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Abstract—The Ant Colony Algorithm is an effective method 
for solving combinatorial optimization problems. However, 
in practical applications, there also exist issues such as slow 
convergence speed and easy to fall into local extremum. This 
paper proposes an improved Quantum Ant Colony Algo-
rithm based on Bloch coordinates by combining Quantum 
Evolutionary Algorithm with Ant Colony Algorithm. In this 
algorithm, the current position information of ants is repre-
sented by the Bloch spherical coordinates of qubits; position 
update, position variation and random behavior of ants are 
all achieved with quantum rotation gate. Simulations of 
function extremum problem, TSP problem and QoS mul-
ticast routing problem were conducted, the results indicated 
that the algorithm could overcome prematurity, with a fast-
er convergence speed and higher solution accuracy. 
 
Index Terms—quantum computing, Ant Colony Algorithm, 
Quantum Ant Colony Algorithm 
 

I. INTRODUCTION 

Ant Colony Algorithm (ACA) [1] is a heuristic algo-
rithm for solving combinatorial optimization or function 
optimization problems. It has advantages such as positive 
feedback, strong robustness, excellent distributed compu-
ting mechanism, easy to combine with other algorithms, 
etc., which has been widely used in the NP-complete 
problem. In recent years, ACA has been applied to the 
fields such as knapsack problem [2], Assignment Prob-
lem [3], Job-shop Assignment [4], Sequential Ordering 
[5], Network Routing [6], Vehicle Routing [7], Power 
System [8] and Controls Parameter Optimization [9], etc. 
and obtained good effect. Meanwhile, like other swarm 
intelligence optimization algorithms, ACA also has some 
shortcomings in the application process, such as: easy to 
fall into local optimization, slow convergence speed, etc.  

A quantum ant colony algorithm (QACO), based on 
the concept and principles of quantum computing can 
overcome this defect. In [17], a QACO-based edge detec-
tion algorithm was proposed. Quantum bit (qubit) and 
quantum rotation gate are introduced into QACO to rep-
resent and update the pheromone respectively. Experi-
ments and comparisons show that QACO is an efficient 
and effective approach in image edge detection. In order 

to select the optimal parameter, quantum-inspired ant 
colony optimization is employed to select the parameter 
of relevance vector machine in [18]. Quantum-inspired 
ant colony optimization is well suited to multi-objective 
optimization problems with excellent results. By measur-
ing experimentally the vibration signals of the gear sys-
tem at different rotating speeds for different faults, the 
testing signals are obtained. In [19], a novel parallel ant 
colony optimization algorithm based on quantum dynam-
ic mechanism for traveling salesman problem (PQACO) 
was proposed. The use of the improved 3-opt operator 
provides this methodology with superior local search 
ability. A global optimization method was proposed to 
analyze ground state energy of quantum mechanical sys-
tems in [20], which It simulates the way that real ants 
find a shortest path from nest to food source and back. To 
eliminate system disturbances and noise from the high 
levels of data, a novel quantum ant colony optimization 
(QACO) algorithm was proposed to select the fault fea-
tures [21].   

This paper proposed an improved quantum ant colony 
algorithm based on the Bloch Spherical Coordinate [11] 
(BIQACA), and various solution space transformational 
models and fitness functions are planned for different 
optimization problems. Algorithm in this paper is verified 
by function extreme value problem, Traveling Salesman 
Problem and QoS multicast routing problem respectively. 
The result of simulation shows that the algorithm not 
only expresses high efficiency of quantum computing, 
but also maintains the preferable optimizing and robust-
ness of colony algorithm. 

II. QUANTUM ANT COLONY ALGORITHM (QACA)  

Any point on the Bloch sphere can be identified via θ  
and ϕ  as: [ ]Tθθϕθϕϕ cos,sinsin,sincos= . Suppose 
there are a total of n ants in the ant colony, where each 
ant carries a group (m units) of qubits, current position of 
ant is represented by Bloch spherical coordinate, corre-
sponding to approximate solution of optimization prob-
lem. 

A. Initialize Ant Colony 
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iP is set as the location of the ith ant, considering that 
the randomness of coding for ant colony and constraint 
conditions for probability amplitude of the quantum state, 
the initialization of BIQACA is expressed as:  
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Where randij πϕ 2= , randij πθ = , rand  are random 

numbers between (0, 1) ; { }ni ,,2,1∈ , { }mj ,,2,1∈ , n 
for number of ant; m for number of qubit. 3 coordinates 
of qubit are regarded as 3 paratactic genes, and each ant 
contains 3 gene chains, which are called X-chain, Y-
chain and Z-chain respectively, each gene chain stands 
for an optimal solution j

ixP , j
iyP , j

izP .  

B. Transformation of Solution Space 

In the optimization of specific problems in BIQACA, 
transformation between the unit quantum space and solu-
tion space of optimization problem is needed, making 
each probability amplitude of qubit on ant correspond to 
an optimization variable of solution space. In this paper, 
the function extremum problem, TSP problem and QoS 
multicast routing problem are taken as examples to ex-
plain the process.  

Solution space transformation approach for function 
extreme-value problem: propose the domain of definition 
of variable jX is its solution space ],[ jj ba , record the jth 

qubit in iP as [ ]Tijijijijij θθϕθϕ cos,sinsin,sincos  by us-
ing linear transformation, then the corresponding solution 
space variable is:  
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   (2) 

Solution space transformation approach for TSP prob-
lem and QoS multicast routing problem: this paper has 
designed two-layer transformational model in the aspect 
of solution space aiming at the specific characteristic of 
TSP problem and QoS multicast routing problem, the 
model contains two transformations--linear transfor-
mation and lead transformation. 

Linear transformation: qubit is transformed from unit 
space to lead space. Propose the definitional domain of 
lead message variable, jr , is [0,1] , formula (2) is used to 
calculate corresponding lead solution space variable 
[ , , ]j j j T

ix iy izτ τ τ . 
Lead transformation: impact strength of lead message 

and inspire message to solution could be regulated by 
adjusting lead factor and inspire factor. Strategy is select-
ed according to lead probability and roulette to carry out 
optimal decode. Suppose the current node as i, select 
node j as the next visiting node:  
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where ( ) ( )ij ijr t tω υλi  is for message of path, ( )ijr t  stands 
for lead message, ω  is lead factor; ( )ij tλ  represents in-

spire message 1(t)=ij
ijdλ , ijd  means the distance from 

node i to node j, υ  is inspire factor; 
{1, 2, }k kallowed m tabu= −  means the set of available 

node may selected by ant k at the time t; ktabu  is used to 
keep the routing table which obtained by transforming ant 
k.  

C. Definition of Fitness Function 

A variety of fitness function needs to be designed for 
different optimal problems, the more fitness it is, the bet-
ter solution for individual. 

Fitness function of extreme-value problem: suppose 
( )if X  as the ith solution, ( )ifit X is the adaptive value 

for the ith solution. min and max denote the minimum 
value and maximum value of function, respectively. 
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TSP fitness function: fitness of individual 
1 2{ , , , }i mX x x x=  of TSP is defined as the reciprocal of 

path length represented by individual. 

1( )
( )i

i
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=                             (6) 

Fitness function for multicast routing problem:  

TC
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Tfit
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i
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=
      (7) 

where TD, TDJ, TPL and TC represent the delay, delay 
jitter, packet loss rate and cost of multicast tree 
respectively. Wc=0.5, Wd=0.2, Wdj=0.1 and Wpl=0.2, 
represent the proportion of the cost, delay, delay jitter and 
packet loss rate in the fitness function respectively; 

)(XΦ⋅  is a penalty function, when 0≤⋅X , 1)( =Φ⋅ X , or 
else, 5.0)( =Φ⋅ X . It can be seen from the above equation 
that, the fitness value is the bigger the better. 

D. Ant Position Update 

In the solution space of optimal problem, suppose 
( )iXτ is the strength of pheromone of kth ant at iX , ini-

tial moment all set as some constant: ( )iXη  stands for 
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the visibility at iX . The basic framework of BIQACA 
described as follows:  

1)  Selecting the target position of ant movement 
By applying the principle of randomness, a number of 

qubits in the current position were randomly selected to 
constitute a position update vector S. The transition rule 
and transition probability of ant k from position iX  to 
position sX  are:  

0
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where q∈[0, 1] is even-distributed random number, 0q

∈[0, 1] is probability parameter, P is the set of occupied 
points for ant in unit space, sX is the selected target loca-
tion as per formula (8) ; α  is the update parameter of 
pheromone, β  is the update parameter of visibility. 

2) Realizing the movement of ant towards target posi-
tion via quantum rotation gate 

After the ant has selected the target position, its 
movement process can be realized by changing the phase 
of qubit it brought for quantum rotation gate. In unit 
space, suppose the current position for ant at time t is iP , 
selected target position is kP , update vector of iP  is S, 
then the update of phase angle increment at iP  is 
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where )}(,),2(),1({ smSSSj ∈ , jrand  is random num-
ber between [0, 1]; ijϕΔ , ijθΔ  can be obtained using 
(17), (18). 

Update of probability amplitude of qubit based on 
quantum rotation gate 
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Apparently, U-gate can rotate the phase of qubit by 
1t

ijϕ +Δ  and 1t
ijθ +Δ . 

3) Adjustment strategy of search space  
In BIQACA, the search space for each qubit is de-

signed as ],[ ijij upBdlowBd , the search space at initializa-
tion is ]75.0,25.0[ ππ , during optimizing process of ants, 
these search spaces are related with the contraction level 
of each qubit, and decrease exponentially, which can sig-
nificantly improve the solution accuracy of the algorithm. 
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where )}(,),2(),1({ smSSSj ∈ , S is the update vector 
of ants, 2=nf is the constriction factor, t

ijnL  represents 
the contraction level of t-th iteration. 

4) Processing of ant position variation 
Suppose the current position is iP , update vector of iP  

is S, the search space of iP  is ],[ ijij upBdlowBd . Then the 

update of phase angle increment at iP  is:  

 ⎩
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5) Random behavior of ants 
If iP  is not improved after continuous limited-time cy-

cles, the position should be abandoned, the ants will gen-
erate a new '

iP  through random behavior to substtute iP . 

ijij ϕϕϕ Δ+)mean( = i
'

                    (19) 

ijij θθθ Δ+)mean( = i
'

                     (20) 

where },,2,1{ ni ∈ , )}(,),2(),1({ smSSSj ∈ , S is the 
update vector of current position, ijϕΔ  and ijθΔ  are up-

dated using (17), (18), )( imean θ  is the mean value of 
vector of phase angle iθ  at iP . 

6) Update rules for pheromone intensity and visibility 
When the ant completes a traverse, the current position 

is mapped into the solution space of optimal problem 
from unit space, fitness function is calculated, and the 
intensity and visibility of pheromone at current position 
should be updated. 

( ) (1 ) ( ) ( )
( ) ( )

i i i

i i
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( ) ( )i iX fit Xη =                             (22) 

where (1 ) [0,1]ρ− ∈  is the evaporation coefficient of 
pheromone, Q is the enhancement coefficient of phero-
mone. 

E. Description of BIQACA 

Taking the function extremum problem as an example, 
BIQACA implementation steps are described as follows:  

Step 1: Setup relevant parameters such as the number 
of ants, maximum number of iterations, number of limits 
limit, contraction level ijnL , constriction factor nf, Max-
imum contraction level MaxL, reset contraction level 
resetL, search space ],[ ijij upBdlowBd , etc. 

Step 2: Randomly generate initial position of ants ac-
cording to (1), transform the solution space according to 
(2), and calculate the fitness of each ant according to (5) 
or (6). Update the pheromone intensity and visibility ac-
cording to (21) and (22).Record the current optimum so-
lution, i.e. global optimum solution GBest. Initialize the 
conceptual vector 0)( =itrial , record the number of non-
updates at the position of ant. 

Step 3: Update the search space ],[ ijij upBdlowBd  ac-
cording to (16). 

Step 4: Select a moving target for each ant in the ant 
colony according to (8) and (9), then realize the move-
ment of ants using quantum rotation gate in light of (10), 
(12) and (14).  

Step 5: For each ant, according to mutation probability, 
realize the variation of ant’s position using quantum rota-
tion gate in light of (17) and (18). 

 Step 6: Transform the solution space according to (2), 
calculate the fitness of each ant according to (5) or (6). 
Update the current position if the new position is better 
than the current one; otherwise 1)()( += itrialitrial , up-
date contraction level 1),(),( += jinLjinL , if 

),( jinL >MaxL, ),( jinL =resetL. 
Step 7: Determine whether )(itrial  is greater than the 

limit, if )(itrial >limit, abandon the current position of 
the i-th ant, and generate a new position according to (19), 
(20) and (15), perform space transformation in light of 
(2), calculate the fitness of each ant according to (5) or 
(6), 0)( =itrial . 

Step 8: Update the pheromone intensity and visibility 
according to (21) and (22). Record the current local opti-
mum position, Best, and local worst position, Worst. 

Step 9: Determine whether the local optimum position, 
Best is greater than the global optimum position, GBest, 
if Best>GBest, update the global optimal position, GBest 
with local optimum position, Best, otherwise, update the 
local worst position, Worst with global optimum position, 
GBest. 

Step 10: Update the number of iterations t=t+1. If the 
current number of iterations t>maxgen or accuracy of 
convergence is met, stop the search, output the global 
optimum position, or else, turn to Step 3. 

III. SIMULATION EXPERIMENT 

To verify the effectiveness and feasibility of BIQACA 
algorithm, function extremum problem, traveling sales-
man problem and multicast routing problem were select-
ed for testing. The simulation programs were programed 
and implemented in MATLAB 2009a, test results were 
obtained in a PC with an Intel Core (TM) i5 CPU running 
at 3.2GHz, and a 2.8GB RAM. 

A. Function Extremum Problem 

Three internationally commonly used functions f1~f3 
were selected to test BIQACA performance when the 
number of independent variables was 2 and 30 respec-
tively 

1,1,3.04cos3.03cos3.0),( 22
1 ≤≤−−−−−= yxyxyxyxf ππ    (23) 
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1) When the number of independent variables is 2 
Test function is f1, the optimization objective is to ob-

tain the maximum value. 
Algorithm parameters: maximum number of iterations 

maxgen=500, number of ants n=20, probability parameter 
0q =0.5, evaporation coefficient 1 ρ− =0.05, pheromone 

update parameter α =1, visibility update parameter β =5, 
pheromone enhancement coefficient Q =10, mutation 
probability mP =0.05; the program was terminated when 
the BIQACA algorithm found the optimal solution or had 
run for gen=500 iterations. Simulations were conducted 
using the CQACO algorithm and ACO algorithm in Ref. 
[12] respectively, each algorithm was run for 50 times 
independently under the same conditions, and their opti-
mal value (Best), optimal mean value (M-best), number 
of success and average number of iterations were record-
ed, optimization results were compared in Table 1.  

TABLE I.   
 COMPARISON OF EXPERIMENTAL RESULTS OF 3 ALGORITHMS WITH TEST 

FUNCTION F 1 

Func/opt Status Algorithm 
ACO CQACO BIQACA 

f1/ 
0.24 

Best 0.2400 0.2400 0.2400 
M-best 0.1720 0.2388 0.2400 

Con-times 42 48 50 
Ave-Steps 198.16 84.04 17.06

 
It can be seen from Table 1 that, BIQACA algorithm’s 

optimization efficiency is the highest, its optimization 
results is also the greatest, with the success rate of 100%; 
followed is CQACO, with a success rate of 96%; the last 
is ACO, with a success rate of 84%. 

 
2) When the number of independent variables is 30 

Test functions were f2, f3, optimization goal is to ob-
tain the minimum value. 
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TABLE II.   
COMPARISON OF EXPERIMENTAL RESULTS OF 3 ALGORITHMS WITH TEST 

FUNCTION F2 AND F3 

Func/ 
Opt Status Algorithm 

OGA/Q LEA BQACA 

f2/ 
-12569.5 

M-nfun 302116 287365 236613 
M-best -12569.454 -12569.454 -12569.487
St.dev 6.447×10-4 6.831×10-4 6.5856×10-6

f3/ 
0 

M-nfun 224710 223803 223230 
M-best 0 2.103×10-18 0 
St.dev 0 3.0359×10-18 0 

 
Algorithm parameters: maximum number of iterations 

maxgen=1500, number of ants n=100, other parameters 
were the same as test 3.1.1. Simulations were conducted 
using the BIQACA algorithm, as well as the OGA/Q al-
gorithm in Ref. [13] and LEA algorithm in Ref. [14] re-
spectively, each algorithm was run independently for 50 
times under the same conditions, and their average num-
ber of function evaluations (M-nfun), optimal mean value 
(M-best) and standard deviation (St. dev) were recorded, 
optimization results were compared in Table 2. 

It can be seen from Table 2 that, the BIQACA algo-
rithm is obviously superior to the OGA/Q algorithm and 
LEA algorithm with respect to optimal mean value, aver-
age number of function evaluations and standard devia-
tion of function f2, f3; for f3, the BIQACA algorithm and 
the OGA/Q algorithm could both find the optimal solu-
tions.  

For function f2, the three algorithms all failed to find 
the optimal solutions, but the solution finding quality of 
BIQACA algorithm is significantly better than that of the 
LEA algorithm and OGA/Q algorithm, the standard devi-
ation obtained by the BIQACA algorithm is also less than 
that of the LEA algorithm and OGA/Q algorithm. 

B. Traveling Salesman Problem 

Take symmetric-distance TSP as example, five prob-
lems with different data scale was selected from TSPLIB 
database as cases to verify the performance of the algo-
rithm. Compare the result with Common Genetic Algo-
rithm (CGA), Common Particle Swarm Optimization 
(CPSO) and Common Ant Colony Algorithm (CACA) 
respectively. 

 Algorithm parameters: each algorithm prescribes a 
limit to algebra of 100 and population of 50. in CGA al-
gorithm, integer encoding is adopted; in CPSO algorithm, 
integer encoding is also adopted, inertia factor W =0.5, 
self-factor 1C =0.3, global factor 2C =0.7; in CABC algo-
rithm, integer encoding adopted as well, other parameters 
with the function extreme value problem; In BIQACA 
algorithm, transfer factor parameter ω  = 1, stimulating 
factor parameter υ = 5, other parameters with the func-
tion extreme value problem.  

Then in every case, 20 experimental data would be 
taken, and table 3 shows contrast of optimization results. 
Figure 1 is the Oliver30 Optimization Results and Figure 
2 is the EIL51 Optimization Results. Figure 3 shows the 
best solution of Oliver30 quantum ant colony algorithm, 
the total distance for 424. Figure 4 shows the best solu-

tion of EIL51 quantum ant colony algorithm, the total 
distance is 458. 

 
Figure 1.  The Oliver30 Optimization Results 

 

 
Figure 2.  The  EIL51 Optimization Results 

 
Figure 3.  The Oliver30’s Best Solution by using BIQACA 
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Figure 4.  the EIL51’s Best Solution by using BIQACA 

Statistics analysis of data based on table 3: from time 
perspective, the average time of CPSO algorithm is 

shortest, secondly CGA algorithm, BIQACA algorithm 
followed, and CACA algorithm is the last one; from steps 
perspective, BIQACA algorithm and CACA algorithm  
are at the same level and the convergence rate of them is 
more preferable than the other two algorithms; from the 
perspective of calculation result, the optimal solution of 
BIQACA algorithm and CACA algorithm can reach an 
ideal resolution recommended by TSPLIB database when 
urban scale is small.  

When the urban scale is large, the BIQACA’s optimal 
solution can approach to that of CACA algorithm, and its 
average solution and standard deviation is better than that 
of CPSO algorithm and CGA algorithm. To sum up, 
BIQACA algorithm in this paper is feasible and effective. 

 

TABLE III.   
TSP CALCULATION RESULTS 

Test li-
brary algorithm Optimal 

solution 
Worst solu-

tion 
Mean 
value 

Standard 
deviation 

Mean-square 
deviation 

Mean 
time 

Average 
step 

Uleysses22 

CGA 76.9162 93.5551 85.0164 4.3255 18.7098 1.4645 100.0000 
CPSO 78.9062 125.7221 105.8074 9.7533 95.1269 0.2646 88.8000 
CACA 75.9832 77.3018 76.3748 0.3878 0.1504 1.9651 60.0000 

BIQACA 75.9832 76.6314 76.2579 0.2226 0.0496 1.6571 62.0000 

Oliver30 

CGA 482.6800 639.5484 570.9215 37.2503 1387.5816 2.0194 100.0000 
CPSO 729.5129 990.8997 850.9355 84.6154 7159.7655 0.3277 84.7500 
CACA 423.7406 429.7853 426.7401 1.4871 2.2115 3.1717 54.1000 

BIQACA 423.7406 438.6092 428.8924 3.8389 14.7375 2.2512 50.0500 

EIL51 

CGA 558.7636 812.5886 694.0846 60.0962 3611.5476 3.4789 100.0000 
CPSO 1055.4600 1252.3856 1146.5343 60.0677 3608.1277 0.4929 93.4500 
CACA 440.7957 457.3709 450.5731 4.8484 23.5068 10.0465 60.8000 

BIQACA 458.3380 507.1071 492.5977 11.4446 130.9781 5.9311 55.4500 

EIL76 

CGA 949.3124 1200.5125 1082.3078 77.0343 5934.2825 5.3974 100.0000 
CPSO 1698.2136 2090.3629 1885.3653 106.6634 11377.0827 0.6863 94.6500 
CACA 566.8443 576.1675 572.0972 2.8604 8.1822 18.5971 50.4500 

BIQACA 628.7805 670.0715 653.8038 11.0728 122.6080 11.8519 59.4000 

GR96 

CGA 1082.0048 1467.8411 1232.7158 98.6122 9724.3659 7.1479 100.0000 
CPSO 2274.0041 2885.1164 2567.0244 160.3023 25696.8139 0.8681 90.8500 
CACA 544.8082 558.9636 552.8529 4.3274 18.7262 37.43502 63.7500 

BIQACA 594.9407 648.2708 626.9822 11.5389 133.1465 22.903469 54.1000 
 

C. QoS Multicast Routing Problem 

In order to compare with the GA algorithm in Ref. [15] 
and QCMR-ACS in Ref. [16], the network architecture 
model the same with them was adopted in the experiment, 
as shown in Figure 5. 

 
Figure 5.  8-node network model 

In this typical 8-node network model, network can be 
represented using picture G (V, E), where V (D, DJ, PL, 

C) represents network node set, E (D, DJ, B, C) repre-
sents link set, and D, DJ, PL, C and  B represent  delay 
(ms), delay jitter (ms), packet loss rate, cost and band-
width (Mb/s) respectively. 

The core idea of multicast routing algorithm is: in each 
iteration, firstly, qubits pass linear transformation and 
state transition transformation, and complete the conver-
sion of quantum information in the routing path; secondly, 
use the routing paths to generate the multicast tree of the 
iteration; thirdly, compute the delay, delay jitter, packet 
loss rate, bandwidth, and cost of the multicast tree; finally, 
calculate the fitness of the multicast tree. 

Multicast tree generation: the original multicast tree is 
generated using the vector information of multiple rout-
ing paths, and through the conversion from vector to ma-
trix, the original multicast tree was pruned and processed 
to obtain the multicast tree. 

 Algorithm parameters: source node s=1, destination 
node M=[2, 4, 5, 7], maximum number of iterations 
maxgen=16, number of ants n=8, mutation probability 

1.0=mP . 
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Table 4 shows the optimization results of BIQACA al-
gorithm when 46max =D , 8max =DJ , 70min =B  and 

001.0max =PL  were constrained; Figure 6 shows the cost 
convergence curves of multicast tree for three algorithms 
(GA, QCMR-ACS, BIQACA)  

TABLE IV.   
BIQACA ALGORITHM OPTIMIZATION RESULTS 

Route 
request 

Optimal 
multicast tree Delay Delay 

jitter 
Packet 

loss rate Cost

s=1  (1, 2), (1, 3), 
(3, 4), (3, 5)  45 7 0.0001 66 M=[2, 4, 

5, 7]  (4, 6), (6, 7)  
 

 
Figure 6.  Cost convergence curves of multicast tree for three algo-

rithms 

Table 5 shows the optimization results of BIQACA al-
gorithm when 50max =D , 6max =DJ , 70min =B  and 

001.0max =PL  were constrained; Figure 7 shows the cost 
convergence curves of multicast tree for three algorithms 
(GA, QCMR-ACS, BIQACA)  

TABLE V.   
BIQACA ALGORITHM OPTIMIZATION RESULTS 

Route 
request 

Optimal 
multicast tree Delay Delay 

jitter 
Packet 

loss rate Cost

s=1  (1, 2), (1, 3), 
(2, 4), (3, 5)  49 5 0.0002 62 M=[2, 4, 

5, 7]  (4, 6), (6, 7)  

 

 
Figure 7.  Cost convergence curves of multicast tree for three algo-

rithms 

It can be seen from Figure 6 and Figure 7 that, under 
the conditions of the two multicast routing constraints, 
the three algorithms can all converge to the global opti-

mal solution, for GA algorithm in Ref. [15], evolution 
generations during convergence were 12 and 14, respec-
tively, QCMR-ACS algorithm in Ref. [16] requires 6 and 
9 generations respectively, while the BIQACA algorithm 
herein requires only 2 generations, its convergence speed 
is much faster than that of the GA and QCMR-ACS 
based QoS multicast routing algorithms, thus the feasibil-
ity and effectiveness of the BIQACA algorithm are veri-
fied. 

IV. CONCLUSION 

In this paper, by combining quantum computation and 
ant colony algorithm, an improved quantum ant colony 
algorithm based on Bloch coordinates is presented, en-
riching the research field of quantum intelligence algo-
rithm. From the perspective of quantum computation, this 
algorithm proposes the adjustment strategy of search 
space in accordance with the exponential decrease meth-
od. A number of qubits at current position of ants are 
selected using the principle of randomness to constitute 
the update vector, the position update, position variation 
and random behavior of ants are all subject to the con-
straint of update vector, thus improving the convergence 
speed of the algorithm. At the same time, the random 
behavior of ants introduced can obviously overcome the 
prematurity of the algorithm. Different solution space 
transformation models and fitness functions are designed 
for different optimization problems, where the overall 
idea of the algorithm remains the same, the algorithm has 
strong versatility. Research results show that the new 
algorithm has certain practical value which can improve 
the efficiency and accuracy. Compared with conventional 
intelligence algorithms, BIQACA has stronger search 
capability and higher efficiency, and is appropriate for 
complex function optimization and combinatorial optimi-
zation problems. At the same time, as a novel optimiza-
tion algorithm, BIQACA is lack of necessary theoretical 
proof, experimental verification alone is not comprehen-
sive enough; further study is needed in the future. 
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