion indices. 
Generally, the larger the above five objective indices, the 
better the fusion result is.  

Table Ⅰ-Ⅲ show the indices for fusion results of the 
three pairs of images in Fig. 5, respectively. According 
to these tables, the results of our method always have the 
largest values in the average gradient, spatial frequency, 
mutual information, QAB/F and the universal image 
quality index, no matter for the pair of multifocus images, 
or the pair of remote sensing images, or the pair of 

infrared and visible images. This clearly proves the 
superiority of our proposed method on the objective 
evaluations. 

B.  Test 2 

We also make a comprehensive comparison of our 
proposed method with other four classical MSD-based 
fusion methods, including the Gradient [20], DWT [21], 
Curvelet [22] and NSCT [23].  

Because of the limitations of space, we only exhibit 
the fusion results of pepsi in Fig. 9. Apparently, the 
result of the Gradient method has the lowest contrast, 
and the Curvelet and the NSCT methods also generate
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(a)                                     (b)                                      (c)                                      (d)                                      (e)                     

         
(f)                                     (g)                                      (h)                                      (i)                                      (j)                     

Figure 9.  Fusion results of pepsi: (a) our method, (b) Gradient, (c) DWT, (d) Curvelet, (e) NSCT 

and (f)-(j) are partial enlargements of (a)-(e), respectively. 

results with relatively lower contrast, and the results of 
the NSCT and especially the DWT methods have heavy 
ringing artifacts; whereas our proposed method produces 
a result with the highest contrast and the fewest ringing 
artifacts. Visually, the advantage of our proposed method 
is prominent. 

Table Ⅳ shows the fusion indices of results by using 
the above five image fusion methods for pepsi. The 
result of our proposed method has the largest mutual 
information, QAB/F, and the universal image quality index, 
except that, it has lower average gradient and spatial 
frequency than those of the DWT and the NSCT methods. 
This is because that, for pepsi, severe ringing artifacts in 
the results of the DWT (Fig. 9(h)) and the NSCT (Fig. 
9(j)) may cause larger values in the average gradient and 
the spatial frequency. 

Experimental results demonstrate that, the superiority 
of the proposed method, in the field of visual quality and 
objective evaluations, is prominent. This mainly benefits 
from the global coupling characteristics of the 
ULPCNNs model. By using the features extracted from 
the output pulses of the ULPCNNs, the biological 
activity of the HVS to detailed information of images can 
be reflected very well. 

VI.  CONCLUSION 

In this paper, we provide a new image fusion 
algorithm based on the ULPCNNs in the contourlet 
domain. Directional contrast is fed into the ULPCNNs to 
imitate the biological activity of HVS to directional 
information. Linking range is also determined by the 
contrast, flexibly making good use of global features of 
images. Experimental results illuminate that, the CT-
ULPCNN method outperforms the other methods in both 
the visual and the objective fields. 
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TABLE I.   

FUSION INDICES FOR PEPSI 

Method 
Metrics 

AG SF MI QAB/F UIQI 

CT-ULPCNN 5.6722 13.986 6.7704 0.74015 0.89467

CT-Miao 5.5759 13.923 6.4653 0.73644 0.85769

CT-Zheng 5.4912 13.833 6.2256 0.71153 0.84454

CT-Yang 5.5684 13.933 6.4987 0.73185 0.85492

TABLE II.   

FUSION INDICES FOR REMOTE 

Method 
Metrics 

AG SF MI QAB/F UIQI 

CT-ULPCNN 7.0993 15.362 1.6673 0.56055 0.69729

CT-Miao 6.6244 14.646 1.4599 0.53364 0.64608

CT-Zheng 6.6965 14.526 1.4182 0.49636 0.63166

CT-Yang 7.0883 15.037 1.1027 0.46923 0.50629

TABLE III.   

FUSION INDICES FOR CAMP 

Method 
Metrics 

AG SF MI QAB/F UIQI 

CT-ULPCNN 7.2227 13.506 1.5600 0.46466 0.63175

CT-Miao 6.8137 12.747 1.3814 0.4067 0.56411

CT-Zheng 6.7682 12.529 1.3594 0.38244 0.55494

CT-Yang 7.0183 13.064 1.5026 0.38959 0.51602

 
TABLE IV.   

FUSION INDICES FOR PEPSI 
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Method 
Metrics 

AG SF MI QAB/F UIQI 

CT-ULPCNN 5.6722 13.986 6.7704 0.74015 0.89467

Gradient 4.7795 11.987 6.135 0.73947 0.88898

DWT 5.8093 14.173 6.3616 0.72958 0.86539

Curvelet 5.6215 13.977 6.5344 0.73633 0.88186

NSCT 7.7004 18.99 6.7607 0.68791 0.78435
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